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Abstract

Psychology research frequently involves the study of probabilities and counts. These are typically 

analyzed using generalized linear models (GLMs), which can produce these quantities via 

nonlinear transformation of model parameters. Interactions are central within many research 

applications of these models. To date, typical practice in evaluating interactions for probabilities 

or counts extends directly from linear approaches, in which evidence of an interaction effect is 

supported by using the product term coefficient between variables of interest. However, unlike 

linear models, interaction effects in GLMs describing probabilities and counts are not equal to 

product terms between predictor variables. Instead, interactions may be functions of the predictors 

of a model, requiring nontraditional approaches for interpreting these effects accurately. Here, 

we define interactions as change in a marginal effect of one variable as a function of change in 

another variable, and describe the use of partial derivatives and discrete differences for quantifying 

these effects. Using guidelines and simulated examples, we then use these approaches to describe 

how interaction effects should be estimated and interpreted for GLMs on probability and count 

scales. We conclude with an example using the Adolescent Brain Cognitive Development Study 

demonstrating how to correctly evaluate interaction effects in a logistic model.
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Introduction

Many studies in psychology seek to understand factors influencing the probability or count 

of a particular behavior. Common examples include evaluating the likelihood of a condition 

being present or absent (such as a clinical disorder) or assessing how frequently a behavior 

occurred. Evaluating these outcomes typically involves analyzing dependent variables that 

are binary or discrete counts. Although linear models serve as the analytic foundation for 

much of psychological science, linear approaches may be inappropriate for evaluating these 

variables given they are generated as discrete quantities. For instance, binary variables can 

assume only two values, and count outcomes are bounded at zero and assume strictly integer 

values. Because of these features, analysis of binary and count dependent variables via 

traditional linear regression typically leads to violations of assumptions (i.e. heteroscedastic 

and non-normal residual values; Gardner et al., 1995) and are often suboptimal for 

characterizing these outcomes.

To address this limitation, many researchers analyze these outcomes using generalized linear 

models (GLMs). GLMs provide a flexible framework that can characterize non-normal 

dependent variables by relating predictors to these outcomes through a nonlinear function 

(Nelder & Wedderburn, 1972). In so doing, GLMs can represent binary and count outcomes 

by modeling different conditional distributions and functional relations between variables 

(for reviews, see Coxe et al., 2013; Nelder & Wedderburn, 1972). The analyst then has 

several options for interpreting the effects produced by this model. First, one can retain 

the transformed scaling of the model and interpret the linear coefficients on this scale 

(e.g., log-odds or log-counts). The analyst can also transform the estimates produced by 

these models to recover a more natural scale of the outcome variable (e.g., probabilities 

and counts; Breen et al., 2018; Mize, 2019). These scales may have greater interpretive 

value given they can describe more meaningful real-world quantities. In this sense, a unique 

feature of GLMs relative to linear models is the distinction between the transformed scale in 

which the parameters are linearly specified versus the natural scale in which the model may 

be more meaningfully interpreted. Given the advantages of natural scales, analysts often 

favor the natural scale in describing research findings.

Central to many applications of probability and count models are interaction hypotheses, 

which address whether the effect of a focal predictor on an outcome of interest depends on 

a third variable (i.e. a moderator). Common examples include evaluating whether a given 

effect differs across groups or as a function of some continuous factor. For instance, the 

effect of stress exposure on psychopathology might differ across groups (such as biological 

sex) or as a function of age (Monroe & Simons, 1991). In linear models, interactions are 

tested using product term coefficients, which are then interpreted as the degree to which the 

effect of a focal predictor on the outcome changes for every unit change in the other variable 

(and vice-versa). The magnitude, direction, and statistical significance of this coefficient can 

then be evaluated to determine the presence and nature of the interaction (Bauer & Curran, 

2005; McCabe et al., 2018). Interactions can then be probed to describe how the effect of a 

focal predictor on an outcome changes at particular levels of a moderator (Aiken & West, 

1991).
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In GLMs, interactions on natural scales can be quantified and probed using marginal effects 

(Long, 1997; Long & Freese, 2014). Marginal effects are often used as a flexible approach 

to characterize the rate-of-change in an outcome variable for a change in a predictor, holding 

all else constant. Hence, marginal effects are useful to characterize the effect of a predictor 

on the outcome in its natural scale of probabilities or counts. For instance, in the case of 

regression models that are linear in the predictors, marginal effects equal the coefficients of 

the specified model, which represent change in the outcome for every one-unit increase in a 

predictor. For GLMs of natural scales such as probability and count models, however, these 

coefficients do not capture marginal effects in the natural scale because they describe linear 

change in the transformed (e.g., logit or log) scale. Instead, as we describe in detail later, 

marginal effects use partial derivatives to quantify rates-of-change for nonlinear relations. In 

this sense, marginal effects represent a general approach for describing change in a naturally 

scaled outcome as a function of predictors and model parameters that can accommodate 

models with nonlinear design (Kim & McCabe, 2020), including GLMs of probabilities and 

counts. Using this conceptualization, an interaction effect can therefore be understood as 

change in the marginal effect for a focal variable for a change in the moderating variable.

Despite the utility of using marginal effects, interactions for GLMs are not typically 

quantified using marginal effects in published psychological research. Instead, tests of 

interaction are conducted in the same way as in linear models (i.e. via product terms). If 

the analyst describes their effects on the transformed scale (e.g., log-odds and log-counts), 

this is an appropriate practice given the linear specification of these scales. However, these 

terms do not quantify interaction effects when describing GLMs on their natural response 

scales. In brief, this is because transforming the scaling of the specified model introduces 

nonlinearity, which renders product term coefficients insufficient to quantify rate-of-change 

in a marginal effect on the natural response scale. Rather, a given interaction effect on 

natural scales is a function which must be interpreted with respect to other variables, 

as opposed to a constant quantified by the product term coefficient. This substantially 

increases the complexity involved in drawing straightforward inferences from these effects, 

and one cannot use methods developed to interpret interactions in linear models to evaluate 

interactions on the natural scale.

The issues and approaches we detail in this manuscript are not new to the social sciences, 

particularly in the context of nonlinear probability (e.g., logit) models. Others (Ai & Norton, 

2003; Berry et al., 2010; Karaca-Mandic et al., 2012; Long & Mustillo, 2018; Norton et 

al., 2004; Tsai & Gill, 2013) have provided statistical formulations of interaction describing 

this issue for logit and probit models of economics data. Several texts (Long, 1997; Long 

& Freese, 2014) have also detailed approaches to computing marginal effects that parallel 

several of the solutions we describe here. Most recently, Mize (2019) provided a practical 

guide for characterizing interactions in nonlinear models, with emphasis on the pragmatics 

of describing these effects using data visualization and discrete differences in applied 

sociological research.

Despite this extensive literature, we have found that solutions for interaction effects in 

GLMs of probabilities and counts have not been widely adopted in the field of psychology. 

We conducted an online search in which we randomly sampled 100 articles published 
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between 2009 and 2019 across seven high-impact journals in psychology that used either 

a logit or count model in analysis to describe changes in probabilities, odds, or counts 

and mentioned interaction effects in-text. We then examined whether the considerations 

for GLM interaction we describe in this paper were addressed in these manuscripts. Of 

these, 41 articles met our specific criteria of interest.1 In addition to these articles, we 

also included a prior study led by the first author testing interaction using GLMs (McCabe 

et al., 2015). Consistent with similarly dismaying reviews in economics (Ai & Norton, 

2003) and sociology (Mize, 2019), our results showed that none of the 42 articles reviewed 

(including the first author’s) interpreted the estimated interaction effect appropriately with 

respect to the natural scale in which they described their results. That is, despite having 

described effects on probability and count scales, all who inferred the presence of interaction 

supported their inference using the coefficient of the product term alone to provide a 

singular estimate of the interaction effect.

The overarching goal of this article is to address pervasive misconceptions in psychology 

regarding the interpretation of interaction effects in probability and count GLMs. Although 

theoretical frameworks (Ai & Norton, 2003; Berry et al., 2010; Karaca-Mandic et al., 

2012; Norton et al., 2004; Tsai & Gill, 2013) and recommendations for presenting these 

effects (Mize, 2019) have been provided outside psychology, our aim is to bridge theoretical 

foundations with implications for testing and interpreting interaction effects for nonlinear 

probabilities and counts in psychological science. We pursue this by linking statistical 

accounts with actionable recommendations for estimating, interpreting, and presenting 

interaction effects for GLMs of nonlinear probabilities and counts. In so doing, we hope 

to provide a comprehensive resource for psychologists that describes how interaction 

hypotheses may be pursued within a generalizable framework for estimating interactions 

across linear and nonlinear scales using marginal effects.

We begin by reviewing GLMs and guiding readers through the formal definitions of 

interaction in these models using language more familiar to psychological scientists. We 

then provide computational solutions for estimating interactions in GLMs on the natural 

scale, with special focus on logistic, Poisson, and negative binomial models for probabilities 

and counts given their popularity in psychology. Using simulated examples, we then discuss 

how typical analytic approaches in psychology can lead to serious errors in modeling and 

interpreting interaction effects, and provide concrete guidelines for improving inferential 

practices. Finally, using Adolescent Brain Cognitive Development (ABCD) Study data 

(https://abcdstudy.org/), we then provide an empirical example of how to analyze and 

interpret interaction effects appropriately in the metric of probabilities in a large and 

publicly-available dataset.

1Journals were selected to represent various sub-disciplines of psychology, and included Developmental Psychology, Journal of 
Abnormal Psychology, Journal of Applied Psychology, Journal of Consulting and Clinical Psychology, Journal of Experimental 
Psychology, Journal of Personality and Social Psychology, and Psychology of Addictive Behaviors. Databases included PsychInfo and 
PsychArticles. Boolean search conditions were “KW (interaction OR moderation) OR TX (interacted OR interaction OR moderated 
OR moderation) AND TX (logistic OR probit OR poisson OR ordinal OR negative binomial) AND TX regression”, yielding 1,812 
unique publications. Selected articles failed to meet criteria if search terms resulted in false-positives (e.g., moderation was mentioned 
in-text but was not examined directly in analyses).

McCabe et al. Page 4

Multivariate Behav Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://abcdstudy.org/


Background

Generalized linear models

Overview—Generalized linear modeling provides a flexible framework that can model 

nonlinear scales (Nelder & Wedderburn, 1972). We begin by defining the form of a 

GLM generically as follows using a generalized substantive regression framework (Kim 

& McCabe, 2020):

g(E[Y ∣ x]) = d(x)Tβ . (1)

Above, we define x as a p × 1 vector of observed predictors and β is an m × 1 vector of 

regression coefficients. The term E[Y ∣ x] is the conditional expectation of some dependent 

variable Y on a fixed set of predictor variables x.

The function d(·) transforms x into a vector of m regressor variables, which includes an 

intercept and any desired product terms. We use this formulation to simplify notation for the 

equations presented later in the manuscript. For example, if x = [x1 x2]T, then a possible 

design vector could be d(·) = [1 x1 x2 x1x2]T. Note that although we have only two predictor 

variables involved in the model (x1 and x2), the inclusion of the intercept and product term 

via d(·) yields a total of four regressor variables (i.e. the intercept, predictors x1 and x2, and 

their product).2 d(·) is analogous to a design matrix in the ANOVA framework, where one 

substantive categorical variable is split into a set of binary variables that actually serve as 

regressors in a model.

The GLM is distinguished from the traditional linear model due to the inclusion of the 

nonlinear link function g(·).3 We define g(E[Y ∣ x]) as the transformed scale, which allows 

the model to be estimated while retaining linearity in the parameters (Breen et al., 2018). 

However, it is very often the case that analysts seek to describe results in a more natural 

scale of a variable rather than the transformed one (Agresti, 2002; Breen et al., 2018; Long, 

1997; Mize, 2019). For logit and count models, natural scales refer to probabilities and 

counts for their respective models. Relative to transformed scales, natural scales can be more 

intuitive and often more directly correspond with the motivating research question (Long, 

1997; Mize, 2019; G. King et al., 2000; though see Breen et al., [2018] and Agresti, [2002] 

for discussions on competing perspectives). As such, analysts typically convert GLMs into 

their natural scales by inverting the link function, which is what renders most4 GLMs 

nonlinear in the natural scale:

E[Y ∣ x] = g−1 d(x)Tβ . (2)

By performing this transformation, regressors are now associated with the outcome through 

g−1(·). In other words, although this transformation allows us to recover the natural response 

scale, the relation between E[Y ∣ x] and d(x)Tβ is no longer linear as a consequence.

2Note that if this were a simple linear moderation model, this model could be identically represented as the regression function 
E[Y ∣ x] = β0 + β1x1 + β2x2 + β12x1x2.
3On a technical note, g(·) is assumed to be invertible and twice differentiable everywhere.
4An exception is the identity link function, which we are not considering here.
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The logistic model—The logistic regression model is among the most frequently-used 

GLMs in psychology for binary dependent variables. Since Y is binary in these models, 

E[Y ∣ x] refers to the probability of Y, and regressors are related to this quantity using a logit 

link function. The logit model can therefore be represented as:

log E[Y ∣ x]
1 − E[Y ∣ x] = d(x)Tβ . (3)

This model states that the log-odds of E[Y ∣ x] (i.e. the transformed scale) is the linear 

combination of our regressor variables (Figure 1a).

A common practice in these models is to exponentiate both sides of the regression equation 

to rescale the model into odds, which may be somewhat easier to interpret (Figure 1b). This 

model can be represented as:

E[Y ∣ x]
1 − E[Y ∣ x] = exp d(x)Tβ . (4)

This model describes how regressors are associated with factor increases in the odds of 

a binary outcome occurring, which follow an exponential scale (Figure 1b). However, 

a second transformation can relate predictors directly to the natural scale of probability 

(Figure 1c):

E[Y ∣ x] = 1
1 + exp −d(x)Tβ

. (5)

Note that although the functions relating the regressors to odds is also nonlinear (e.g., 

Figures 1b and 1c), we can use Equation 5 to describe how the predictors relate to the 

natural scale of probabilities. Relating predictors to this scale is often favored over other 

scales such as log-odds or odds due to their greater intuitive meaning and interpretability 

(e.g., Sackett et al., 1996).

Count models—Poisson and negative binomial models are commonly-used models of 

count data in psychological science.5 These models accommodate the assumption that Y is a 

discrete count (e.g., defined by non-negative integers) by relating predictors to the expected 

count on a log scale, as follows:

log(E[Y ∣ x]) = d(x)Tβ . (6)

5The negative binomial model is a generalization of the Poisson in which an additional parameter is added to account for 
overdispersion (see Coxe et al., 2013 for additional detail). Although a detailed description of the negative binomial model is beyond 
the scope of the present article, note that both the Poisson and negative binomial models are identical with respect to their link 
function (i.e. log-link) Thus, the misconceptions we describe subsequently in this manuscript with respect to count models will apply 
identically to each.
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Here, we can state that the log-count is the transformed scale and is the linear combination 

of our regressors (e.g., Figure 2a). To obtain estimates on the natural (i.e. count) scale, the 

analyst may then convert this model by exponentiating both sides of the regression equation:

E[Y ∣ x] = exp d(x)Tβ . (7)

This model states that predictors are associated with the count of Y on an exponential scale 

(e.g., Figure 2b).

Summary—Logistic and count models are common GLMs that can accommodate the 

analysis of discrete data. In its linear form (Equation 1), the scaling of the response is 

on a transformed metric that may be less valuable to the motivating research question 

relative to the natural response scale (e.g., Halvorson et al., in press). As we describe in the 

next section, however, such transformations introduce additional analytic complexities for 

estimating and interpreting interaction effects.

Interaction effects

Definition—We use a partial derivative approach (see also Kim & McCabe, 2020) and 

discrete differences (Long, 1997; Long & Freese, 2014) to define GLM effects on the natural 

scale described in the current paper. These formulations are very similar to those provided 

by Ai and Norton (2003) and others. We review them here in more detail to provide a 

context for discussing their implications later in the manuscript.

Partial derivatives and discrete differences describe how a function changes with respect to 

a given argument, holding all others constant. We may begin, for instance, by defining a 

marginal effect for a continuous variable using partial derivatives, which summarizes how 

E[Y ∣ x] changes with respect to a variable of interest (e.g., xj). Defining γj as the marginal 

effect of xj on E[Y ∣ x]:

γj = ∂E[Y ∣ x]
∂xj

. (8)

In the case of a linear regression model without nonlinear regressors, this is identical to 

deriving βj from a regression model using calculus. For example, assume the following 

regression equation:

E[Y ∣ x] = β0 + β1x1 + β2x2 . (9)

Therefore, taking the derivative with respect to x1:

γ1 = ∂E[Y ∣ x]
∂x1

= β1 . (10)

We note that in this simple case, the marginal effect is identical to β1. This may mirror the 

intuition held by many readers familiar with linear regression models (Cohen et al., 2003): in 
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this case, β1 sufficiently quantifies how much E[Y ∣ x] changes for every one unit increase in 

x1, holding all else constant.

For categorical predictors, we can apply discrete differences to define a marginal effect as 

the difference between two points on a regression function (i.e. f(b) – f(a)). We note that 

discrete differences can also describe meaningful change in a continuous variable when 

choosing two relevant levels of the predictor (e.g., changing from the mean of a predictor 

to +1 standard deviation above the mean of this predictor; see Long & Freese, [2014]). For 

instance, assuming xj is a categorical variable and Δ
xj:a, b

f(x) denotes the discrete difference 

of f(x) from a to b (i.e. Δ
x:a, b

f(x) = f(b) − f(a)):

γj = Δ
xj:a, b

E[Y ∣ x],
(11)

where a, b are categories of xj.

For illustrative purposes using the linear model in Equation (9), we may assume x2 is a 

dummy variable representing sex in which 0 = female (F) and 1 = male (M). We can then 

apply this definition to compute the marginal effect of sex as follows:

γ2 = Δ
x2:F, M

E[Y ∣ x] = β0 + β1x1 + β2
x2 = M

− β0 + β1x1
x2 = F

= β2 .
(12)

In other words, the marginal effect for sex using discrete differences is the expected value 

of Y for males minus the expected value for females. Similar to the preceding continuous 

variable example, this is conveniently quantified by the coefficient for sex β2 by virtue of the 

fact that the model was linear (Cohen et al., 2003).

We extend the concept of marginal effects to provide a more general definition of interaction 

between variables: interaction effects represent change in a marginal effect of one predictor 

for a change in another predictor.6 We use this definition to encompass the concept of 

interaction (e.g., how the relation between a predictor and an outcome changes with respect 

to another predictor), and distinguish this definition from product term coefficients (see 

also Mize, 2019). We emphasize this distinction because, as we describe later in this paper, 

typical definitions of interactions are not appropriate for describing interaction effects in 

GLMs on the natural scale. Hence, following the notation for marginal effects used above, 

we define the interaction effect between two variables xj and xk using partial derivatives and 

discrete differences as follows:

6We note that the approaches described here apply to higher-order interactions as well. For l-way interactions, these would involve 
taking the partial derivative and/or discrete difference with respect to all l variables involved in the interaction hypothesis. We focus on 
two-way interaction effects for simplicity.
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γjk
2 ≔

∂2E[Y ∣ x]
∂xj∂xk

if xjandxkarebothcontinuous

Δ
xj:a, b

∂E[Y ∣ x]
∂xk

if xj isdiscreteandxk iscontinuous

Δ
xj:a, b

Δ
xk:c, d

E[Y ∣ x] if xjandxkarebothdiscrete,

(13)

where a, b and c, d are categories for xj and xk, respectively, and Δ
xj:a, b

f(x) denotes the 

discrete difference of f(x) from a to b as introduced in Equation (11).

We use γjk
2  to generically denote the interaction effect between variables xj and xk, and use 

the three definitions provided in Equation (13) to define the interaction based on whether 

one or both variables are continuous or discrete. In the case where both variables are 

continuous (e.g., first line of Equation (13)), γjk
2  describes the rate-of-change in the marginal 

effect of one predictor for a change in another (i.e. the second-order cross-partial derivative; 

Ai & Norton, 2003). When one variable is continuous and the other is discrete (e.g., second 

line of Equation 13), we define γjk
2  as the difference in the marginal effect of the continuous 

predictor between two selected values of the discrete predictor (i.e. the discrete difference in 

the partial derivative; Ai & Norton, 2003). Finally, when both predictors are discrete (e.g., 

third line of Equation (13)), we define γjk
2  as the difference between the model evaluated 

at two categories of one variable (a, b) minus the difference in this model evaluated at two 

categories of another variable (c, d; i.e. the discrete double difference; Norton et al., 2004).

Linear models—We use the definitions provided above to show that, in linear models, 

the interaction effect between two variables is equal to the product term coefficient between 

these variables. Assume a model involving two continuous variables and a product term 

between them:

E[Y ∣ x] = β0 + β1x1 + β2x2 + β12x1x2 . (14)

Applying the definition of the interaction effect to this linear case:

γ12
2 = ∂2E[Y ∣ x]

∂x1∂x2
= β12 . (15)

In other words, Equation (15) takes the second-order cross-partial derivative of E[Y ∣ x] with 

respect to both x1 and x2 to obtain the interaction effect β12. Note that because γ12
2  reduces 

to β12 in this case, β12 can be directly interpreted as the extent to which the effect of 

x1 on E[Y ∣ x] changes for every one-unit increase in x2 (and vice versa), holding all else 

constant (Cohen et al., 2003). Fundamentally, we believe that this convenient fact has led 

to the misconception that product term coefficients are synonymous with interaction effects, 

and have thus been treated as a measure of the interaction effect in GLMs for nonlinear 

probabilities and counts. We demonstrate next how this is not the case.
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GLMs—As we described in the Background section above, producing a model relating 

predictors to the scale of probabilities or counts requires that the link function be inverted 

to produce interaction effects in the natural response scale. Although the interaction is 

quantified appropriately by the product term coefficient when interpreting effects on the 

scale of log-odds or log-counts, the interaction effect will not reduce to the coefficient 

of the product term when describing effects on the natural response scale because of this 

transformation (Ai & Norton, 2003; Karaca-Mandic et al., 2012; Norton et al., 2004). For 

instance, taking the example of a GLM involving continuous predictors (as in Equation 

(14)), this model represented on the natural response scale would be defined as follows:

E[Y ∣ x] = g−1 β0 + β1x1 + β2x2 + β12x1x2 . (16)

We then aim to compute an interaction between x1 and x2 γ12
2  using Equation (13). In 

contrast to the linear model, the presence of the inverse link function g−1(·) means that 

the chain rule7 must be applied when deriving γjk
2 . This is because we are now taking the 

derivative of a composition of two functions: g−1(·) and β0 + β1x1 + β2x2 + β12x1x2. As a 

result, applying Equation (13) to this case results in the following:

γ12
2 = ∂2E[Y ∣ x]

∂x1∂x2
= β12ġ−1 d(x)Tβ + β1 + β12x2 β2 + β12x1 g̈−1 d(x)Tβ .

(17)

Note that ġ−1 and g̈−1 are the first and second derivatives of the inverse link function, 

respectively.

We may further apply Equation (13) to define an interaction effect when one or both 

interacting predictor(s) are binary. In the case where x1 is binary and x2 is continuous, this 

amounts to taking the derivative of E[Y ∣ x] with respect to x2 at the two observed values 

of x1, and defining the interaction effect as the difference between the derivatives at each 

of these x1 categories. For instance, noting that x1 was binary, the interaction effect is the 

partial derivative of E[Y ∣ x] with respect to x2 when x1 is 1 minus the function when x1 is 

zero:

γ12
2 = Δ

x1:0, 1
∂E[Y ∣ x]

∂x2

= β2 + β12 ġ−1 β2 + β12 x2 + β0 + β1
∂E[Y ∣ x]

∂x2
when x1 = 1

− β2ġ−1 β0 + β2x2
∂E[Y ∣ x]

∂x2
when x1 = 0

. (18)

7Noting that ḟ(x) = ∂f(x)
∂x , the chain rule states that if f(x) is a composite of two functions (i.e. f(x) = u(v(x))), then 

ḟ(x) = u̇(v(x))u̇(x).
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When x1 and x2 are both binary, the interaction effect is the double discrete difference 

(Norton et al., 2004; Shang et al., 2018). In practical terms, this involves computing 

E[Y ∣ x] for each combination of categories and taking the difference across all of these 

combinations. Noting again that x1 and x2 are binary, this can be done in the following 

manner:

γ12
2 = Δ

x1:0, 1
Δ

x2:0, 1
E[Y ∣ x] = g−1 β0 + β1 + β2 + β12

x1 = 1, x2 = 1
− g−1 β0 + β1

x1 = 1, x2 = 0
Δx2 when x1 = 1

− g−1 β0 + β2
x1 = 0, x2 = 1

− g−1 β0
x1 = 0, x2 = 0

Δx2 when x1 = 0

.
(19)

In Equation (19) above, the terms in the left square brackets denote the difference in E[Y ∣ x]
between x2 categories, holding x1 at the category represented by 1. The terms in the right 

square brackets represent this same difference when x1 is held at the category denoted by 0. 

Taking the difference between these two quantities defines the interaction effect.

We see in Equations (17) through (19) above that the interaction effect γ12
2  is no longer 

equivalent to the product term coefficient (β12). Rather, this coefficient is strictly a single 

term that contributes to this quantity, and the interaction effect may instead be a function of 
this term and all other terms involved in the model.

For estimation, we assume β is obtained via maximum likelihood (ML) and propose 

our estimate of E[Y ∣ x] and γ jk
2  to be a simple plug-in estimator using β. Given that 

ML estimates are asymptotically normal and that γ jk
2  is a function of β, standard errors 

for γ jk
2  can be obtained using the delta method (Ferguson, 2017). Alternatively, standard 

errors can be obtained using sampling methods such as bootstrapping (Efron & Tibshirani, 

1994; Robert & Casella, 2013) or via draws from a posterior distribution estimated with 

Markov Chain Monte Carlo (e.g., Alfaro et al., 2003; Efron, 2011) in the case of Bayesian 

models. The delta method uses Taylor expansion to determine the asymptotic variance 

of a function of asymptotically normal random variables. Bootstrapping approaches can 

involve re-sampling data directly (e.g., non-parametric bootstrap; Efron & Tibshirani, 1994) 

or sampling parameter estimates from a parametric distribution (e.g., parametric bootstrap; 

King et al., 2000) to generate draws of β in order to approximate sampling variation in γ jk
2 .

Summary—To date, the vast majority of psychological researchers have extended 

established interaction practices from linear regression to GLMs irrespective of the scale 

in which they characterize results – that is, by using the product term coefficient provided 

by the estimated model to test interactions. We believe that this confusion has arisen 

because the product term has been treated as a synonym for the interaction effect, given 

the product term coefficient appropriately quantifies the interaction effect in models with 
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linear specification. For instance, we highlight that product term coefficients quantify 

interaction effects when GLMs are described on their transformed scales (e.g., log-odds 

and log-counts). Nonetheless, we have shown that this is not the case when describing 

interaction effects on natural scales (e.g., probabilities and counts).

Misconceptions for interactions in GLMs

The presence of additional terms in computing γjk
2  for nonlinear probability and count 

GLMs fundamentally alters how interaction effects should be represented and interpreted on 

these scales. Below, we detail common misconceptions and practical guidelines for better 

representing interactions for these scales.

Misconception 1: The point estimate and standard error of interaction in the 
natural scale can be interpreted in an identical fashion as linear models, regardless 
of the levels of other predictors.

Probabilities and counts are nonlinear functions of the regressors in GLMs. Therefore, 

interactions may vary as a function of some of the other regressors involved in the specified 

model, such that quantifying and testing the estimate of interaction for GLMs in the scale 

of probabilities and counts do not follow from linear models.8 To evaluate the interaction 

function, specific values of predictors must instead be selected to derive point estimates. As 

a result, depending on the specific levels of the predictor variables, these estimates may vary 

in magnitude and sign across observations. This also implies that the standard errors of point 

estimate values (as well as their corresponding statistical significance) may also vary as a 

function of the predictors. Obtaining meaningful and straightforward point estimates of the 

interaction effect will thus require approaches that can accommodate this conditional nature 

of interaction in these models.

To illustrate, assume the following model holds in the population:

log(E[Y ∣ x]) = β0 + β1x1 + β2x2 + β3x3 + β13x1x3, (20)

such that Y ∣ x Poisson(E[Y ∣ x]), predictors x1 and x2 were drawn from a standard bivariate 

normal distribution with moderate correlation rx1x2 = .5 , and x3 was a dichotomous 

predictor with proportions equal to .5 for each category. Parameters were β0 = −3.8, β1 

= 0.38, β2 = 0.90, β3 = 1.10, and β13 = 0.20. For the purposes of illustration, assume further 

that x3 is dummy coded and reflects biological sex at birth such that 1 = female. Drawing 

n = 1,000 samples from this population yielded estimates β0 = − 3.19, β1 = 0.40, β2 = 1.10, 

β3 = 1.08, and β13 = 0.01.

In this example, we seek to examine the interaction between x1 and biological sex. Treating 

biological sex as a binary predictor, we may therefore represent this interaction function as 

the discrete difference in the marginal effect of x1 with respect to biological sex (see the 

8For instance, in Equation 17, βjkxj, βjkxk, ġ−1 d(x)Tβ , and g̈−1 d(x)Tβ  denote terms that are conditioned on predictors in the 

GLM.
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second part of Equation (13), or Equation (18)). In other words, we define the interaction as 

the difference between the marginal effect of x1 for females versus males:

γ13
2 = β1 + β13 ∗ exp β1 + β13 x1 + β0 + β2x2 + β3

x3 = female
− β1 ∗ exp β0 + β1x1 + β2x2

x3 = male

.
(21)

We highlight that the conditional nature of this interaction function is illustrated by the 

presence of x1 and x2 in Equation (21): specific values for x1 and x2 must be chosen to 

evaluate this function in order to compute γ13
2 . One may do so using several approaches, 

noting that each are extensions of methods developed previously to summarize marginal 

effects (King et al., 2000; Long & Freese, 2014; Williams, 2012).

First, the analyst can evaluate the function at different values of covariates to determine 

the interaction at one or more hypothetical scenarios of interest (i.e. the interaction 

at representative values; Williams, 2012; King et al., 2000). This is done by selecting 

hypothetical values for each covariate and computing the interaction effect for each scenario. 

For instance, we can first define the interaction function for scenarios where x2 assumes 

several values of interest, such as the 25th (x2 = −0.69), 50th (i.e. median; x2 = 0.00), 

and 75th (x2 = 0.67) percentiles. Plugging in the obtained model estimates and x2 values 

selected, we can define the interaction at these percentiles as:

γ13
2 =

0.41 ∗ exp 0.41x1 − 2.87 − 0.40 ∗ exp 0.40x1 − 3.95  if x2 = − 0.69
0.41 ∗ exp 0.41x1 − 2.11 − 0.40 ∗ exp 0.40x1 − 3.19  if x2 = 0.00
0.41 ∗ exp 0.41x1 − 1.37 − 0.40 ∗ exp 0.40x1 − 2.45  if x2 = 0.67.

(22)

We depict these effects in Figure 3. This plot illustrates that the effect of x1 on the expected 

count of Y is stronger among females than males across all percentiles of x2, though this 

effect is more pronounced as x2 increases from the 25th to the 75th percentile. Assuming that 

the mean of x1 (−0.06) is a value of substantive interest, we can also evaluate Equation (22) 

by entering sample mean values of x1 into this equation, resulting in point estimates of 0.01, 

0.03, and 0.06 at the 25th, 50th, and 75th percentiles of x2, respectively. Applying the delta 

method to compute standard errors of these quantities, findings suggested that the interaction 

was significant and positive across all three x2 percentiles.9 We note from these three values 

that, consistent with the effects depicted in Figure 3, the point estimate of the interaction 

effect varied as a function of the covariate x2. Note that it may be most useful to represent 

the interaction across multiple values of interest of x2 (as above) to gain a better substantive 

understanding of the interaction.

9Holding x1 constant at the sample mean, 95% confidence intervals for γ13
2

 at the 25th, 50th, and 75th percentiles of x2 were [0.00, 

0.02], [0.01, 0.05], and [0.05, 0.07], respectively.
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As a starting place, it is common practice to use hypothetical average values of all covariates 

(i.e. interaction effects at the means; Williams, 2012), so long as these values are meaningful 

in the data. In the above example, we may (for instance) report the coefficient estimate 

at the mean of all covariates (γ13
2 = 0.03, 95% CI = [0.01, 0.05]) in the results section of 

a manuscript as a single estimate for a hypothetical average observation. For continuous 

variables that are unimodal, such an approach using either the mean or median value may 

be appropriate. However, we caution that in the case of discrete or multi-modal variables, 

these values may represent few if any real observations in the data (Mize, 2019; Williams, 

2012). For instance, evaluating an interaction at the mean of a bi-modal variable may reflect 

an effect for an individual representing a scenario where few observations exist in the data. 

One may choose to represent the interaction function separately at various modes in these 

instances, or utilize an approach based on the observed data described below.

The analyst may also compute the interaction effect for each individual observation in a 

similar fashion (Figure 4) that more directly incorporates the observed data. Given that 

observations are likely to reflect a unique permutation of predictor variable values (e.g., each 

observation may reflect mostly unique combinations of values for x1, x2, and biological sex), 

this approach can be used to describe similar variation in the interaction effect. For instance, 

significant γ13
2  values for each observation indicate that the interaction between x1 and 

biological sex was significant for 85.8% of the observations in the sample. These effects also 

varied substantially in the sample for those reporting higher versus lower values of x2 (e.g., 

comparing observed values above and below the median of x2 in Figure 4). Specifically, 

point estimates ranged from 0.001 to 0.042 among observations below the median of x2 

values and from 0.015 to 0.589 above the median of x2. These point estimates were also 

generally larger among observations above the median, as depicted on the righthand side 

in Figure 4. Similarly, point estimates varied with regard to whether or not they were 

statistically significant: though interaction effects for certain observations were particularly 

large compared to others, several of these effects remained non-significant in the sample due 

to their large standard errors (e.g., several large effects above the median of x2 values were 

non-significant in Figure 4). The analyst can produce a single estimate summarizing these 

effects by taking the mean of the interaction coefficients across observations (i.e. the average 

interaction effect; Williams, 2012) and can conduct inference on this value by computing its 

standard error. In the example above, for instance, the mean γ13
2  value across the observed 

data is 0.07. Utilizing the delta method, we can further derive the standard error for this 

value (0.03) and compute its 95% confidence interval ([0.01, 0.13]). Thus, we may conclude 

that the average interaction effect was significant and positive across the sample.

In sum, the interaction effect in GLMs may not reduce to a single value. Instead, this effect 

may be a function of predictors included in a model, and its value may vary depending 

on the specific levels of predictor values. Evaluating the function at hypothetical predictor 

levels of interest, computing the interaction for each case in the observed data, and/or 

summarizing the average interaction effect across observations can all provide helpful 

approaches to accurately summarize these effects. These approaches can generate greater 

evidence of the robustness of an interaction effect, as well as aid in detecting the conditions 

under which the effect is absent or varying in magnitude within a single sample.
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Practical considerations

We note the distinction between the average interaction effect (γ13
2 = 0.07, 95% CI = 

[0.01, 0.13]) versus the interaction effect at the sample means of the substantive predictors 

(γ13
2 = 0.03, 95% CI = [0.01, 0.05]) described earlier in this section. Though the prevailing 

approach is using hypothetical means, whether one should use one or the other approach will 

depend on the goals of the analyst. On the one hand, the average interaction effect describes 

the interaction for the whole sample and may be most helpful in generating inferences 

about the population of interest (Hanmer & Kalkan, 2013). On the other, representing the 

interaction using hypothetical values can be useful in generating estimates of the interaction 

for hypothetical scenarios of interest (e.g., computing the interaction effect for particular 

groups of interest or for a prototypical predictor using sample means). Whichever approach 

is applied, we nonetheless advocate that researchers evaluate and report the range in the 

interaction effect within the observed sample as a standard approach. This is essential in 

describing variability in the interaction effect and evaluating whether the interaction is 

non-significant (or even of differing signs) among observations in the same data.

Misconception 2: The coefficient of the product term between two predictors of 
interest is sufficient and necessary to fully describe the interaction between the two 
variables on natural response scales.

There are two prevalent misconceptions in psychology regarding the nature of product 

term coefficients in GLMs of natural response scales. First, whereas using the product 

term coefficient alone is often treated as a comprehensive measure of an interaction 

effect between two variables on natural scales, this coefficient by itself is insufficient to 

quantify the interaction effect on these scales. This is exemplified in Equations (17) through 

(19) above: although the interaction effect in these equations includes the product term 

coefficient (β12), the interaction effect may also involve other coefficients in the model (e.g., 

in Equation (18), note the additional presence of β0, β1 and β2 within the first derivative 

functions). Second, whereas it is common practice to specify a product term for interaction 

effects on the natural scale, these effects can exist even when the product term is omitted 

(or the product term coefficient is zero). For instance, note in the continuous variable case 

in Equation (17), if β12 is zero, the interaction effect reduces to β1β2g̈−1 d(x)Tβ , which may 

yet be non-zero.

We first illustrate that product term coefficients are insufficient to fully describe an 

interaction effect in a simulated example in Figure 5. Assume the following model held 

in the population,

log E[Y ∣ x]
1 − E[Y ∣ x] = β0 + β1x1 + β2x2 + β12x1x2 = η . (23)

We defined this model as η for brevity of notation. Further, Y ∣ x Bernoulli(E[Y ∣ x]), and 

predictors were drawn from a standard bivariate normal distribution and had moderate 

correlation rx1x2 = .5 . Parameters were β0 = 1.00, β1 = 0.70, β2 = 1.50, and β12 = 

0.10. Generating n = 10,000 samples from the population model described above yielded 
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estimates β0 = 0.85, β1 = 0.62, β2 = 1.32, and β12 = 0.14. Applying the continuous variable 

definition of interaction in Equation (17) resulted in the following:

γ12
2 = β12

eη

1 + eη 2 + β1 + β12x2 β2 + β12x1
eη 1 − eη

1 + eη 3 . (24)

Evaluating this function showed that despite a significant and positive product term 

coefficient (95% CI = [0.068, 0.219]), the interaction effect was significant in opposing 

directions in the sample depending on levels of x1 and x2: the effect was significant and 

negative for 56.0% of the sample (ranging from −0.066 to −0.001) and significant and 

positive for 33.8% (ranging from 0.004 to 0.079), illustrated using one-unit rates of change 

in Figure 5. Moreover, despite a positive product term coefficient, the interaction effect was 

significant and negative (γ12
2 = − 0.041, 95% CI = [−0.06, −0.02]) when represented at the 

hypothetical mean of all predictors. Note that the product term coefficient failed to represent 

the multiple signs of the interaction effect present. Further, if the natural and transformed 

scales were conflated in this example, the product term coefficient also implied a positive 

interaction effect when the interaction was negative at the hypothetical mean of predictors, 

suggesting that the product term coefficient alone was an insufficient representation of the 

interaction effect on the natural scale.

Moreover, a product term specified in a model is not a necessary condition for interaction to 

exist on the natural scale. For instance, assume the following model holds in the population,

log(E[Y ∣ x]) = β0 + β1x1 + β2x2, (25)

such that Y ∣ x Poisson(E[Y ∣ x]) and predictors were drawn from a bivariate standard normal 

distribution with moderate correlation rx1x2 = .5 , β0 = 1.00, β1 = 0.70, and β2 = 1.50. 

Parameters were β0 = −3.80, β1 = 0.35, and β2 = 0.90. Generating n = 10,000 samples from 

this population model yielded estimates β0 = − 3.34, β1 = 0.28, and β2 = 1.02.

Using these estimates, applying the continuous variable definition of interaction in Equation 

(17) with respect to x1 and x2 resulted in:

γ12
2 = β1β2 ∗ exp β0 + β1x1 + β2x2 . (26)

Evaluating this effect across observations showed that the interaction was significant and 

positive for all observations (ranging from 0.001 to 0.708) with an average interaction effect 

of 0.021 (95% CI = [0.01, 0.03]), illustrating that interaction was introduced automatically 

due to the exponential nature of the model despite no specification of a product term. We 

can observe this in Figure 6 by noting that, beginning at the lowest value of x1, the expected 

count of Y is higher at the 75th percentile compared to the 25th percentile. In other words, 

due to the interaction effect, the single-unit change as x1 increases also compounds more 

quickly at the 75th (versus the 25th) percentile of x2.
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Note that this and the preceding example highlight two crucial implications for how testing 

interactions on natural scales is distinguished from traditional linear approaches, which 

involves the direct interpretation of the product term coefficient. First, in the logistic 

example, the marginal effect of x1 on the natural scale was stronger or weaker depending on 

the level of x2 despite a singular positive estimate provided by the product term coefficient. 

Second, in the Poisson example, interaction was present between variables on the natural 

count scale despite no specification of a product term. Taken together, these illustrate that 

product terms are neither sufficient nor necessary in testing interaction on natural response 

scales. Rather, relying on product term coefficients may result in a failure to estimate the 

correct magnitude and sign of interaction on these natural scales (i.e. a Type M or S error; 

Gelman & Carlin, 2014).

Practical considerations

There is some debate on role of product terms in GLMs on the natural response scale. In 

the logit case, for instance, some have considered it unnecessary to include a product term if 

theory dictates that interaction between two variables is solely produced by model-inherent 

nonlinearity (Berry et al., 2010). Others have characterized the issue as one of model fitting, 

such that the product term should be retained if this term is significant via asymptotic z-test 

on the product term coefficient (see also Karaca-Mandic et al., 2012). However, more recent 

work has stated that failing to include a product term can produce bias toward discovering 

interaction when none truly exists under certain model misspecifications (i.e. a Type I 

Error), and recommended that researchers include the product term irrespective of theory so 

that one’s theoretical argument is more vulnerable to the observed data (Rainey, 2016).

There are several considerations one must make in evaluating the inclusion of a product 

term. First, the product term can serve a central role in the specification of an interaction 

effect, such that if a researcher has strong substantive theory and subject matter knowledge, 

this term can capture interaction between variables on the multiplicative scale (Tsai & Gill, 

2013). If the researcher has weak subject matter knowledge regarding the interaction effect 

on the multiplicative scale, then the inclusion of the product term may be evaluated by 

model fit (e.g., Karaca-Mandic et al., 2012). Under some conditions, specifying a product 

term can lead to a higher probability of detecting interaction effects that exist in the 

population in spite of certain kinds of model misspecification (Rainey, 2016). However, 

several aspects of model performance must also be considered when product terms are 

included. First, including a product term may decrease the precision of the interaction effect 

if this coefficient is truly zero in the population, as may be the case with including any 

irrelevant regressor in the model (Fomby, 1981). This may be of little practical consequence 

in situations where a model is sufficiently powered and overfitting is adequately managed. 

That said, because psychological science has long been criticized for its use of small, 

underpowered samples (Sedlmeier & Gigerenzer, 1992; K. M. King et al., 2019), we 

generally advise that the inclusion of product terms be motivated by substantive hypotheses.

Misconception 3: The product term coefficient is an appropriate estimator for the 
interaction effect on natural response scales.
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We described in Misconception 2 above how the nonlinear nature of GLMs on the natural 

scale must be accounted for in estimating interaction, and in itself may also be sufficient 

to establish the presence of interaction. Yet, nonlinearity between predictors can also be 

introduced into the interaction effect through specification of a product term in the design 

function of the model (e.g., βjk in Equations (17) through (19); Tsai & Gill, 2013). Despite 

its presence in the interaction function, however, it is inappropriate practice to use the 

product term coefficient alone to determine the presence and nature of an interaction effect 

on the natural scale of GLMs. Nonetheless, we have noted that this is common practice in 

psychology because transformed and natural scales are frequently conflated when testing 

interaction. That is, typical practice involves evaluating evidence of interaction based on 

significance of product term coefficients on the transformed scale. Then, coefficients are 

transformed to interpret effects on the natural scale. Although product term coefficients are 

sufficient estimates of interaction effects when interpreting effects on the transformed scale, 

this raises the question of what potential consequences may result from confounding the 

product term with an appropriate estimator of the interaction effect on the natural scale.

To illustrate these consequences, we conducted a simulation with nine conditions where 

product term coefficients (β12) were included in a logistic regression. We assumed the 

following model held in the population:

log E[Y ∣ x]
1 − E[Y ∣ x] = β0 + β1x1 + β2x2 + β12x1x2, (27)

where x1 and x2 were continuous variables drawn from a standard bivariate normal 

distribution and had moderate correlation rx1x2 = .5 . Values of β0, β1, and β2 were fixed to 

1.0, 0.7, and 1.5, respectively, and β12 values were set at −0.20, −0.15, −0.10, −0.05, 0.00, 

0.05, 0.10, 0.15, and 0.20. For each condition, we simulated 10,000 datasets with n = 1,000. 

In each dataset, we estimated the product term coefficient β12  as well as the interaction 

effect for each observation γ12
2 . We assessed the performance of β12 and γ12

2  as estimators 

of γ12
2  by comparing their sample average empirical biases and empirical mean square errors 

(MSEs). We structured the comparison of these estimators in this manner to reflect how 

interaction effects are generally tested and interpreted in-practice in psychological science 

describing effects on natural scales: by using β12 under the (incorrect) assumption that it is 

an estimate of γ12
2 .

Figure 7 displays the average empirical biases and MSEs of each estimator for each β12 

condition. Whereas γ12
2  was a generally unbiased estimator of γ12

2 , bias using β12 as an 

estimator exhibited a linear trend (e.g., the positive linear trend in left panel of Figure 7). 

The MSEs of each estimator suggested that, whereas γ12
2  was generally an efficient estimator 

of γ12
2 , using β12 as an estimator lead to greater inflation in the variance of the estimator 

as the absolute magnitude of β12 increased (e.g., the parabolic shape in the right panel of 

Figure 7). These values indicated that, particularly in conditions where β12 is non-zero, β12

may represent a biased and less efficient estimator of γ12
2 .
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Demonstrating a worst-case scenario, we extended the above simulation to a Poisson model 

with an identical parameterization as the above. Values of β0, β1, and β2 were again 

fixed to 1.0, 0.7, and 1.5, respectively, while β12 was set at −0.20 for illustration.10 

Coefficient estimates obtained from this model were β0 = 1.43, β1 = 0.76, β2 = 1.47, and 

β12 = − 0.29. Here, β12 was significant and negative (95% CI = [−0.31, −0.27]), such that 

one might infer an antagonistic interaction between x1 and x2 given both lower-order terms 

indicated positive associations with the outcome. If the analyst sought to interpret this 

effect on the log-count scale, this coefficient sufficiently quantifies the interaction effect 

on this transformed scale, such that evidence of an antagonistic interaction on this scale 

is supported. However, this is not the case when describing results in the scale of counts. 

Namely, the average interaction effect was 2.48 across observations (95% CI = [1.99, 2.97]) 

with 98.5% indicating a significant positive (i.e. synergistic) interaction effect on the count 

scale. Producing a visual of these relations makes this distinction clear (Figure 8): in the 

count scale, the rate-of-change of x1 on the count of Y  strengthens as x2 increases, yet the 

rate-of-change weakens as x2 increases when describing relations on the log-count scale. In 

other words, the nature of the interaction depended on the scaling chosen to describe the 

effects. On the one hand, there was evidence of an antagonistic interaction on the log-count 

scale – an effect that was sufficiently quantified by the product term coefficient. On the 

other, the interaction was synergistic when interpreted on the count scale, such that the 

product term coefficient implied an interaction effect that was of incorrect magnitude and 

the opposite sign for nearly the entirety of observations on this scale.

These results illustrate that as a result of conflating interaction effects on transformed 

and natural scales, using only the product term to draw inferences about an interaction 

effect can severely compromise the performance of estimation when describing effects on 

natural scales. At worst, this can imply that an interaction effect is of the opposite sign 

from what is true in the population when there is a mismatch between the GLM scale 

used for interpretation and the estimator used for quantifying interaction. When describing 

effects on the transformed scale, the product term coefficient is an appropriate estimator 

of an interaction effect. In contrast, when results are interpreted on the natural scale, 

evaluating interactions using the partial derivative and discrete difference approaches is a 

better-performing estimator of the interaction effect relative to the product term coefficient.

Real data example

We illustrate the approaches described above by examining alcohol sipping behavior among 

youth (ages 8–11 years) using the Adolescent Brain Cognitive Development (ABCD) Study 

(https://abcdstudy.org), a large multisite study of long-term brain development and child 

health. We focused our analyses on assessing the effects of social and environmental factors 

on the lifetime occurrence of alcohol sipping behavior measured by the ABCD Substance 

Use and Culture and Environment modules (see Lisdahl et al., 2018 and Zucker et al., 2018 

for in-depth descriptions of these modules).

10We explored smaller magnitudes of β12 as well (i.e. −0.15, −0.10, and −0.05). We encountered similar Type S and M errors in these 
conditions, and thus do not describe them here for parsimony.
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The focus of our analyses was on the influences of social and environmental risk 

factors on the level of non-religious alcohol sipping in late childhood. Prior research has 

demonstrated that both low parental monitoring (e.g., Steinberg et al., 1994) and greater 

school disengagement (e.g., Bryant et al., 2003) were associated with a higher likelihood of 

substance use involvement in youth, and these factors are thought to interact across these 

multiple levels of environmental influence to characterize heightened risk among youth 

(Pantin et al., 2004; Szapocznik & Coatsworth, 1999). As such, we hypothesized that the 

interaction between lower parental monitoring and greater school disengagement would 

characterize a higher likelihood of alcohol sipping among youth.

Method—We used baseline assessments from ABCD to address hypotheses (data release 

2.0). The study was approved by the institutional review board at the University of 

California, San Diego and at each individual participating site (see Clark et al., 2018 for 

details). We specified a nonhierarchical logistic model assuming uncorrelated errors at the 

initial stage of model estimation. We then applied a sandwich variance estimator to the 

variance-covariance estimates obtained by this model to account for correlation within sites 

(Miglioretti & Heagerty, 2007) using the “ClusterRobustSE” package (Huh, 2020). For 

simplicity and purposes of illustration, we used listwise deletion to address missingness 

among study variables, which resulted in minimal loss of data (1.7%). The remaining n = 

11,642 observations were included for analysis. Additional study design and recruitment 

details are described by Garavan et al. (2018).

Sipping behaviors were measured using the iSay Sip Inventory (Jackson et al., 2015) using 

the binary response item “Have you ever had alcohol not as part of a religious ceremony 

such as in church or at a Seder dinner?”. Consistent with prior estimates (e.g., Donovan 

& Molina, 2004), a total of 17% of youth (n = 1,991) reported lifetime alcohol sipping. 

Parental monitoring was measured using five items adapted from Karoly et al. (2016). 

School disengagement was measured as a sum of two items adapted from Arthur et al. 

(2007) in which youth rated agreement with the statements “usually, school bores me” 

and “getting good grades is not so important to me” on 4-point Likert scales. Additional 

covariates included in the model were age, sex, ethnicity (Hispanic vs. non-Hispanic) and 

race (White vs. nonwhite). Additional descriptive summaries of study variables are provided 

in Table 1.

We specified a logistic regression model using the base stats package in R (R Core Team, 

2019) to estimate the following model:

E[Y ∣ x] = 1
1 + exp −d(x)Tβ

. (28)

In this model, Y was a binary random variable indicating the presence or absence of sipping; 

x was comprised of parental monitoring and school disengagement variables, as well as 

age, sex, ethnicity, and race; and d(·) adds an intercept and product term between parental 

monitoring and school disengagement to x. We included the product term to capture the 

multiplicative interaction between parental monitoring and school disengagement. Variables 

McCabe et al. Page 20

Multivariate Behav Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



included in the product term (i.e. parental monitoring and school disengagement) were 

standardized to facilitate interpretation.

Results

We provide a summary generated by our model output in Table 2. This model suggests 

the presence of interaction between parental monitoring and school disengagement on the 

log-odds scale, as evidenced by the statistical significance of the product term coefficient 

(βPM × SD = 0.08, p = 0.008). Thus, if one uses the transformed scale for inference, then 

a one-unit increase in school disengagement reduces the protective effect of parental 

monitoring on the log-odds of alcohol sipping by 0.08 units, holding all else constant.

However, if the analyst sought to describe these effects on the natural scale, computing 

and interpreting γ12
2  effects provides a more nuanced depiction of the interaction effect in 

its direct association with the probability of alcohol sipping behavior. For instance, though 

the point estimates of the interaction effect were positive for all observations, they were 

significant for only 82.2% of the sample, ranging in magnitude among observations from 

0.003 to 0.021 with an average interaction effect of 0.008 (95% CI = [0.002, 0.014]), 

suggesting a near-zero average effect in the sample. We may also choose to represent the 

interaction effect at particular categories to further address how the interaction effect varies 

within the sample. Conditioning the effect using (for instance) the sample mean age, female, 

and Hispanic identity as scenarios of interest, the interaction effect was significant and 

positive among White Hispanic females (γ12
2 = 0.009, 95% CI = [0.001, 0.017]) though fell 

short of significance among nonwhite Hispanic females (γ12
2 = 0.005, 95% CI = [0.000, 

0.010]), exemplified in Figure 9. This level of description makes evident how this interaction 

varies as a function of participant characteristics, which may help delimit the scope of these 

research findings in informing public policy on early alcohol exposure risk. Taken together, 

these findings highlight that the effect of parental monitoring on the probability of alcohol 

sipping was enhanced by school disengagement, with variability in the magnitude of this 

effect as a function of sex, race, and/or ethnic identity.

Discussion

GLMs are being increasingly utilized in pursuit of interaction hypotheses when analyzing 

probability and count dependent variables. Although typical practice is to test interactions 

by applying approaches from linear models, we have demonstrated that these practices are 

insufficient for representing interactions in GLMs on these natural response scales. We have 

reviewed partial derivative and finite difference approaches for estimating the interaction 

effect in GLMs of probabilities and counts. We have also articulated how standard practices 

(i.e. using the product term coefficient as an estimator of interaction) can lead to bias 

and inefficiency in estimating the interaction effect on natural scales, as well as how 

serious errors in inference can occur if scales are conflated when evaluating interaction 

effects. We further provided guidelines and examples of how to interpret these models in 

the analysis of real and simulated data. Our hope is that this work will aid researchers 

in increasing the validity of interaction analyses when GLMs are utilized, and ultimately 

McCabe et al. Page 21

Multivariate Behav Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



improve the methodological rigor and replicability of pursuing such hypotheses. To aid in 

the dissemination of this work, we have also developed R functions adapted from Ai and 

Norton’s Stata software (Norton et al., 2004) and the R package “DAMisc” (Armstrong, 

2020). These functions accommodate the analysis of interaction effects in both binary and 

count models by incorporating the applications described above. Open-source code for these 

functions and instructions for using them are available at https://github.com/connorjmccabe/

modglm.

Future directions

Despite the recommendations and solutions we have provided here, we consider this work 

to be a first step in improving the evaluation of interactions in GLMs of psychological 

data. For instance, data visualization approaches for interaction effects such as those in 

linear models (e.g., Bauer & Curran, 2005; McCabe et al., 2018) could aid substantially 

in interpreting and communicating these effects in GLMs. Such approaches summarize the 

nature of interaction for non-expert consumers of research involving GLMs, while providing 

a means of assessing research findings given the observed data. Similarly, computing and 

communicating quantities such as first differences and rate ratios (Halvorson et al., in 

press; King et al., 2000) can help translate interaction effects into more concrete and 

interpretable metrics. Although we have employed some of these approaches to describe 

effects in the current paper, research describing their application more broadly will help 

facilitate their widespread adaptation into published studies. Further, there remains an 

ongoing and pressing need to improve the accessibility of these approaches for use among 

methodological non-experts (King et al., 2019; Sharpe, 2013). We provide computational 

and inferential solutions developed in this paper through open-source R code. Mize’s data 

visualization software for marginal effects is also an excellent resource for plotting marginal 

effects in the Stata framework, available at https://trentonmize.com/software/cleanplots 

(Mize, 2019). However, the continued development and refinement of analytic tools and 

tutorials are essential to increase the accessibility of these advanced approaches in data 

analysis and interpretation.

We note that partial derivatives and discrete differences are highly flexible tools that can 

be applied to improve inferences in other modeling frameworks that involve nonlinear 

design (Kim & McCabe, 2020). We describe them here as a means of understanding 

and interpreting the interaction function when nonlinearity is introduced via the link 

function of a GLM, yet nonlinearity introduced via any other element of a model may 

similarly obscure the straightforward interpretation of parameters produced by these models. 

Notable examples include linear regression models involving nonlinear transformations 

of predictor variables (e.g., power, log, or exponentially transformed variables), machine 

learning approaches (e.g., linear spline models; Friedman et al., 2001), or combinations 

of these involving multiple forms of nonlinear design. We hope that the misconceptions 

and solutions we reviewed here will stimulate future applications of partial derivatives and 

discrete differences in addressing substantive questions in these and other more intensive 

nonlinear models.
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Conclusion

This manuscript aimed to correct pervasive misconceptions regarding the estimation 

and interpretation of interaction effects in probability and count GLMs. As a concept, 

interactions test nonlinear association between a given predictor and an outcome as a 

function of other variables, yet we have shown that there are several aspects of modeling 

design in GLMs that induce nonlinearity and render a test of this concept less than 

straightforward. For instance, reporting the results of GLMs in terms of natural scales can 

improve readers’ understanding of research results and the translation of research findings 

to practice, yet this also introduces complexities that make interpreting model coefficients 

much more difficult. We have highlighted numerous decision points that reflect this and 

other such design choices, such as selecting a GLM appropriately matched to one’s outcome 

and theory; seeking to understand associations on the natural scale of these models; and/or 

choosing among several plausible options for probing and presenting such effects. Each 

of these design choices must be weighed delicately in determining the most appropriate 

test of an interaction theory given the analyst’s specific research question. As such, we 

urge researchers to think carefully on how each of these choices affect the theoretical 

concepts they wish to test. Even subtle choices in model design and interpretation may have 

significant impact on inference.
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Figure 1. 
Logistic model regressing differing scales of a dependent variable on a predictor.

Note. Gray areas indicate 95% confidence regions.
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Figure 2. 
Poisson model regressing differing scales of a dependent variable on a predictor.

Note. Gray areas indicate 95% confidence regions.
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Figure 3. 
The relation between E[Y ∣ x] and x1 across low, median, and high levels of x2 by biological 

sex.

McCabe et al. Page 29

Multivariate Behav Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Interaction between x1 and biological sex as a function of x1 plotted at low (below median) 

and high (above median) values of x2.

Note. Black points indicate significant effects and gray points indicate non-significant 

effects at α = 0.05. This figure illustrates that the interaction effect between x1 and 

biological sex varied across observations, such that the effect was larger for observations 

with high values of the covariate x2. This highlights that the interaction effect (as well as its 

statistical significance) may be conditioned on predictors involved in the model. N.S. = Not 

Significant, Sig. = Significant.
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Figure 5. 
The relation between E[Y ∣ x] and x1 across low, median, and high levels of x2 in a logistic 

model.

Note. This figure represents multiple interaction effects of opposite sign present within the 

data. We illustrate this is using one-unit rates of change. For instance, in describing one-unit 

rates of change, E[Y ∣ x] increases by 0.037 as x1 increases from 1 to 2 when x2 is at the 

75th percentile, but this increase is over 3 times larger (0.114) when examined at the 25th 

percentile of x2. In contrast, at the lower end of the x1 range, E[Y ∣ x] increases by 0.160 

units as x1 increases from −2 to −1 at the 75th percentile of x2, but the increase is smaller 

(0.111) at the 25th percentile of x2. This illustrates that interactions can have differing signs 

in the same model resulting from the nonlinear nature of the model.
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Figure 6. 
The relation between E[Y ∣ x] and x1 across low, median, and high levels of x2 in a Poisson 

model.

Note. This figure represents the interaction effect in a Poisson model despite omission of a 

product term. For instance, the effect of a one-unit increase in x1 from 0 to 1 on E[Y ∣ x] was 

greater at higher levels of x2 (0.023 at the 75th percentile of x2) compared to lower levels 

(0.006 at the 25th percentile of x2).
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Figure 7. 

Empirical bias and mean squared error for γ12
2  and β12 as estimators of γ12

2  across conditions 

of β12.

Note. Points represent values of each estimate averaged across 10,000 simulated datasets for 

each β12 condition.
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Figure 8. 
Marginal effects of x1 plotted against different scalings of Y  at low and high values of x2.

Note. This figure illustrates how interaction effects can be of opposite sign depending on 

the scaling choice for inference. For instance, in the count scale (left-hand side), the curves 

presented are growing farther apart as x1 increases, indicating the synergistic interaction on 

the natural scale. By contrast, on the log-count scale (right hand side), the lines are coming 

closer together as x1 increases, indicating the antagonistic interaction on the transformed 

scale.
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Figure 9. 
The relation between the predicted probability of alcohol sipping and parental monitoring 

across low, median, and high levels of school disengagement among Hispanic females by 

race.

Note. Sc.Dis. = School Disengagement.
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