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Abstract

Objective: This study classifies sleep stages from a single lead electrocardiogram (ECG) using 

beat detection, cardiorespiratory coupling in the time-frequency domain and a deep convolutional 

neural network (CNN).

Approach: An ECG-derived respiration (EDR) signal and synchronous beat-to-beat heart rate 

variability (HRV) time series were derived from the ECG using previously described robust 

algorithms. A measure of cardiorespiratory coupling (CRC) was extracted by calculating the 

coherence and cross-spectrogram of the EDR and HRV signal in five-minute windows. A CNN 

was then trained to classify the sleep stages (wake, rapid-eye-movement (REM) sleep, non-REM 

(NREM) light sleep and NREM deep sleep) from the corresponding CRC spectrograms. A support 

vector machine was then used to combine the output of CNN with the other features derived from 

the ECG, including phase-rectified signal averaging (PRSA), sample entropy, as well as standard 

spectral and temporal HRV measures. The MIT-BIH Polysomnographic Database (SLPDB), the 

PhysioNet/Computing in Cardiology Challenge 2018 database (CinC2018) and the Sleep Heart 

Health Study (SHHS) database, all expert-annotated for sleep stages, were used to train and 

validate the algorithm.

Main results: Ten-fold cross validation results showed that the proposed algorithm achieved an 

accuracy (Acc) of 75.4% and a Cohen’s kappa coefficient of κ = 0.54 on the out of sample 

validation data in the classification of Wake, REM, NREM light and deep sleep in SLPDB. This 

rose to Acc = 81.6% and κ = 0.63 for the classification of Wake, REM sleep and NREM sleep and 

Acc = 85.1% and κ = 0.68 for the classification of NREM sleep versus REM/wakefulness in 

SLPDB.

Significance: The proposed ECG-based sleep stage classification approach that represents the 

highest reported results on non-electroencephalographic data and uses datasets over 10 times 
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larger than those in previous studies. By using a state-of-the-art QRS detector and deep learning 

model, the system does not require human annotation and can therefore be scaled for mass 

analysis.

1. Introduction

The earliest detailed description of the various stages of sleep, based on the 

electroencephalogram (EEG), was provided by Loomis et al. (1936, 1937) in the mid-1930s. 

In the early 1950s Aserinsky and Kleitman (1953) identified rapid-eye-movement (REM) 

sleep, which is related to dreaming. Sleep has been traditionally divided into two broad 

types: non-REM (NREM) and REM sleep. The sleep staging criteria were standardized in 

1968 by Rechtschaffen and Kales (1968) (the ‘R&K rules’), based mostly on EEG changes, 

and dividing 30 s epochs of NREM sleep into a four further stages (stage I, stage II, stage 

III, stage IV). In 2004, the American Academy of Sleep Medicine (AASM) standards 

commissioned the AASM Visual Scoring Task Force to review the R&K scoring system and 

to combine stages III and IV into stage N3 (Iber et al. (2007)).

Currently, the gold standard in terms of sleep disorder diagnosis is a sleep study, or an 

overnight polysomnogram (PSG) which includes multiple EEG electrodes, as well as 

electromyograms, electrooculargrams, pulse oximetry (usually on the finger tip), respiratory 

bands across the upper chest and lower abdomen, as well as actigraphy, audio and video at 

times. PSG studies are therefore cumbersome, intrusive and expensive. This combination of 

physical and psychological discomfort tends to inhibit a restful night’s sleep and leads to 

poor compliance beyond a single night of evaluation. Even relatively simple home study 

equipment can lead to a significant disturbance and inconvenience (Roebuck et al. (2014)). 

Moreover, it is well known that a single night’s sleep, or even several nights of sleep, may 

not be sufficient to asses the quality of sleep of a subject (Wohlgemuth et al. (1999); Herbst 

et al. (2010)). In response to these issues, actigraphic devices have often been used, although 

actigraphy has been shown to be a poor estimator of sleep onset latency and it has not been 

validated for measuring sleep stages (Martin and Hakim (2011)). Actigraphy is also prone to 

overestimating sleep in certain patient groups, and although it has been shown to be accurate 

in measuring total sleep time among healthy subjects (with a sensitivity above 90%, the 

ability to detect sleep is substantially reduced in patients with disturbed sleep (those who 

have frequent arousals and reduced total sleep time). Finally, we note that wrist worn devices 

do not capture torso movements (such as sleep) and provide poor measurements of 

physiology compared to devices attached to the torso.

The enormity of data that can be captured during sleep leads to another issue, that human 

scoring of the data is time consuming and also expensive. High inter-rater variabilities also 

confound the problem of manual scoring. (The overall agreement as measured by Cohen’s 

Kappa (κ) coefficient ranges from 0.6 to 0.9 depending on the sleep scoring guidelines and 

population being (Crowell et al. (1997, 2002); Stepnowsky et al. (2004); Ferri et al. (2005); 

Rosa et al. (2006); Saito et al. (2006).) An automated approach to assessing sleep from 

multiple nights of data is therefore important. In Roebuck et al. (2014) we provide an 

extensive review of most of the approaches to automated sleep analysis and their practical 

applications. The work presented here is focused on a high compliance, unobtrusive 
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approach to monitoring physiological correlates of sleep, namely the electrocardiogram 

(ECG). Modern electrocardiographic patches can provide accurate physiological information 

pertinent to sleep and facilitate high compliance. Notably, both respiration and heart rate 

variability, which changes with sleep stages and sleep related health problems (such as sleep 

apnea), can be captured by such devices.

We are not the first to suggest the ECG is a potential vehicle for revealing approximate sleep 

structure. (We do not claim it provides a true resolution of 30 second epochs of sleep, as is 

tradition in sleep scoring, as noted later on.) Thomas et al. (2005) developed an automated 

measure of cardiopulmonary coupling (CPC) during sleep using the power in specific bands 

of the single-lead electrocardiographic signal. The CPC, or as it is sometimes called, 

cardiorespiratory coupling (CRC), was measured using the power in specific bands of the 

cross-spectral density between the ECG-derived respiration signal (EDR) and the respiratory 

sinus arrhythmia signal (RSA) derived from ECG. The energy in specific bands was then 

thresholded (in an unspecified way) to produce an output of wakefulness/REM sleep (WR), 

unstable/CAP sleep, or stable/NCAP sleep. The authors reported a value of κ = 0.627 on a 

training set and κ = 0.439 on a test set, where the training and test sets included 35 

polysomnograms each, selected from a total of 900 polysomnograms acquired at Beth Israel 

Deaconess Medical Center during December 2003 to July 2005. No cross validation or 

bootstrapping of the 900 patients was performed.

Long et al. (2014) described a dissimilarity measure which was computed between two 

respiratory effort signal segments with the same number of consecutive breaths. Using a set 

of 48 healthy subjects, a linear discriminant classifier and a ten-fold cross validation they 

reported an out-of-sample value of κ = 0.48 for three-stage classification (Wake, REM sleep 

and NREM sleep) and of κ = 0.41 for 4-stage classification (Wake, REM sleep, light sleep 

and deep sleep). Their method therefore exhibited a moderate ability to distinguish between 

sleep stages, with the exception of substantial confusion between REM sleep and 

wakefulness.

Fonseca et al. (2015) proposed a sleep stage classification algorithm based on heart rate 

variability (HRV) calculated from ECG and respiratory effort from respiratory inductance 

plethysmography (RIP). A total of 142 features were extracted from cardiac and respiratory 

activity, and from cardiorespiratory interaction (CRI) using a sliding window (of undefined 

length) centered on each 30 s epoch. A multi-class Bayesian linear discriminant with time-

varying prior probabilities was used for classification. The authors reported an out of sample 

performance using ten-fold cross validation of κ = 0.49 and an accuracy (Acc) of 69% in the 

four-class classification of Wake, REM, light and deep sleep and κ = 0.56 and Acc = 80% in 

the three class problem of differentiating, Wake, REM sleep and NREM sleep.

In 2017, Fonseca et al. (2017) subsequently reported a new sleep stage classifier based on a 

conditional random field model. From ECG and RIP signals, 33 respiratory features, 81 

cardiac features and 3 CRI features were extracted. A total of 342 recordings from 180 

subjects were used for training and validation using ten-fold cross validation. Four separate 

non-complementary two-class detection tasks were considered: N3, NREM, REM and Wake 

separately, in a “one versus all” approach. They reported an out of sample κ = 0.41 and Acc 

Li et al. Page 3

Physiol Meas. Author manuscript; available in PMC 2021 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 87.4% for N3 detection, κ = 0.55 and Acc = 78.7% for NREM, κ = 0.51 and Acc = 88.5% 

for REM and κ = 0.51 and Acc = 85.7% for Wake detection.

Tataraidze et al. (2016) presented a three-step classifier for sleep stages using ECG and RIP 

signals. At first a gradient boosted machine and a random forest classifier were used in 

parallel to process the features extracted from ECG and RIP, followed by a linear 

discriminant analysis (LDA) to predict class probabilities. Then a simple linear combination 

was used to make prediction. The algorithm was tested on a polysomnography dataset with 

625 subjects with five-fold cross-validation. A value of κ = 0.57 and an accuracy of 71.4% 

in the four-class classification of Wake, REM, light and deep sleep was reported.

Yoon et al. (2017) developed an automatic algorithm to determine REM sleep by ECG. After 

obtained 14 HRV parameters from ECG, a principal component analysis (PCA) was applied 

to extract the principal components where the first principal component was used to 

represent the major fluctuation reflected by the pattens of a sleep cycle. The algorithm was 

trained on a set of 26 subjects and evaluated on a validation set of 25 subjects. They reported 

a value of κ = 0.63 and 0.61, an accuracy of 87.1% and 87.0% for the training and validation 

sets respectively in the two-class classification of REM and NREM including N1,N2,N3 and 

wakefulness.

Wei et al. (2018) described a neural network approach applied to the ECG to classify the 

sleep stages into one of three classes; Wake, REM and NREM. A total of 11 features were 

extracted from the raw ECG and were presented to a 4-layer neural network. Cross-

validation was used on the MIT-BIH Polysomnographic Database for validation. An 

accuracy of 77% and κ = 0.56 were reported for the three-class problem.

In the work presented in this article, the coherence and cross-spectrogram of the EDR and 

RSA signals were calculated on a 5-min epoch basis. Rather than selecting predetermined 

frequencies and optimizing amplitude or power thresholds, a convolutional neural network 

(CNN) was used to automatically identify the most relevant time-frequency cross spectral 

and coherence features associated with a given sleep stage. CNNs were originally developed 

to provide rotationally invariant spatial filters for images. Since the spectrogram is a matrix 

of numbers with spatiotemporal correlations that are similar to images, with specific 

subregions forming features indicative of specific physiological states, the CNN is a natural 

framework for identifying such features. A support vector machine (SVM) was then used to 

combine the output of the CNN with the other features derived from ECG, based upon heart 

rate variability, and signal quality indices (SQI) to produce a classification of sleep stage.

2. Methods

2.1. Dataset

For this work we used three databases: 1. the MIT-BIH Polysomnographic Database 

(SLPDB, Goldberger A L et al. (2000), 2. the Physionet/Computing in Cardiology Challenge 

2018 training database (CinC2018tDB, Ghassemi M M et al. (2018)) and 3. the Sleep Heart 

Health Study visit 1 (SHHSv1) database (Quan et al. (1997)). The SLPDB database includes 

18 recordings from 16 subjects of multiple physiological signals during sleep, containing 
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over 80 hours of four-, six-, and seven-channel polysomnographic recordings, each with a 

single channel of of ECG annotated beat-by-beat, and EEG and respiration signals annotated 

with respect to sleep stages and apnea. The CinC2018 training database includes 994 

subjects who were monitored at Massachusetts General Hospital (MGH) sleep laboratories 

for the diagnosis of sleep disorders, containing over 7660 hours of a variety of physiological 

signals recorded as they slept through the night including EEG, electrooculography (EOG), 

electromyography (EMG), ECG, and oxygen saturation (SaO2) together with arousal and 

sleep stages annotations. The SHHS database is a multi-center cohort study implemented by 

the National Heart & Lung Blood Institute to determine the cardiovascular and other 

consequences of sleep-disordered breathing. In all, 6,441 men and women aged 40 years and 

older were enrolled between 1995 and 1998 to take part in SHHS Visit 1, including 5793 

recordings (SHHSv1). During 2001 to 2003, a second polysomnogram (SHHSv2) was 

created using 3295 of the original participants. The entirety of the 5793 recordings in the 

SHHSv1 database was used without exclusion. Only the ECG signal was used in this study 

as an input and the expert sleep stages as targets/class labels.

The sleep stage annotations include six categories: wake, REM sleep, sleep stage 1, sleep 

stage 2, sleep stage 3 and sleep stage 4 in the SLPDB; wake, REM sleep, sleep stage 1, sleep 

stage 2, sleep stage 3 and undefined in the CinC2018tDB database; and wake, REM sleep, 

sleep stage 1, sleep stage 2, sleep stage 3 and sleep stage 4 in the SHHSv1 database). In this 

study, we combined sleep stage 1 and sleep stage 2, denoted NREM light sleep and 

combined sleep stage 3 and sleep stage 4, denoted NREM deep sleep. Data epochs were 

therefore classified into four categories, or ‘states’; Wake, REM sleep, NREM light sleep 

and NREM deep sleep. The data were annotated in non-overlapping 30 seconds epochs by 

experts. Since 30 seconds is too short an interval to contain a sufficient number of heart 

beats for estimating autonomic activity, we used five-min windows for an epoch, sliding the 

window forward every one minute in SLPDB and CinC2018tDB, but using non-overlapped 

window in SHHSv1 to keep the number of total epochs tractable. An epoch was selected 

only when the annotations within the five-min window belonged to the same state. This 

prevented the inclusion of multiple sleep stages in a single epoch and reduced the effect of 

nonstationarities. A total of 2,829 epochs were selected in SLPDB, 261,946 epochs in 

CinC2018tDB, and 400,547 epochs in SHHSv1 database, as shown in Table 1.

2.2. Preprocessing

The ECG signals were preprocessed by a finite impulse response (FIR) lowpass filter with a 

band stop at 22Hz and a FIR highpass filter and with at corner frequency of 1.2Hz. A state-

of-the-art QRS detector (jqrs) was used for ECG R-peak detection (Johnson et al. (2015)). 

The detector consists of a window-based peak energy detector, which is extremely robust to 

noise. An ECG signal quality index (bSQI), which assesses the signal quality or noise levels 

of the signals, was extracted from the ECG and used to accept the epochs for further 

processing or reject the epochs if the signal quality of ECG was too low to be trusted (Li et 

al. (2008)). A sliding 10-second window was used, evaluated every second with a nine 

second overlap. If the value of the signal quality index was lower than a preset threshold, the 

epoch was rejected.
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2.3. Cardiorespiratory coupling spectrogram calculation

After R-peak detection and derivation of the RR tachograms, RSA and EDR time series 

were extracted. Outliers due to false or missed R-peak detection were removed using a 

sliding window average filter with a length of 41 data points. Central points lying outside 

20% of the window average were rejected. The resulting normal-to-normal (NN) interval 

series and its associated EDR signal were then linearly resampled at 4 Hz, so that the five-

min epoch contained 1200 samples. The cross-spectral power and coherence of these two 

signals were calculated over a 512-sample (128-second) window. Then the 512-sample 

sliding window was advanced every 40 samples (10-seconds) to obtain 18 cross-spectral 

estimates. By placing the cross-spectral curves in order of time, we obtained a CRC 

spectrogram of dimensions 50×18, where the frequency range was from 0 Hz to 0.4 Hz 

(taken 50 points) and the time window was five minutes. An example of a CRC spectrogram 

for each sleep stage is shown in Figure 1. The CRC spectrogram for each state, average over 

all epochs in SLPDB, is shown in Figure 2.

2.4. Convolutional neural network implementation

The CNN toolbox used in this study was written in Matlab R2016b (Vedaldi and Lenc 

(2015), MatConvNet: CNNs for MATLAB (2016)). The CNN model used consisted of three 

convolutional layers, two max pooling layers (implemented after the first and the second 

convolutional layer), a rectified linear unit (ReLU) layer and finally a fully connected layer, 

as shown in Figure 3. An n × m sized map is convolved with the input image at each 

convolutional layer, resulting in an output with n − 1 × m − 1 reduction in size from the 

input. The 2×2 max pooling layer downsamples the input by a factor of two in both 

directions, dropping 75% of data size while retaining most discernible features for 

classification. The final layer of convolution computes the input into a single value, which 

after increasing nonlinear properties by the ReLU layer, is passed into the fully connected 

layer thereby producing the final resulting probabilities for each class. Figure 3 illustrates 

this architecture.

2.5. Additional features

In order to capture information not present in the cross spectral coherence, we also 

calculated several HRV metrics (Vest et al. (2018)). These included deceleration and 

acceleration capacity from phase-rectified signal averaging (PRSA, Campana et al. (2010)), 

sample entropy (Costa et al. (2005)), and other HRV metrics (standard deviation of NN 

intervals (SDNN) and the ratio of low frequency and high frequency spectral power (LF/HF-

ratio)). We also included several novel indices including the ratio of the sum of the two 

maximal coherent cross-power peaks in the low-frequency band (0.01–0.1 Hz) to the sum of 

the two maximal peaks in the high-frequency band (0.1–0.4 Hz), the ratio of the energy 

between the low-frequency and high-frequency band, and the signal quality index.

2.6. Support vector machine

To combine the above features and produce a final sleep stage class probability, a SVM 

classifier was used (Chang and Lin (2011); LibSVM – a library for support vector machines 

(2016)). The SVM employed a Gaussian radial basis function kernel, defined by: K(xn, xm) 
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= exp(γ||xn−xm||2), where γ controls the width of the Gaussian and plays a role in 

controlling the flexibility of the resulting classifier. xn and xm are two vectors expressed in 

the initial feature space. We used the LibSVM libraries, which decouples the multiclass 

classification problem to several two-class problems and a voting strategy is then used: each 

binary classification is considered to be a voting entity, where votes can be cast for all data 

samples. A sample is designated to be in a class with the maximum number of votes.

The probability outputs of CNN were fed into the SVM at its input, together with the 

individual HRV features extracted from the same five-min ECG, as described in section 2.5.

2.7. K-fold cross-validation

The 16 subjects in SLPDB, and the recordings from CinC2018tDB and SHHSv1 were 

randomly allocated into ten subsets (folds, K=10) of data respectively. Grouping was 

performed by subject number rather than by the total epochs, (i.e. stratified by subject) so 

that the data from one subject would not appear in both the training fold or the test fold. K−1 

folds of the dataset were used for training, after which the network was saved, it was tested 

on the remaining (validation) fold. This process was repeated K times with each of the K 
folds tested and the results were averaged or accumulated.

2.8. Evaluation method

The classification accuracy (Acc) and Cohen’s Kappa (κ) were used to evaluate the 

performance of the algorithm. The Acc is defined as follows:

Acc = ∑
k = 1

q
nkk/N

where q is the number of categories, N is the total number of epochs and nkk is the number 

of correct classification. Cohen’s Kappa is then calculated by:

κ =
pa − pe
1 − pe

where pa = ∑k = 1
q pkk, pe = ∑k = 1

q pk + p+k, pkk represents the percentage of epochs 

classified into category k by the algorithm and by the annotated label; pk+ and p+k represent 

the percentage of epochs assigned to category k by the algorithm and annotated label 

respectively.

3. Results

Table 2 shows the performance of the ten-fold cross validation in SLPDB. The four classes, 

or states, are Wake, REM sleep, NREM light sleep and NREM deep sleep. The three classes 

are broken into two categories: (a) Wake, REM sleep and NREM sleep; and (b) Wake and 

REM combined, NREM light sleep, and NREM deep sleep. The two class problem 

combines Wake and REM sleep as one class and NREM sleep as the other. The average 

values are the average accuracy of the held-out fold in the ten validation runs. The 
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accumulation accuracy and κ were obtained by accumulating the results from every 

validation fold.

An accuracy of 75.4% and a Cohen’s kappa coefficient of 0.54 on out of sample validation 

in the classification of Wake, REM, light and deep sleep was obtained. For the three class 

problem an Acc = 81.6% and κ = 0.63 for the classification of Wake, REM sleep and NREM 

sleep and Acc = 85.1% and κ = 0.68 for the classification of NREM sleep vs REM/

wakefulness was found. The confusion matrix are tabled in the Appendix.

Table 3 shows the performance of the ten-fold cross validation in CinC2018tDB. An 

accuracy (Acc) of 65.6% and a Cohen’s kappa coefficient of 0.31 on out of sample 

validation in the classification of Wake, REM, light and deep sleep was achieved. For the 

three class problem an Acc = 76.5% and κ = 0.42 for the classification of Wake, REM sleep 

and NREM sleep and Acc = 79.4% and κ = 0.48 for the classification of NREM sleep vs 

REM/wakefulness was accomplished.

Table 4 shows the performance of the ten-fold cross validation in SHHSv1. An accuracy 

(Acc) of 65.9% and a Cohen’s kappa coefficient of 0.47 on out of sample validation in the 

classification of Wake, REM, light and deep sleep was achieved. For the three class problem 

an Acc = 75.3% and κ = 0.57 for the classification of Wake, REM sleep and NREM sleep 

and Acc = 80.8% and κ = 0.61 for the classification of NREM sleep vs REM/wakefulness 

was accomplished.

Figure 4 illustrates the output of our new approach to automated sleep structure 

identification for the two, three and four-class problem.

Table 5 shows the performance when different SQI thresholds were used to exclude noisy 

epochs in SLPDB.

4. Discussion and Conclusions

In this article we have presented a new approach to ECG-based sleep stage classification. 

Our results provide the highest accuracy compared to the state of the art Fonseca et al. 

(2015), with a 6.4% increase in accuracy and 0.05 increase in Cohen’s kappa for the four 

class problem, a 1.6% increase in accuracy and 0.07 increase in Cohen’s kappa for the three 

class problem, and the highest reported two class results (see Table 2). A comparison with 

the latest algorithms was shown in table 6.

Aside from the improved results over earlier studies, there are several features of our method 

that make it superior to previously reported best in class (Fonseca et al. (2015)). First, 

previous authors required the recording of a respiratory inductance plethysmography. This 

can be energy consuming, annoying for the user and require expert placement of electrodes. 

Respiratory signals in themselves are notoriously difficult signals to interpret and 

generalization to consumer use is probably impossible (and in all likelihood why no clinical 

grade consumer respiratory band devices have come to the market).
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In this work, we used the cross-spectral power to measure the amplitudes coupling of EDR 

and RSA, and used coherence to reveal the phase relationship between these signals. It has 

been shown that although the amplitudes can be subject and pathology dependent, the phase 

changes with sleep stages is consistent across populations (Thomas et al. (2005)). The 

product of the cross-spectrogram and the coherence can then be used as a quantitative 

measure of the cardiopulmonary coupling. However, we note that there are other measures 

of cardio-respiratory coupling that may prove useful quantities to measure in this context. 

Bartsch et al. (2012, 2014) demonstrated three independent forms of cardio-respiratory 

coupling, such as RSA, cardio-respiratory phase synchronization (CRPS) and time delay 

stability analysis (TDS) and the stratification patterns with transitions across sleep stages. 

Comparing with RSA, the sensitivity of CRPS to sleep-stage transitions is 10 times higher. 

Specifically, the CRPS reflects the degree of clustering of heartbeats at specific relative 

phases within each breathing cycle, and the TDS quantifies the stability of the time-delay 

with which bursts in the activity in one system are consistently followed by corresponding 

bursts in the other system.

Recently research has addressed sleep staging from the perspective of network physiology 

(Bashan et al. (2012), Bartsch et al. (2015), Ivanov and Bartsch (2014), D’Agostino and 

Scala (2014) and Ivanov et al. (2016)). Bashan et al. (2012) developed a framework to probe 

interactions among diverse systems and identify physiological networks. They found that 

each physiological state was characterized by a specific network structure, demonstrating an 

interplay between network topology and physiological function. Bartsch et al. (2015) 

systematically studied how diverse physiologic systems in the human organism dynamically 

interact and collectively behave to produce distinct physiologic states and functions. The 

authors used TDS to identify and quantify networks of physiologic interactions from long-

term continuous, multi-channel physiological recordings and found a sleep-stage 

stratification pattern for brain-brain, brain-organ and organ-organ networks. In this paper we 

studied the physiologic interactions among heart and respiration with cardiorespiratory 

coupling of EDR and RSA extracted from ECG without an explicit modelling of this system. 

In that sense it represents a non-parametric approach. The interactions of the 

cardiopulmonary system were converted to a CRC spectrogram and the different sleep stages 

of light sleep, deep sleep, REM sleep and wake exhibited characteristic differences in the 

CRC spectrogram which could then be classified by the proposed deep learning architecture.

We also note that with a cross spectral approach, the noise present during respiration is 

removed, since incoherent noise exhibits a very low amplitude or nonexistent signal in our 

time-frequency plot. This lack of signal due to noise becomes a useful signal for us, and in 

fact including this in the CNN leads to higher accuracies/κ. This indicates that certain sleep 

stages exhibit more noise than others, and this noise level can be learned, if it doesn’t swamp 

the signal.

We also note that the use of a time-frequency approach allows us to identify relatively short 

periods of physiology (like sleep stages) and to capture nonstationary events. Since sleep 

stages are defined to be assessed on 30 second epochs, and indeed, events can happen on a 

shorter time-scale, a method that can spot these (such as arousals) is essential in sleep 

analysis. In this study we used a relatively long window of 5-minute epoch to generate the 
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CRC spectrogram for sleep staging analysis. To evaluate our algorithm on a 30-second basis, 

we slide the 5-min window forward every 30-second to match the annotation of the 30-

second epoch centred on the 5-min window. In this way we were able to match the epochs 

generated through traditional sleep staging approaches. Of course, this leads to a slight low-

pass filtering effect that may dampen out shot term sudden shifts since data from the 

surrounding epochs are used, but the evaluation of a 30s epoch-by-epoch basis is still valid. 

The classification performance of the algorithm was tested by a 10-fold cross validation in 

the SLPDB. The results showed an Acc = 66.2% and κ = 0.36 on out of sample validation in 

the classification of Wake, REM, light and deep sleep, Acc = 73.6% and κ = 0.44 for the 

classification of Wake, REM sleep and NREM sleep and Acc = 76.1% and κ = 0.47 for the 

classification of NREM sleep vs REM/wakefulness. In the last decade or so there have been 

attempts to develop HRV metrics from shorter term windows, such as Phase Rectified Signal 

Averaging (Bauer et al. (2006)). Most recently, Hou et al. (2016) presented a new approach 

on 30 seconds epochs during sleep. The authors constructed a complex network from short-

term HRV based on a visibility graph algorithm and extracted four network measure 

parameters across sleep stages. However, these measures do not capture the interactions 

between respiration and heart rate, and so would not be useful in our analysis here.

Perhaps most importantly, we note that the use of a QRS detector in our work is important. 

Previous studies using ECG data have often used hand annotations of beat locations. As we 

have previously shown (Oster and Clifford, 2015), the use of algorithms trained and tested 

on hand annotations significantly over-estimates the accuracy of the resultant algorithms and 

leads to a substandard approach in reality. For this reason, we have not included 

comparisons with other sleep staging algorithms based on ECG - it would be unfair to 

compare any technique which requires hand annotation of QRS complexes. In such 

scenarios, one might as well have recorded the EEG and had experts read the EEG. Since the 

accuracy of the EDR and RSA signals derived from ECG depend on the quality of the QRS 

detector, the accurate estimation of the HRV features and derivation of the CRC are naturally 

also a function of the quality of the ECG and the accuracy of the QRS detector. Poor QRS 

detection performance is therefore likely to result in poor sleep staging classification. To 

illustrate the effect of different QRS detectors on sleep staging from automated ECG 

analysis, we compared the results when using an open source QRS detector, wqrs (Zong et 

al. (2003)), which is sensitive to noise. The 10-fold cross validation approach results in the 

SLPDB resulted in an out of sample four-class Acc = 73.1% and κ = 0.51 (Wake, REM, 

NREM light sleep and NREM deep sleep), a three-class Acc = 77.7% and κ = 0.56 (Wake, 

REM and NREM sleep) and a two-class Acc = 81.6% and κ = 0.61 (NREM sleep vs REM/

wakefulness). These results are a modest but important 2–4% lower than the results using 

jqrs. However, we note that the CRC, which provides an estimate of the cardiopulmonary 

coupling, is in some sense robust to noise, since only coherent signals in both the respiration 

and heart rate will be detected. In some sense this has somewhat (although not entirely) 

mitigated the issue of noise. However, noisy segments of ECG are likely to be correlated to 

movements, which themselves are correlated with less deep sleep stages or wakefulness. 

This bias is likely to be learned by the deep learning architecture and therefore must be 

considered carefully in the context of the population on which the algorithm is trained. (This 

is of course true for all sleep staging approaches, regardless of which signals are used for 
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sleep staging.) Therefore, using as accurate a beat detection algorithm as possible is still 

important.

Finally, we note that we have demonstrated robustness of the approach presented here across 

three databases with over 10 times as many patients as any previous study. The use of an 

automated QRS detector made this approach possible.

There is one key limitation to our study in that we used relatively specific patient cohorts. 

Since abnormal conditions can reduce the inter-class agreement level of experts, then 

training becomes more difficult. Although this does not always directly impact on the 

eventual diagnosis, it can be significant for automated classification systems, which may 

disproportionately weight incorrectly labeled epochs during training. Inter-rater reliability/

agreement has been shown to vary enormously, with κ coefficient values ranging between 

0.6 and 0.9 (Crowell et al. (1997, 2002); Stepnowsky et al. (2004); Ferri et al. (2005); Rosa 

et al. (2006); Saito et al. (2006)). Taking this into consideration, we can see that the κ values 

we obtain of 0.54 to 0.68 are as good as can be expected.

In general, in order to ascertain if the method described here provides enough information to 

be diagnostically useful for any given condition, the output from this method will have to be 

fed to another classifier (or expert). Sleep stages in themselves are rather uninformative, yet 

statistics derived from them are correlated with a range of conditions. For example, patients 

with Major Depressive Disorder exhibit shortened latency to the onset of REM sleep (REM 

latency), an increased percentage of the night in REM sleep, a longer duration of the first 

REM period, and decreased amount of slow-wave sleep (Krystal (2012)).

It may therefore be possible to identify a proxy for ECG-related REM-like sleep from our 

algorithm, and then identify thresholds for a given patient population, that although different 

to EEG-based REM thresholds, may never-the-less provide enough predictive power for 

patient screening or follow-up. On an individual basis, the ECG-based sleep structure 

estimate may be even more informative, allowing the user to identify treatment-related 

improvements on a long term basis, something which is not feasible with EEG-based 

systems, since the user rarely tolerates more than a few nights of such measurements and 

expert-application of the electrodes is often needed.

In conclusion, we have described an improved system for estimating sleep structure from a 

cardiovascular time series that is robust to noise, and in fact takes advantage of the noise in 

the ECG to aid classification accuracy. The system described outperforms current reported 

systems and in general it could apply to any pulsatile signal from which a beat onset and a 

respiratory modulation can be observed, such as the photoplethysmogram. Perhaps most 

notably, the results provided here do not require human annotation and can therefore be 

scaled for mass analysis without restriction beyond the modest storage and computational 

power requirements of earlier works.
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Appendix

Table 7:

Appendix - Confusion matrix of the four class problem of ten-fold cross validation in 

SLPDB

Annotation algorithm Wake REM Light Sleep Deep Sleep

Wake 703 73 140 27

REM 21 15 30 0

Light Sleep 181 96 1398 101

Deep Sleep 9 1 17 17

Table 8:

Appendix - Confusion matrix of the two class problem of ten-fold cross validation in 

SLPDB

Annotation algorithm Wake & REM NREM Sleep

Wake & REM 857 181

NREM Sleep 242 1549

Table 9:

Appendix - Confusion matrix of the four class problem of ten-fold cross validation in 

SHHSv1

Annotation algorithm Wake REM Light Sleep Deep Sleep

Wake 95538 12891 16350 2198

REM 6950 23221 7700 356

Light Sleep 27913 24099 139875 34395

Deep Sleep 287 23 3418 5333

Table 10:

Appendix - Confusion matrix of the two class problem of ten-fold cross validation in 

SHHSv1

Annotation algorithm Wake & REM NREM Sleep

Wake & REM 149783 35832

NREM Sleep 41139 173793
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Figure 1: 
Examples of CRC spectrograms for each sleep state: (a) Wake; (b) REM sleep; (c) NREM 

light sleep; (d) NREM deep sleep. Hotter colors indicate higher cross spectral coherence 

(inherently normalized between 0 and 1)
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Figure 2: 
Average of CRC spectrogram over all epochs in SLPDB for each state: (a) Wake; (b) REM 

sleep; (c) NREM light sleep; (d) NREM deep sleep. Hotter colors indicate higher cross 

spectral coherence (inherently normalized between 0 and 1)
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Figure 3: 
Convolutional neural network structure.
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Figure 4: 
A comparison of expert-scored hypnograms and the output from the proposed approach for 

the (i) four class problem, (ii) three class problem (a), (iii) three class problem (b), and (iv) 

two class problem. Note that each epoch is five minutes for the algorithm output and 30 

seconds for the expert annotation, so rapid changes between epochs (less than 5 minutes) are 

undetectable.
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Table 1:

Distribution of epochs by state for each database used in this study

database Wake REM NREM light NREM deep Total

SLPDB 914 (32%) 185 (7%) 1585 (56%) 145 (5%) 2829

CinC2018tDB 34711 (13%) 37593 (14%) 160748 (61%) 28894 (11%) 261946

SHHSv1 130688 (33%) 60234 (15%) 167343 (42%) 42282 (11%) 400547
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Table 2:

Performance of ten-fold cross validation in SLPDB

training folds validation fold

Acc average (%) Acc average (%) Acc accumulation (%) κ

4 classes 86.9±0.7 75.6±9.0 75.4 0.54

3 classes(a) 92.8±0.8 81.7±7.5 81.6 0.63

3 classes(b) 91.5±0.4 79.7±10.1 79.8 0.61

2 classes 93.8±0.4 85.0±6.5 85.1 0.68
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Table 3:

Performance of ten-fold cross validation in CinC2018tDB

training folds validation fold

Acc average (%) Acc average (%) Acc accumulation (%) κ

4 classes 68.8±0.2 65.6±1.3 65.6 0.31

3 classes(a) 79.2±0.1 76.5±1.0 76.5 0.42

3 classes(b) 72.2±0.1 68.2±1.2 68.2 0.36

2 classes 81.3±0.1 79.4±0.9 79.4 0.48
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Table 4:

Performance of ten-fold cross validation in SHHSv1

training folds validation fold

Ace average (%) Ace average (%) Ace accumulation (%) κ

4 classes 67.0±0.1 65.9±0.7 65.9 0.47

3 classes(a) 76.3±0.1 75.3±0.5 75.3 0.57

3 classes (b) 72.3±0.1 71.6±0.4 71.6 0.49

2 classes 81.4±0.1 80.8±0.3 80.8 0.61
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Table 5:

Performance (Acc accumulation %) on validation fold by SQI-threshold selection in SLPDB

SQI-threshold - 0.80 0.90 0.95

epochs 2829 2814 2774 2658

SQI values 0.985±0.07 0.988±0.05 0.989±0.04 0.992±0.03

4 classes 75.4 76.3 76.3 75.9

3 classes(a) 81.6 82.5 82.6 82.0

3 classes(b) 79.8 80.2 80.0 79.9

2 classes 85.1 85.2 85.0 84.7
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