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Abstract

Hereditary sensory neuropathies (HSN) are a group of rare neurological disorders with
heterogeneous clinical and genetic characteristics. Although at least 17 different genes have
already been associated with HSN, the epidemiology of the disorder in Brazil is still unknown.
Performing whole genome sequencing (WGS) in 23 unrelated Brazilian families diagnosed with
HSN, we detected pathogenic variants in A7L3, SPTLCZ2, and SCN9A in 12 patients belonging to
five unrelated families. Clinical features associated with heterozygous mutations in A7L3
(c.575A>G; p.(Tyrl92Cys)) and SPTLCZ2 (c.529A>G; p.(Asn177Asp)) were sensory deficits,
neuropathic pain, and recurrent ulcerations. Presenting as congenital insensitivity to pain, three
unrelated probands carried biallelic loss-of-function mutations in SCVIA. The so far undescribed
stop mutation ¢.2106G>A (p.(Trp702Ter)) and the likewise novel splicing variant ¢.3319-1G>A
were found in compound-heterozygosity with, respectively, the known pathogenic variants
€.2908G>T (p.Trp970Ter) and ¢.2690G>A (p.Glu897Ter). In total, we identified pathogenic
mutations in 21.7% of our families, which suggests that most of the cases could be explained by
yet to be discovered genes or unusual alleles. Our study represents the first mutational screen in a
Brazilian HSN cohort, enabling additional insights for genotype-phenotype correlations, reducing
misdiagnoses, and providing early treatment considerations.
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1. INTRODUCTION

Hereditary sensory neuropathies (HSN) constitute a heterogenous group of disorders
characterized by axonal degeneration, exclusively or predominantly affecting the sensory
neurons (1). They are mainly characterized by slowly progressive loss of multimodal
sensation, frequently accompanied by chronic ulcerations in feet and hands, and complicated
by severe infections, osteomyelitis, and amputations (2). In some, but not all cases,
neuropathic pain and autonomic symptoms can also be present as a main feature (1).

To date, mutations in 15 genes have been associated with HSN, six in the autosomal
dominant (SPTLCI1, SPTLC2 ATL1, DNMTI, ATL3, and SCN11A) and nine in the
autosomal recessive forms (HSNZ2/WNK1, FAM134B, KIF1A, SCNIA, IKBKAP, NTRK1,
NGFB, DST, PRDM12) (OMIM # 162400). With new, upcoming treatment options, such as
L-serine supplementation for SPTLCI-or SPTLCZ-associated HSAN1A and C (3), an early
and precise genetic diagnosis is essential. In Brazil, the relative frequency of HSN is still
unknown, since a systematic study has not been conducted yet. We herein performed whole
genome sequencing (WGS) in 23 unrelated Brazilian HSN families diagnosed, thereby
describing 2 novel and 4 known pathogenic variants in A7L3, SPTLC2and SCNIA in five
unrelated families.

2. MATERIALS AND METHODS

2.1 Patient Cohort

We collected DNA samples from 23 unrelated families clinically characterized by
predominant sensory polyneuropathy, with or without signals of dysautonomia, followed up
at the Department of Neurology of the University Hospital, School of Medicine of Ribeirdo
Preto, University of Sdo Paulo, (HCFMRP/USP). All procedures were approved by the
HCFMRP University Ethics Committee, and informed consent was obtained from all
participants or their parents before sample collection.

2.2 Whole genome sequencing and variant filtering

Genomic DNA was isolated from peripheral blood leukocytes using DNeasy Blood & Tissue
Kit (Qiagen®), and WGS was performed in 23 index individuals through BGISEQ-500.
DNA nanoball and combinational probe anchor synthesis were developed from Complete
Genomics™ sequencing technologies. Library preparation, hybridization and sequencing
were performed according to the manufacturer’s standard procedure provided by BGI (BGI-
Shenzhen). On average, 91.7% of the target region was successfully covered by sequencing
data at more than 27 reads.
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WGS data were analyzed by and uploaded into the GENESIS platform (4) and variants were
filtered based on their functional impact predicted based on bioinformatic tools (Mutation
Assessor, LOFTEE, MutationTaster, MetaLR, CADD, FATHMM, PolyPhen-2, SIFT,
VEST3, PROVEAN, LRT and MetaSVM), allele frequencies less than 0.01 (EXAC and
gnomAD), number of supporting reads for the variant site more than 10, and evidence for
evolutionary conservation. Sanger sequencing, performed by Eurofins, was used to validate
the variants, confirm compound-heterozygosity, and perform co-segregation analyses.

2.3 Variants classification

The following criteria were used to classify a variant as pathogenic: 1) variant is present in a
known gene associated with the individual’s phenotype; 2) variant fits the mode of
inheritance of the known gene; 3) variant is classified as pathogenic or likely pathogenic in
accordance with the American College of Medical Genetics and Genomics (ACMG)
guidelines (5) or with ClinVar variant classification, and/or have been published in the
literature with enough evidence of pathogenicity, like supportive functional studies.

3. RESULTS

We identified disease-causing variants in A7L3, SCNIA, and SPTLCZ2in 12 patients from
five unrelated families. These results yielded a genetic diagnosis in 21.7% (5/23) of our
families. Detailed information on the genotypes and phenotypes is provided in tables 1 and
2.

At the age of 10 years, the female proband of family 1 developed a progressive sensory loss
together with neuropathic pain and recurrent ulcerations at both feet. Temperature and
pinprick perception were diminished, reflecting a pronounced small fiber dysfunction. In the
clinical course, she developed neuropathic joints. As a sign of large fiber involvement, the
vibration perception decreased distally, whereas muscle strength, deep tendon reflexes, and
nerve conduction studies (NCS) remained normal. The proband’s father, brother, and
daughter all developed similar symptoms, the brother accompanied by mild autonomic
disturbances (erectile dysfunction). In all affected family members, we detected the
heterozygous missense variant ¢.575A>G (p.(Tyr192Cys)) in ATL3that had previously been
described in the context of HSAN, without being identified in healthy controls (GnomAD).

Proband 2 developed an unsteady gait and recurrent ulcerations at the age of 19 years. With
ascending muscle weakness, neuropathic pain, and sensory deficits, she had pronounced
walking difficulties and impaired motor skills at the age of 38 years. Clinical examinations
were indicative for both large and small fiber damage, and lower limb tendon reflexes were
abolished. Two further of the patient’s sisters presented with the same phenotype, while the
parents’ affection status is unknown. The most severe clinical picture was observed in the
proband, including proximal muscle weakness in the course. In contrast to other affected
family members, she additionally suffered from diabetes mellitus. We identified the co-
segregating heterozygous missense mutation ¢.529A>G (p.(Asnl177Asp)) in SPTLCZthat
has previously been described to cause HSAN1 and does not occur in healthy controls
(GnomAD).
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In families 3, 4, and 5, all probands were sporadic cases presenting with self-injuring
behavior that became manifest during the first six months of life and eventually led to severe
burn or bite injuries at the tongue, lips, and hands. Injections did not seem to be considered
painful, and infections were not noticed. At the age of six years, proband 3 further showed
signs of anosmia and autonomic dysfunction (hypohydrosis and urinary incontinence).
Consanguinity was reported in one (family 4) out of three families. In all three probands, we
found biallelic loss-of-function variants in SCAV9A. The stop variant ¢.2690C>A (p.
(Trp897Ter)) was found in homozygosity in family 4, as well as in a compound-
heterozygous state with the splice variant ¢.3319-1G>A in family 5. Proband 3 showed two
stop variants in exons 14 and 17 (¢.2106G>A p.(Trp702Ter); ¢.2908G>T p.(Trp970Ter)) in
compound-heterozygosity. All variants are absent in healthy controls (GnomAD).

4. DISCUSSION

Using WGS, we herein identified disease-causing mutations in 21.7% of our 23 HSN
patients that were all of Brazilian descent. Thereby, the overall diagnostic yield ranged in a
similar spectrum than previously described by Davidson et al (14.3%) (6) and Rotthier et al.
(19%) (2), suggesting that most of the cases could be explained by novel genes that remain
to be discovered.

It is for the first time that a Brazilian HSN cohort, representing one specialized center, has
been systematically screened and published in this context. Compared to other inherited
neuropathies like Charcot-Marie-Tooth disease, HSN is especially rare and the accurate
worldwide prevalence is unknown. The disorder frequently remains undiagnosed or
misdiagnosed, making it difficult to determine the true frequency in the general population.
As demonstrated by our and other cohorts, however, its major impact on the patients’ quality
of life still merits a precise diagnosis and early treatment considerations.

We identified pathogenic variants most frequently in SCN9A, accounting for 60% of the
genetic identified cases. SCNIA encodes for the a-subunit of the voltage-gated sodium
channel Nav1.7, which is strongly expressed in nociceptive neurons (7). The four identified
SCN9A variants of our study correspond to biallelic null mutations, which suggest loss-of-
function of the Nav1.7 protein, resulting in congenital insensitivity to pain. Two of these
variants (p.(Trp897Ter); p.(Glu970Ter)) have been previously described in families from
various ethnic origins (7-9). The other stop variant, p.(Trp702Ter), has not been reported in
the literature or public databases. It is a predicted null variant not found in 207,574
chromosomes and is classified as pathogenic according to the ACMG guidelines.
Considering the specific, compatible phenotype, the matching pathomechanism, and the
proven compound-heterozygosity with a known disease-causing variant, we herein evaluate
it as pathogenic, which is in accordance with the ACMG criteria.

The novel splice site variant ¢.3319-1G>A in SCN9A is absent from gnomAD (278,252
chromosomes), is predicted to disrupt the original acceptor splice site of exon 18, has a
pathogenic computational verdict (4 pathogenic predictions from DANN, EIGEN,
FATHMM-MKL and MutationTaster vs no benign predictions) and is classified as
pathogenic according to the ACMG criteria. Three splicing mutations have been reported so
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far (IVS17+3delA, ¢.901+5G>C, and IVS8-2A>G), leading to loss-of-function of the
sodium channel and consequent insensitivity to pain (10-12). Since proband 5 has a well-
known disease-causing nonsense mutation at exon 16 and a compound-heterozygous
splicing variant at the acceptor consensus site at the intron 17/exon 18 junction, we
hypothesize that this novel variant is pathogenic.

In family 1, we identified the known pathogenic mutation ¢.575A>G (p.(Tyr192Cys)) in
ATL3. Worldwide, only four families have been reported with an A7TL3-associated HSN so
far, one from German, Spanish, Bosnian, and Chinese origin, each (13-15). With a dominant
negative effect, this alteration causes mislocalization of an endoplasmic reticulum (ER)-
shaping GTPase, which results in axon growth deficits in cultivated primary neurons (16). It
has also been reported that increased ER—-mitochondria contact and crosstalk may have a
negative impact on mitochondrial trafficking (17). In our Brazilian family, the mutation co-
segregated in four affected family members, matching the expected autosomal dominant
mode of inheritance.

The SPTLCZ mutation ¢.529A>G (p.Asn177Asp) identified in family 2 has previously been
described in a German HSN1 family with five affected individuals (18). Pathogenic variants
in SPTLC2reduce the substrate specificity of the serine-palmitoylCoA-transferase (SPT),
leading to an increased synthesis of neurotoxicl-deoxysphingolipids (1-deoxySL) (18).
Affected family members with the p.(Asn177Asp) mutation showed elevated 1-deoxySL
plasma levels, confirming the underlying gain-of-function pathomechanism that is
associated with the most frequent subtype of autosomal dominant HSN (18). In our
Brazilian family, the variant co-segregated in three affected family members. The most
severely affected individual was patient 13936, who had an additional diabetes mellitus.
Interestingly, abundance of the main gluconeogenic amino acid L-alanine can additionally
shift the substrate specificity of the SPT, resulting in increased 1-deoxySL levels in patients
with diabetes mellitus (19) and diabetic neuropathy as well (20). These additive effects
might therefore explain why individual 13936 was at a higher risk for a more severe disease
course, despite carrying the same variant as the other affected family members. Importantly,
high-dose oral L-serine supplementation has been shown to be beneficial in a recent phase 2
clinical trial (3) and should therefore be considered as a pathomechanism-based treatment
option.

In summary, we herein described two novel and four known pathogenic, HSN-related gene
mutations in a Brazilian cohort of mixed HSN subtypes. WGS is an efficient way to
approach ultra-rare hereditary diseases in order to identify the underlying genetic cause and
explore further treatment options.
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Figure 1.
Five Brazilian kindreds with HSN pathogenic variants. The boxes highlight the position of

the variants in each sequence. Diagrams show cDNA position of the A7L3, SPTLCZ2and
SCNIA mutations. Segregation of the heterozygous missense variants Tyr192Cys in A7L3
(A) and Asnl77Asp in SPTLCZ (B). Biallelic loss-of-function SCA/9A variants are show in
the compound-heterozygous states (Trp702Ter; Glu970Ter) (C), (Trp897Ter; ¢.3319-1G>A)
(E) and in the homozygosis (Trp897Ter) in the consanguineous family (D). The relatives
SCNIA mutations positions in the Nav1.7 protein are shown in the bottom. Square = male,
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circle = female, black filled symbol = affected, empty symbol = unaffected; arrowhead =
proband.
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