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Abstract

Retinal ganglion cells and other central nervous system neurons fail to regenerate after injury. 

Understanding the obstacles to survival and regeneration, and overcoming them, is key to 

preserving and restoring function. While comparisons in the cellular changes seen in these non-

regenerative cells with those that do have intrinsic regenerative ability has yielded many candidate 

genes for regenerative therapies, complete visual recovery has not yet been achieved. Insights 

gained from neurodegenerative diseases, like glaucoma, underscore the importance of axonal 

transport of organelles, mRNA, and effector proteins in injury and disease. Targeting molecular 

motor networks, and their cargoes, may be necessary for realizing complete axonal regeneration 

and vision restoration.
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INTRODUCTION

Like most other mature neurons in the central nervous system (CNS), retinal ganglion cells 

(RGCs) cannot regenerate their axons in disease and after injury. In the visual system, RGCs 

carry visual information along their axons down the optic nerve to the superior colliculus 

(SC) and the lateral geniculate nucleus (LGN) of the thalamus, among other important brain 

targets. Therapies to protect or restore vision after axon insult must address RGC survival 

and axon regeneration, and re-integration of the RGC axons into the appropriate visual 

circuitry. To combat regenerative failure, many strategies have been devised both alone and 

in combination to allow partial regeneration of injured RGCs to their visual targets. Over the 

last 30 years, to understand why adult, mammalian RGCs and other CNS neurons do not 

regenerate after injury, and convert them into neurons that do regenerate, many groups have 

asked what are the molecular differences between adult, mammalian CNS neurons and 1) 

“immature” mammalian CNS neurons, which have a higher intrinsic growth capacity; 2) 

adult peripheral nervous system (PNS) neurons, which do regenerate their axons after injury; 
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and 3) CNS neurons from other species that do show regenerative capacity? Here, we review 

advances in these parallel strategies, and then discuss a hypothesis that links prior work into 

a unified model for the role of axon transport in regenerative failure, as well as a new way to 

target approaches to promote regeneration.

IMMATURE CNS NEURONS HAVE A HIGH REGENERATIVE POTENTIAL

Developing mammalian CNS neurons have a high growth potential that is lost by adulthood. 

In fact, isolated RGCs from embryonic mice have a far greater in vitro growth potential than 

RGCs isolated from early postnatal mice (Goldberg et al., 2002a). Manipulating growth 

regulation pathways in mature neurons may promote regeneration, by increasing intrinsic 

growth factor-driven signaling pathways such as mTOR, cAMP, suppressors of cytokine 

signaling (e.g., SOCS3), and mitogen-activated protein kinases (Cai et al., 1999; Zhou et al., 
2005; Leaver et al., 2006; Smith et al., 2009; Kurimoto et al., 2010; Park et al., 2010), 

manipulating responsiveness to extrinsic inhibitory factors such as by blocking Nogo 

receptor expression or activation (Chen et al., 2000; GrandPré et al., 2000; Fischer et al., 
2004), and decreasing transcriptional inhibitors of axon growth such as Krüppel-like family 

transcription factors (KLFs) (Moore et al., 2011, 2009a). Identifying genes or pathways 

whose pattern of expression in immature, highly regenerative CNS neurons are drastically 

altered after maturation may lead to candidate regulators of intrinsic growth potential. In the 

case of KLFs, where developmental upregulation of KLF9 and KLF4 and downregulation of 

KLF6 and KLF7 are coincident with the reduction of intrinsic regenerative capacity of 

RGCs, reversing these expression patterns in adult RGCs or in other CNS neuron pathways 

after injury allows sprouting or long-distance regeneration (Moore et al., 2009a; Blackmore 

et al., 2012; Apara et al., 2017; Wang et al., 2017). Exploring the molecular mechanisms of 

the KLFs further, identification of co-factors such as JNK3 and STAT3, and downstream 

targets such as serotonin receptors and dual-specificity phosphatase 14 (DUSP14) (Qin et 
al., 2013; Apara et al., 2017; Trakhtenberg et al., 2017; Galvao et al., 2018) have led to 

broader understanding of the biology of intrinsic capacity for axon growth. What other 

molecular targets do KLF family transcription factors and other intrinsic regulators of axon 

growth affect? Advances in sequencing and mass spectrometry technologies can uncover a 

more complete understanding of the cellular and molecular changes underlying the 

developmental loss of regenerative capacity.

Beyond transcriptional regulation, immature and mature CNS neurons have differential 

axonal transport. In embryonic cortical neurons in vitro, axonal transport included integrins 

important for axonal growth and elongation; in mature cortical neurons, this transport is lost. 

While most molecular transport is dependent on motor trafficking, axonal integrin transport 

has some specificity to a specific kinesin KIF4A (Heintz et al., 2014). It is particularly 

noteworthy that axonal transport of integrins in mature neurons switches from an 

anterograde to mainly retrograde transport (Franssen et al., 2015).

These findings present a clear opportunity for future research into the axonal transport 

changes after optic nerve injury. Does integrin transport change more or less than other 

proteins after injury? Are all kinesin-transported proteins affected the same by injury, or are 

there kinesin isoform responses specific to different injuries or insults? While not a direct 

Shah and Goldberg Page 2

Dev Neurobiol. Author manuscript; available in PMC 2021 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



link, these examples underline how developmental changes in gene expression and axonal 

transport parallel developmental changes in intrinsic axon growth ability – and a ripe avenue 

for future regeneration research.

ELECTRICAL STIMULATION AFTER RGC INJURY

An additional element to consider beyond molecular signaling pathways is the functionality 

of RGCs: electrical activity is critical for transmission of action potentials and visual 

information, but it turns out it is also beneficial for RGC and other CNS neurons’ 

responsiveness to survival and growth signals. It has previously been shown that electrical 

activity regulates mitochondrial localization and motility from the cell body in myelinated 

axons (Ohno et al., 2011). In addition, electrical modulation through eye-opening, brain-

derived neurotrophic factor (BDNF), or tetro-dotoxin administration in vivo during 

development greatly impact mitochondrial function and trafficking in RGC axons (our 

unpublished data), demonstrating a direct connection between activity and transport. RGCs 

extend longer neurites with concurrent electrical stimulation and growth factor 

administration in vitro (Goldberg et al., 2002b) and in vivo (Lim et al., 2016). Increasing 

conduction in regenerating axons with a voltage-gated potassium channel blocker enhances 

visual recovery measured at the level of behavior (Bei et al., 2016). This electrical 

stimulation pathway acts at least in part through activation of adenylate cyclases, and 

specifically the calcium-sensitive, soluble adenylate cyclase (sAC) in vitro and in vivo 
(Corredor et al., 2012; Martinez et al., 2014). Complicating the story, however, is that 

excessive calcium influx into the axon after injury is a primary step in acute axon 

degeneration (Knoferle et al., 2010). Pre-loading RGCs with calcium channel blockers 

before optic nerve crush results in improved survival and regeneration of RGCs (Ribas et al., 
2017). How is calcium or downstream cAMP signaling compartmentalized to regulate 

complex cellular responses? Is there anterograde or retrograde effector transport responsible 

for long-distance communication? Further work dissecting timing, compartmentalization, 

and localization of these pathways will be needed to reconcile these data.

PNS NEURONAL REGENERATION INFORMS CNS REGENERATION

Early experiments showing that PNS neuronal grafts can induce CNS axon elongation 

started a field of comparative work of PNS and CNS neurons, and the glial environments 

they must regenerate through (Richardson et al., 1980; David and Aguayo, 1981; Benfey and 

Aguayo, 1982). Exploring differences in the molecular characteristics of the regenerative 

response after injury between PNS and CNS has uncovered several networks that all could 

contribute toward inducing RGC regeneration (Smith et al., 2011; Chandran et al., 2016).

For example, cytokines, such as gp130 family members like interleukin-6, are differentially 

activated after PNS injury as compared to CNS injury (Cafferty et al., 2001). Further studies 

expanded on the subsequent activation of the JAK/STAT pathway, showing a correlation 

with enhanced PNS regeneration (Miao et al., 2006). Removing SOCS3, an inhibitor of the 

JAK/STAT pathway present in high levels following injury in CNS neurons, promotes RGC 

regeneration (Smith et al., 2009). Surprisingly, STAT3-dependent gene expression is directly 
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inhibited by KLF family member KLF4 after cytokine activation, potentially explaining one 

mechanism by which KLF4 deletion promotes RGC regeneration (Qin et al., 2013).

Through differential proteomics and bioinformatic network analysis, c-Myc was identified 

as a hub protein that was downregulated in RGCs but not in dorsal root ganglion PNS 

neurons after injury (Belin et al., 2015). Furthermore, overexpression of this protein 

increased survival and regeneration. As another example, the transcription factor SOX11 

was first identified as a modulator of regeneration in the PNS (Jankowski et al., 2009). This 

was extended to the CNS, showing that SOX11 underlies DLK/LZK-mediated cell death, 

and that overexpression of Sox11 can induce regeneration of some subtypes of RGCs, 

although also leading to cell death of other RGC subtypes (Norsworthy et al., 2017; Welsbie 

et al., 2017). This unveiling of factors that differentially promote survival or regeneration 

depending on the subtype of neuron was also seen with osteopontin and IGF1, which 

improved survival and regeneration of the alpha-RGCs that preferentially express the 

relevant receptors (Duan et al., 2015). As more details emerge about not only CNS–PNS 

differences but also about the heterogeneity of CNS neuron subtypes and their responses to 

injury, more work will be needed to fine-tune individualized therapies for regeneration.

INTRINSICALLY REGENERATIVE SPECIES

Regenerative failure of the CNS is not a universally conserved phenomenon: in fact, diverse 

phyla and classes like nematodes (Yanik et al., 2004), fruit-flies (Soares et al., 2014), 

zebrafish (Cameron, 2000; Sherpa et al., 2008), and reptiles (Lang et al., 1998), demonstrate 

at least partial neural regeneration after injury. In C. elegans, DLK-1 was first shown to 

promote and regulate adult axon regeneration, regulating the cells to respond to injury, 

partially through mRNA stabilization, discussed further below (Hammarlund et al., 2009; 

Yan et al., 2009). This finding was also seen in peripheral nerve regeneration in mice, with 

DLK required for retrograde transport of phosphorylated STAT3 to the cell body from the 

damaged axon (Shin et al., 2012). In one study of Drosophila wing regeneration after injury, 

transgenic screening highlighted JNK pathway inhibition as pro-growth, a finding conserved 

in mammalian RGCs after injury (Welsbie et al., 2013; Soares et al., 2014; Apara et al., 
2017). In fact, it seems the DLK/JNK pathway underlies cellular responsiveness to injury in 

intrinsically regenerative species, regenerative PNS neurons, and non-regenerative neurons 

even in humans, either pro-growth or pro-apoptotic depending on the neuronal context (Le 

Pichon et al., 2017).

In zebrafish, KLF6a and KLF7a together are necessary for RGC regeneration after optic 

nerve crush, and similarly promote axon growth and regeneration in rodent RGCs and 

corticospinal neurons (Veldman et al., 2007; Moore et al., 2009b; Blackmore et al., 2012). 

However, a downstream target in zebrafish was identified as tuba1a, a key protein for 

regeneration in fish that has not been found to be relevant for regeneration in mammals 

(Veldman et al., 2010). Thus exploring conserved and divergent molecular pathways and 

functions has helped to understand differences in regenerative capacity between mammals 

and other species and has led to candidate approaches for promoting regeneration.
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COMBINING THERAPIES TO ENHANCE REGENERATION

As many of these regenerative therapies target different pathways, the combination of cell 

intrinsic and cell extrinsic approaches has led to novel insights and improvements in survival 

and regeneration of ganglion cells. For example, while the deletion of PTEN or SOCS3 
independently lead to extensive RGC regeneration, the co-deletion of PTEN and SOCS3 had 

a synergistic effect for robust, sustained axon regeneration (Sun et al., 2011). Recently, the 

combination of KLF9 knockdown with zinc chelation by TPEN was shown to lead to more 

enhanced regeneration and cell survival than either therapy alone (Trakhtenberg et al., 2018). 

Visual or electrical stimulation also elicits more profound effects in combination with 

neurotrophic factors or with manipulation of pro-growth signaling pathways in neurons such 

as RGCs (Goldberg et al., 2002b; Lim et al., 2016). However, despite the best combinations 

of transcription factors and growth pathways, relatively few RGC axon reach their target 

regions. It is likely that a cocktail approach manipulating several factors together may 

enhance regeneration and indeed be necessary for full visual recovery.

Indeed, we must now ask how regenerated RGC synapses compare to those established 

during development. Do they have adequate transport of pre-synaptic machinery to maintain 

synaptic connections? Is exogenous expression of guidance molecules necessary for axon 

targeting? The answers to these questions and more form the next frontier of visual 

regeneration research. Despite these advances, limited visual recovery has been seen, 

underscoring the need for a deeper understanding of cellular changes in injury and disease. 

Many of the regenerative factors discussed above were hypothesized as candidate therapies 

due to differential expression in regenerative and non-regenerative neurons. Similarly, 

differential expression of factors in degenerative and non-degenerative neurons can highlight 

candidates for survival and maintenance of axons, which when combined with regenerative 

therapy, will lead to enhanced therapeutic response. Indeed, the link between degenerative 

molecular pathways and those failing to promote regenerative response may be one fertile 

area to focus on. With that in mind, insights from degenerative changes seen in conditions 

like glaucoma may suggest new avenues for vision restoration research.

AXON TRANSPORT IN GLAUCOMA AND OTHER NEURODEGENERATIVE 

DISEASES

Glaucoma is the leading cause of irreversible blindness worldwide and is predicted to affect 

80 million people by 2020 (Quigley and Broman, 2006). The biggest risk factor is age; 

increased intraocular pressure (IOP) is currently the only modifiable risk factor. Vision loss 

occurs due to dysfunction and death of RGCs and their axons. Furthermore, widespread 

damage can be seen throughout the visual system, with degenerative changes in the LGN 

and the visual cortex (Yücel et al., 2000). The molecular pathophysiology of glaucoma is 

still poorly understood, but increasing evidence implicates interference with axonal transport 

mechanisms.

Decreased axoplasmic flow between the RGC cell bodies and their axon terminals in the SC 

or LGN in the face of increased IOP remains one of longest standing hypotheses for 

pathophysiologic mechanism in this disease. Since the 1970s, studies into axoplasmic 
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transport in glaucomatous degeneration have shown an association between increased IOP 

and decreased anterograde and retrograde protein transport (Anderson and Hendrickson, 

1974, 1977; Minckler et al., 1977; Quigley and Anderson, 1977; Quigley et al., 1979; Crish 

et al., 2010). Indeed there is a strong link between many neurodegenerative diseases and 

dysfunctional axon transport (Appel, 1981). Causative mutations in genes that directly or 

indirectly lead to axon transport deficits may underlie at least a portion of the neuronal death 

seen in Huntington’s disease (Trushina et al., 2004), amyotrophic lateral sclerosis (ALS) 

(Pasinelli and Brown, 2006; Nicolas et al., 2018), Parkinson’s disease (Saha et al., 2004), 

and Alzheimer’s disease (Zhang et al., 2004; Wu et al., 2009). Specifically, decreases in 

axonal transport precede and possibly contribute to axonal and microtubule, and then 

somatic, degeneration (Stokin et al., 2005; Morfini et al., 2009).

What mechanistic insights can be derived from such consistent, distal-to-proximal cellular 

neurodegeneration? Identifying the molecular cargoes of bidirectional cellular transport 

mechanisms and ensuring adequate transport of these molecules to their targets may be a key 

component to achieving long-distance regeneration and re-innervation of RGCs to the brain.

DENDRITIC AND SYNAPTIC DEGENERATION AND TRANSPORT IN 

GLAUCOMA

RGCs require functional connections with pre-synaptic neurons in the retina and post-

synaptic neurons in the brain to maintain transmission of visual information, and re-

establishing and maintaining synaptic communication is vital to survival of RGCs (Della 

Santina et al., 2013). In different glaucoma models, the DBA/2J mouse and a microbead 

injection-induced IOP model of glaucoma, axon transport fails early, with synaptic 

transmission and axon and dendritic dysfunction preceding the eventual RGC death, 

implicating axon transport in disease pathology (Buckingham et al., 2008; Sappington et al., 
2010; Ou et al., 2016; Ward et al., 2014). Additional work has also highlighted early 

dendritic field reorganization in different RGC subtypes, before measurable axonal 

degeneration, and well before cell death (Della Santina et al., 2013; El-Danaf and 

Huberman, 2015). Thus failure of long-distance transport down axonal or dendritic neurites 

may underlie early phases of degeneration.

MOLECULAR MOTORS UNDERLYING TRANSPORT ARE LINKED TO 

NEURODEGENERATIVE DISEASE

In neurons, microtubule motor proteins, dyneins, and kinesins, drive organelle and molecular 

axonal transport (Vale et al., 1985; Hirokawa, 1998; Teng et al., 2005; Hirokawa et al., 
2009). Given the importance of axon transport in the homeostatic maintenance of neuronal 

survival, disruptions to these motor proteins underly a variety of neurological diseases. For 

example, Charcot–Marie–Tooth disease type 2A can be caused by mutations in KIF1B1, and 

congenital fibrosis of the extraocular muscles (which is a neuropathy, not a myopathy) can 

be caused by mutations in KIF21A (Zhao et al., 2001; Yamada et al., 2003). Kinesins can 

form axonal aggregates in some neurodegenerative conditions like Alzheimer’s disease, 

especially in cases with certain amyloid precursor protein mutants, with blockages occurring 
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before the characteristic amyloid plaque accumulations (Stokin et al., 2005). A loss-of-

function mutation in KIF5A results in hereditary spastic paraplegia, characterized by a 

progressive loss of function and degeneration of upper motor neurons, starting with synaptic 

degradation (Reid, 2003; Xia et al., 2003; Morfini et al., 2009). Different loss-of-function 

mutations in KIF5A, all affecting the cargo binding domain, are causative in some cases of 

ALS (Nicolas et al., 2018). Charcot–Marie–Tooth syndromes can include optic atrophy 

among the peripheral neuropathies that define the disease, supporting the premise of shared 

axon transport-related pathophysiologies among axonopathies. The vital role of molecular 

transport in injury and disease, and their corresponding variety of mRNA, protein, and 

mitochondrial cargoes, highlight the necessity of addressing axonal transport when 

attempting to regenerate and re-innervate CNS neurons.

Does neurodegeneration follow a general decline in transport, or is the transport of specific, 

key cargoes causative in these different diseases. In the last few decades, increasing evidence 

has shown that kinesin subtypes and adaptor proteins have at least partial cargo specificity 

(Chevalier-Larsen and Holzbaur, 2006). For example, KIF1A and KIF1B of the Kinesin 3 

family transport synaptic vesicle precursors synaptophysin and synaptotagmin, but do not 

transport syntaxin 1A or SNAP25 (Okada et al., 1995), whereas KIF5 motors do transport 

syntaxin 1A and SNAP25, and also transport synaptotagmin (Toda et al., 2008). The 

physiologic relevance of this partial specificity and partial redundancy is not fully elucidated 

but could reflect compensatory mechanisms for vital cargo to maintain cellular function and 

survival.

Regulation of these motors’ active state and specific cargoes also depends on cell signaling 

cascades and post-translational modifications such as phosphorylation and changes in 

adaptor proteins. For KIF5 motors, protein kinase A phosphorylation inhibits the binding of 

synaptic vesicles and glycogen synthase kinase-3 phosphorylation inhibits the binding of 

membrane organelles (Sato-Yoshitake et al., 1992; Morfini et al., 2002). In mitochondrial 

trafficking, the adaptor proteins Milton and Miro bridge KIF5 motors to the mitochondria in 

a calcium dependent manner (Glater et al., 2006; MacAskill et al., 2009). The wide 

heterogeneity of these identified cargoes leads directly to the question of how specificity is 

effected, if they form functional groups, and how they change after injury or during 

regeneration. What are the key molecules and organelles transported in axons? And, which 

are affected in RGC axons in optic neuropathies like glaucoma with associated axon 

transport loss?

AXONAL TRANSPORT OF MITOCHONDRIA

Mitochondria are perhaps the most studied organelle being shuttled up and down the axon 

by motor proteins. Mitochondria are responsible for ATP generation by oxidative 

phosphorylation, generation of reactive oxygen species, calcium buffering, among many 

other functions (Werth and Thayer, 1994). Dysregulation of mitochondria and mitochondrial 

distribution can lead to apoptotic cell death. Mitochondrial trafficking is essential for neurite 

outgrowth in vitro (Morris and Hollenbeck, 1993), and in vivo transport of mitochondria 

after injury has recently been more appreciated. In vivo imaging of mitochondria in the 

retina has shown a general decrease in motility and transport in aged mice compared to adult 
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mice, as well as a reduced number of transported mitochondria in a glaucoma model 

(Takihara et al., 2015). Interestingly, aged mice are more susceptible to the mitochondrial 

transport disruption of glaucoma compared to younger adult mice, correlating with the 

increased incidence of glaucoma as human age. Mitochondria traffic to injured axons in C. 
elegans is required for normal regeneration (Han et al., 2016). Similarly, after optic nerve 

crush in mice, the mitochondrial protein Armcx1 is upregulated during injury in a 

regenerative condition, and further overexpression enhances both survival and regeneration 

of RGCs. This effect is hypothesized to be due to an increased in mobilization of 

mitochondria after injury, consistent with the results seen in C. elegans and in the 

mammalian sciatic nerve (Cartoni et al., 2016; Han et al., 2016; Zhou et al., 2016). Thus 

promoting increased mitochondrial transport promotes regenerative responses in the 

mammalian optic nerve, although it is not yet understood how regulation of this 

mitochondrial redistribution and energetics modulation contributes to survival and 

regeneration.

AXONAL TRANSPORT OF MRNA

Effectors from the cell body arrive at pre-synaptic terminals, growth cones, dendrites, and 

sites of injury by two methods: local axonal translation after transport of mRNA, and direct 

long-distance transport of proteins. Before the detection of mRNA transport into mammalian 

axons, local translation was predicted based on an efficiency hypothesis: over long distances, 

transport of few mRNA molecules that could be translated many times over at the desired 

location conserves energy over synthesizing these proteins at the cell body and transporting 

them (Spaulding and Burgess, 2017). Evidence for local translation in PNS neurons has first 

been shown through radioactive protein synthesis labeling in vitro and in vivo, followed by 

microscopic evidence of ribosomes in vivo (Koenig, 1991; Eng et al., 1999; Bleher and 

Martin, 2001). The presence of ribosomes and mRNA in the axons of mature CNS neurons 

is a pre-requisite for local translation. PolyA and rRNA are seen in developing hippocampal 

neurons in vitro, and axonal protein synthesis contributes to growth cone stabilization in 

isolated, regenerating DRG neurons in vivo (Kleiman et al., 1994; Zheng et al., 2001). 

Furthermore, specific mRNA molecules whose transport is increased after injury have been 

seen in both PNS and CNS axons in vivo. (Hanz et al., 2003; Willis et al., 2011). RNA-

binding proteins and ribosomes for local translation have been found in peripheral neurons 

(Zheng et al., 2001; Spillane et al., 2013), and bound to mitochondria in RGC axons in vitro 
(our unpublished data). Isolated mRNA from purified axons of cortical neurons using a 

specialized microfluidic chamber also revealed many transcripts related to RNA translation 

machinery and transport (Taylor et al., 2009). Indeed even with these data in CNS neurons, 

having less translation machinery in CNS axons than PNS axons (Verma et al., 2005) may 

contribute to the differential regenerative capacities between these two populations. Is a 

relative lack of mRNA transport and/or locally translated effector proteins a fundamental 

reason for regenerative failure? While further work in this field is necessary to determine if 

increased translation after injury in RGC axons can improve regeneration, progress has been 

made in identifying and targeting specific mRNA transport pathways.

Are there links between mRNA transport and molecular pathways implicated in 

neuroprotection or regeneration? One strong example involves the dual leucine zipper kinase 
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(DLK-1) pathway, which was first shown to lead to cebp-1 mRNA stabilization and local 

translation in C. elegans (Yan et al., 2009), and later tied to RGC survival in mice (Watkins 

et al., 2013; Welsbie et al., 2013). In a high-throughput siRNA assay, DLK inhibition was 

seen to be pro-survival in primary RGCs given an axonal injury. Similarly, inhibition of 

leucine zipper kinase (LZK), whose C. elegans homolog is DLK-1, in conjunction with DLK 

knockdown, more completely prevents RGC death both in vitro and in vivo (Welsbie et al., 
2017). Downstream effectors of this pathway have been identified, including SOX11, 

MEF2A, JUN, and ATF2, and a number of these also affect RGC survival and optic nerve 

regeneration. It is not known, however, whether DLK or these DLK/LZK pathway effectors 

lead to mRNA stabilization and local translation or transport changes in mammalian axons, 

similar to DLK’s mechanism of action in C. elegans.

Even more broadly, how can we discover the identities of these pools of mRNA that are 

actively being translated in RGC axons? Ribotrap techniques to isolate actively translating 

RNA in the visual system, and identifying them with RNA-Seq, takes this exploration of in 
vivo axonal translation a step further (Shigeoka et al., 2016). Briefly, affinity-tagged 

ribosomes are expressed in a cell-specific manner, cross-linked, and isolated. The bound 

mRNA to these ribosomes, the “translatome,” gives insight into actively translating mRNA 

in a specific cell type. In neurons with spatial separation of compartments, such as RGCs, 

optic nerve, and synaptic terminals can be isolated to identify locally translating axonal 

proteins. Quantifying changes of intra-axonal protein synthesis in the normal, injured, and 

regenerating optic nerves as compared to intrinsically regenerating axons will identify 

aspects of the translatome most relevant to neuro-regeneration.

AXONAL TRANSPORT OF PROTEINS

Directly transported proteins have been identified and studied in glaucoma and acute optic 

nerve injury, with an experimental focus on strong candidates for involvement in 

neurodegeneration, such as the transport of BDNF (Pease et al., 2000). To truly appreciate 

the complement of proteins transported normally or disrupted in glaucoma or other insults, 

unbiased methods are needed for broad identification. Mass spectrometry for proteins and 

lipids continue to show the most promise for tackling such questions. As these technologies 

continue to advance, methods for subdividing these pools, including time resolution for 

synthesis and degradation of these molecules and compartmentalized sequencing, will 

provide a clearer picture of molecular interactions.

Historically, studies in goldfish (Benowitz et al., 1981; Perry et al., 1985), tadpoles (Szaro et 
al., 1984), toads (Skene and Willard, 1981), and mammals (McKerracher et al., 1990) using 

radiolabeled amino acids have shown that there is a global loss of axonal transport following 

nerve injury, with selective increases in proteins of certain molecular weights. In non-

regenerating mammalian RGCs, there is a preferential loss of slow compared to fast axonal 

transport, which may underlie some of the differences in regenerative potential between 

species. Studies that try to dissect the identities of axonal proteins and protein changes are 

confounded by proteins originating from non-axonal sources, such as glia (Perry et al., 
1985). Approaches to separate axonal from glial proteins have included isolating axoplasm, 

e.g., from ligated sciatic nerves with or without injury; however, biological variability 
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limited attempts to quantify protein differences even when using clustering methods to 

correlate and group transport machinery to a set of proteins (Michaelevski et al., 2010). 

Nonetheless, there is evidence of increased anterograde transport of structural components 

of translation machinery and mRNAs in PNS neurons that may not occur in CNS neurons 

after injury or in degenerative disease. Together these findings paint a picture of a 

coordinated cellular response to injury that relies on transporting both formed proteins and 

the machinery to synthesize new proteins (See Fig. 1).

Even better than such indirect, bioinformatics-based approaches to identify and separate 

axonally transported proteins from glial proteins after injury would be direct detection of 

anterogradely or retrogradely transported proteins in vivo. This has been challenging, 

primarily due to the low proportion of transported axonal proteins compared to those from 

the surrounding white matter milieu. Are regenerated RGCs able to adequately transport 

synaptic proteins and mRNA for local translation from the cell body? In fact, what proteins 

make up the pre-synaptic compartment in RGCs, and do these differ by RGC subtype or 

target region? While synaptosomal proteomics have improved with novel compartment 

labeling techniques (Ting et al., 2016), these have for the most part been restricted to cell 

culture.

Recent advances in mass spectrometry-compatible signal detection in vivo have allowed a 

re-evaluation of this open question in transport biology (Schiapparelli et al., 2014), to the 

point that we can now directly detect changes in CNS axoplasmic protein transport in injury 

and disease. Labeling a group of proteins with an affinity tag, such as biotin, is a common 

method of separating proteins of interest from the background. In such paradigms, these 

labeled proteins are enriched with streptavidin pull-down, and once isolated, trypsinized, and 

identified with mass spectrometry. This technique has mostly been limited to situations 

where labeled proteins are a large portion of total proteins, as can be controlled in cell 

culture, but is a challenge when labeled proteins are only a small fraction of total proteins. In 
vivo, the percentage of proteins transported from a cell body to the axon is low compared to 

all the proteins found in the optic nerve, resulting in a high false-positive rate of 

contaminating unlabeled proteins. To overcome this limitation, reversing the order of the 

technique, trypsinizing all protein, and then pulling down and searching by mass spec for 

only the biotinylated peptides can now allow direct detection and high specificity even in 

rare samples (Schiapparelli et al., 2014). A second technical improvement is the ability to 

multiplex tags with slightly different molecular weight biotin groups, similar to tandem mass 

tagging, allowing for quantitative differences in protein abundance between conditions 

(Thompson et al., 2003). We have been exploring these approaches in optic nerve injury and 

regeneration, and our early findings suggest feasibility of the technique and identification of 

promising candidates.

COULD AXON TRANSPORT BE ONE UNIVERSAL EFFECTOR REGULATING 

REGENERATIVE FAILURE OR SUCCESS?

Re-examining recent advances in regeneration with a renewed and technically improved 

focus on axonal transport underscores that many of these strategies may depend or be 
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enhanced by functioning molecular motor networks. For example, KLF4 has been directly 

linked to mitochondrial biogenesis and autophagy in non-neuronal cells, and proper 

translocation of mitochondrial to the site of injury is critical for axon growth (Jang and 

Arany, 2015). While KLF4 deletion promotes partial RGC regeneration, could negative 

regulation of mitochondrial translocation limit the effectiveness of this therapy? Dissection 

of the KLF9–Dusp14 link in RGC regeneration may potentially unveil a direct link between 

nuclear gene expression changes and the transport of signals sent to the RGC axon. As 

discussed above, the DLK/LZK pathway, which ties in upstream to the role of Sox11 in 

RGC survival and regeneration, is also known to affect mRNA stabilization and translation 

in other species. Could transport failure after injury be a cause of incomplete regeneration 

with visual recovery seen in each of these studies?

As mentioned previously, functional axonal transport depends on multiple kinesins and 

dynein. How are these motors, and their respective cargoes, differentially expressed and 

regulated after injury? What is the redundancy and specificity of cargo transport between 

motors? In uninjured neurons, loss of KIF4a reduces integrin trafficking, but overexpression 

is not able to increase integrin transport to the axonal compartment (Heintz et al., 2014). 

Approaching this problem from the opposite side, how do known regenerative or survival 

therapies affect kinesin expression, and protein translocation? Identifying the upstream 

regulators of transport through comparisons between regenerative and non-regenerative 

neurons, and specifically targeting them, may unmask the intrinsic growth capacities of adult 

CNS neurons.

In summary, recent large-scale òmics studies, both transcriptomic and proteomic, have 

opened up the ability to quantitatively probe all changes in the neuronal cell body – which 

may generate a deluge of differentially expressed candidates – and now changes in transport 

to other compartments, like the axon, which may narrow such molecular candidates to those 

most relevant for axonal degeneration and regeneration. Indeed probing these together may 

suggest a mechanistic link between gene transcription, protein expression, and molecular 

transport to affected axons. We hypothesize that understanding such mechanistic links will 

not only impact axon regeneration approaches, but also address myelination in regenerating 

fibers, electrophysiology and axon conductance of action potentials, and formation of 

synapses, all key to restoring the diversity of visual responses and behavior.
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Figure 1. 
After axonal injury, anterograde transport of mitochondria, mRNA, and proteins are all 

affected. Certain proteins and mRNA decrease in transport, while the transport of other 

specific transcripts, proteins, and mitochondria toward the injury site may increase.
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