
WJG https://www.wjgnet.com 4582 July 28, 2021 Volume 27 Issue 28

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2021 July 28; 27(28): 4582-4602

DOI: 10.3748/wjg.v27.i28.4582 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

REVIEW

Modulation of cell physiology under hypoxia in pancreatic cancer

Matias Estaras, Antonio Gonzalez

ORCID number: Matias Estaras 0000-
0003-3462-7904; Antonio Gonzalez 
0000-0001-8380-0270.

Author contributions: Estaras M 
prepared parts of the paper, 
revised and corrected the 
manuscript, and approved the final 
version submitted; Gonzalez A 
provide the conception and design 
of the manuscript, wrote parts of 
the paper, revised and corrected 
the text, and approved the final 
version submitted.

Supported by Ministerio de 
Economía y Competitividad, No. 
BFU2016-79259-R; Junta de 
Extremadura-FEDER, No. 
GR18070; and Valhondo Calaff 
Foundation.

Conflict-of-interest statement: The 
authors declare that they have no 
conflicting interests.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License

Matias Estaras, Department of Physiology, Institute of Molecular Pathology Biomarkers, 
University of Extremadura, Caceres 10003, Spain

Antonio Gonzalez, Department of Physiology, Cell Biology and Communication Research 
Group, University of Extremadura, Caceres 10003, Spain

Corresponding author: Antonio Gonzalez, DVM, Full Professor, Department of Physiology, 
Cell Biology and Communication Research Group, University of Extremadura, Ave Ciencias 
s/n, Caceres 10003, Spain. agmateos@unex.es

Abstract
In solid tumors, the development of vasculature is, to some extent, slower than 
the proliferation of the different types of cells that form the tissue, both cancer and 
stroma cells. As a consequence, the oxygen availability is compromised and the 
tissue evolves toward a condition of hypoxia. The presence of hypoxia is variable 
depending on where the cells are localized, being less extreme at the periphery of 
the tumor and more severe in areas located deep within the tumor mass. 
Surprisingly, the cells do not die. Intracellular pathways that are critical for cell 
fate such as endoplasmic reticulum stress, apoptosis, autophagy, and others are 
all involved in cellular responses to the low oxygen availability and are orches-
trated by hypoxia-inducible factor. Oxidative stress and inflammation are critical 
conditions that develop under hypoxia. Together with changes in cellular bioener-
getics, all contribute to cell survival. Moreover, cell-to-cell interaction is 
established within the tumor such that cancer cells and the microenvironment 
maintain a bidirectional communication. Additionally, the release of extracellular 
vesicles, or exosomes, represents short and long loops that can convey important 
information regarding invasion and metastasis. As a result, the tumor grows and 
its malignancy increases. Currently, one of the most lethal tumors is pancreatic 
cancer. This paper reviews the most recent advances in the knowledge of how 
cells grow in a pancreatic tumor by adapting to hypoxia. Unmasking the 
physiological processes that help the tumor increase its size and their regulation 
will be of major relevance for the treatment of this deadly tumor.

Key Words: Hypoxia; Cancer; Tumor; Pancreas; Proliferation; Cell survival

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v27.i28.4582
http://orcid.org/0000-0003-3462-7904
http://orcid.org/0000-0003-3462-7904
http://orcid.org/0000-0003-3462-7904
http://orcid.org/0000-0001-8380-0270
http://orcid.org/0000-0001-8380-0270
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:agmateos@unex.es


Estaras M et al. Hypoxia and pancreatic cancer

WJG https://www.wjgnet.com 4583 July 28, 2021 Volume 27 Issue 28

s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Cell biology

Country/Territory of origin: Spain

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: January 28, 2021 
Peer-review started: January 28, 
2021 
First decision: May 2, 2021 
Revised: May 28, 2021 
Accepted: June 22, 2021 
Article in press: June 22, 2021 
Published online: July 28, 2021

P-Reviewer: Giordano G, Liu B 
S-Editor: Ma YJ 
L-Editor: Filipodia 
P-Editor: Li JH

Core Tip: Pancreatic ductal adenocarcinoma is characterized by high aggressiveness, 
therapeutic resistance, and mortality. The cells included in the mass, both tumor and 
those forming the stroma, have a high proliferative rate that leads to the rapid growth 
of the tumor. Because of this, the distribution of blood vessels is insufficient to supply 
oxygen to the cells, and hypoxia is a consequence. Cells escape from death and adapt 
by undergoing critical changes in intracellular pathways involved in energy supply, 
proliferation, and cell-to-cell communication.
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INTRODUCTION
World Health Organization estimates that about 465.000 people died from pancreatic 
cancer (PC) in 2020, which was the seventh leading cause of cancer deaths[1]. Various 
studies point toward recent increases in the incidence of PC and in the number of PC-
related deaths[2,3]. The causes of high mortality are late diagnosis and few and inef-
fective therapeutic strategies. Of the various types of PC, pancreatic ductal adenocar-
cinoma (PDAC) accounts for 90% of the diagnoses[4].

Tumors conditions include the development of hypoxic areas of varying extent, in 
which the growing cell population is subjected to low O2 availability[5]. This condition 
derives from the high rate of cell proliferation and the rapid growth of the tumor mass, 
which is accompanied by an abnormal distribution of blood vessels that limits blood 
flow and, hence the O2 supply[6]. An ongoing hypoxic state has been well documented 
in PC. The average of O2 level in the healthy pancreas is 6.8%, whereas in PC it is 0.4%. 
This 17-fold decrease in O2 availability is high compared with other tumors[7]. 
Extensive fibrosis and hypovascularization are characteristic of PDAC, and lead to 
significant tissue hypoxia and the aggressiveness, therapeutic resistance, and high 
mortality that are characteristic of this type of cancer[8].

Not less important, the stroma that forms part of the tumor mass contributes to the 
creation of a tumor microenvironment that contributes to conditions that determine 
tumor growth, invasion, and metastasis[9]. The tumor microenvironment is composed 
of structural elements, which include extracellular matrix proteins and cells, such as 
macrophages, endothelial cells, fibroblasts, and stellate cells[9,10]. Pancreatic stellate 
cells (PSC) interact closely with cancer cells and set up a close relationship that favors 
tumor growth[11]. Additionally, PSC are considered major contributors to the fibrosis 
that forms part the stroma[12]. Increased hypoxia promotes collagen deposition and 
tumor progression, i.e. hypoxia contributes to the development of fibrosis in PC and in 
other types of tumors[13]. Hypoxia promotes PSC activation, increased proliferation, 
and invasiveness, confirming their participation in the formation of fibrotic tissue[14].

Hypoxia-inducible factor (HIF) plays a pivotal role in the development of cellular 
responses to hypoxia[15]. Usually, this factor promotes or represses the transcription 
of many of genes that are involved in cellular homeostasis. HIF is degraded, and hence 
is nonfunctional when O2 is available to the cells, but becomes active under specific 
conditions, including low-O2 (hypoxic) stress. The genes targeted by HIF allow cells to 
adapt to hypoxic conditions and survive. The genes involved code for vascular 
endothelial growth factor (VEGF), erythropoietin, and glucose transporter-1[16]. In 
order to adapt to O2 deprivation, energy metabolism switches to glycolysis[17]. 
Concomitantly, regulation of the transcription of certain metabolic enzymes, including 
pyruvate dehydrogenase kinase 1, lactate dehydrogenase A, glycogen phosphorylase 
L, and others occur. The result is the improvement of adenosine triphosphate (ATP) 
production at the expense of increases of glucose uptake, glycolysis, and generation of 
lactate[18].

Several isoforms of HIF have been identified. HIF-1α and HIF-2α are closely related, 
and HIF-1α is the first isoform that was described. Both activate the transcription of 
genes associated with hypoxia. HIF-3α is more distantly related. Current evidence 
indicates that HIF-1α, and not HIF-2α, is active in regulating the transcription of genes 
that encode the enzymes that coordinate the activation of cellular pathways related to 
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ATP support[19]. HIF-1 is a major activator of pathways that play crucial roles in 
tumor development by upregulating pivotal genes. The genes thereafter regulate 
energy metabolism, angiogenesis, survival, invasion, metastasis, and drug resistance 
of cancer cells[20]. The HIF-1α subunit is regulated by O2-dependent hydroxylation, 
ubiquitination, and degradation. In general, it is accepted that HIF signaling is 
activated in all types of cancer, including PC. Its activation will provide the tumor cells 
with tools to support survival. Therefore, HIF has been described as a key molecular 
target for cancer therapy. therapy[5,21]. To cite some examples, Xiao et al[22] showed 
that silencing the expression of HIF-1 diminished the invasiveness of Panc-1 and 
MiaPaca-2 cells. The enzyme prolyl hydroxylase domain 3 (PHD3) regulates the 
degradation of HIF and is the rate-limiting in that process. PHD3 is deregulated in PC 
cells. It has been shown that HIF-1α expression was suppressed in MiaPaca2 PC cells 
that overexpressed PHD3, which inhibited cell growth and colony formation under 
hypoxic conditions[19,23]. Another study showed that PHD3 expression regulated the 
secretion of VEGF evoked by hypoxia and inhibited tumor growth in vivo by 
abrogation of angiogenesis[24].

Along with cancer cells, the fibrotic tissue also undergoes adaptation to hypoxia by 
terms of HIF signaling. HIF-1α expression was found in the stroma adjacent to the 
PDAC cells[25]. HIF-1 and HIF-2 were expressed in cultured PSC subjected to hypoxia
[14]. HIF-1 expression induced changes in PSC that promoted invasion and epithelial-
mesenchymal transition and inhibited death of PC cells[22]. HIF-1α induced secretion 
of collagen in PSC. Accumulation of collagen together with other extracellular matrix 
components promotes fibrotic stroma formation[26]. Another study showed that HIF-1
α promoted the activation of PSC through recruitment of macrophages in PDAC[27].

The growth of fibroblasts was accelerated by the release of sonic hedgehog protein 
(SHH) in PC cells that were subjected to hypoxia, and that situation contributed to 
increased deposition of fibrous tissue[28]. PC stromal fibroblasts subjected to hypoxia 
were found to be associated with aggressive invasion and liver metastasis and 
increased processing and release of hepatocyte growth factor activator[29]. Moreover, 
fibroblasts have been found to contribute to vascular remodeling under hypoxia by 
influencing VEGF expression[30]. Figure 1 is a depiction of all the cell types that can be 
included in tumor tissue. Depending on their location in the mass, all cells are 
subjected to hypoxia to different extents.

OXIDATIVE STRESS AND ANTIOXIDANT RESPONSE UNDER HYPOXIA IN 
PC
Cancer cells have high proliferation rates, altered metabolism, and increased oxidative 
stress. The generation of reactive oxygen species (ROS) leads to genomic instability 
and the impairment of gene expression that underly cancer development[31]. ROS are 
produced in the mitochondria[32] and production is increased in tumor cells[6]. In 
healthy cells, uncontrolled overproduction of ROS is usually accompanied by cell 
death[33]. However, that does not necessarily happen in tumor cells, which can adapt 
to survive. Local expression of renin-angiotensin system has been signaled to play an 
important role in the regulation of blood pressure and fluid homeostasis in the 
pancreas[34]. Interestingly, hypoxia could upregulate the mentioned system that could 
then contribute to the modulation of local blood flow in a growing tumor and help the 
tissue to manage oxidative stress. Along this line, angiogenesis is a process that 
attempts to counter the lack of nutrients and oxygen shortage that develops in tumors
[35]. However, in spite of the development of new microvasculature, vascular access is 
still poor and O2 supply is compromised in the majority of tumors[36]. In PDAC for 
example, a low microvessel density and collapsed vasculature are observed[37].

To adapt to the adverse pro-oxidative conditions derived from uncontrolled cell 
proliferation and a limited blood supply, cancer cells increase their antioxidant 
defenses[38]. The redox signaling protein apurinic/apyrimidinic endonuclease 
1/Redox effector factor 1 (APE1/Ref-1) modulates the redox activity of PC cells and is 
involved in cell proliferation and migration through the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and HIF-1 pathways[39]. The transcription 
factor nuclear factor erythroid-related factor 2 (Nrf2) regulates a wide range of 
cytoprotective genes in response to oxidative stress and various stressors present in 
the extracellular environment. The glutathione system is key among the antioxidant 
systems that are regulated by this transcription factor[40]. Chronic hypoxia is known 
to increase glutathione-dependent antioxidant capacity, which avoids damage to the 
cell membrane because of concomitant oxidative stress[41]. Indeed, glutathione 
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Figure 1 Illustration of the cells that form tumor tissue. Both tumor cells and the stroma contribute to the formation of tumor tissue. The latter comprises 
fibroblasts, stellate cells, immune cells, secreted components such as cytokines or extracellular matrix proteins, and the vasculature. Depending on their location in 
the mass, all cells are subjected to hypoxia to differing extents. Created with BioRender.com.

peroxidase maintains redox homeostasis in Panc1 cells, a pancreatic tumor cell line
[42]. Heme oxygenase-1, an antioxidant enzyme regulated by Nrf2, has been shown to 
provide a survival advantage to PDAC cells subjected to hypoxia, and its inhibition 
induced an increase of the production of ROS and increased cell death[43]. Superoxide 
dismutases (SODs) are antioxidant enzymes that protect cells against ROS. The family 
consists of three isoforms, cytoplasmic Cu/ZnSOD (SOD1), mitochondrial MnSOD 
(SOD2), and extracellular Cu/ZnSOD (SOD3)[44]. A decrease in the expression of 
SOD1 has been related to a decrease in the viability of the pancreatic tumor cell lines 
Panc-1 and MiaPaCa2 cells when they were subjected to hypoxia[45]. SOD2 was 
shown to protect KP4 human pancreatic carcinoma cells against oxidative stress 
evoked by hypoxia/reoxygenation. The evidence thus supports the involvement of 
antioxidant enzymes in PC cell survival[6].

Interestingly, PSC undergo oxidative stress under hypoxia, and increased oxidation 
of lipids and proteins have been reported in PSC subjected to hypoxia. Moreover, PSC 
can adapt to hypoxia by increasing their antioxidant defenses by upregulated 
expression of SOD1 and SOD2 associated with increased phosphorylation of the Nrf2 
transcription factor[14]. Figure 2 summarizes the involvement of the pathways 
involved in hypoxia-evoked antioxidant responses. In general, both the tumor cells 
and the other cells that grow in the mass adapt to varying extents. The overall success 
achieved by cellular responses determines the growth of the tumor and the probable 
concomitant migration, invasion, and metastasis[46].

HYPOXIA AND MITOGEN-ACTIVATED PROTEIN KINASE SIGNALING IN 
PC
Mitogen-activated protein kinases (MAPKs) comprise a family of proteins that 
regulate various physiological processes. Among them, cell proliferation, differen-
tiation and survival play major roles in cancer development and progression[47]. 
Participation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun 
amino-terminal kinases (JNK) in the growth of PC was demonstrated in KP-1N human 
pancreatic carcinoma cells that had been incubated with the secretagogue cholecys-
tokinin[48]. Glucose deprivation, which was used to mimic hypoxia, induced the 
activation of JNK in the PC cells. Inhibition of the kinase led to a decrease of cell 
sensitivity to glucose deprivation-induced apoptosis[49]. JNK was also activated by 
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Figure 2 Hypoxia-evoked antioxidant response. In response to the increase in the generation of reactive oxygen species under hypoxia, cells activate 
intracellular pathways that provide antioxidant protection. Among them, the Nrf2 pathway plays a critical role by coordinating the activation of cytoprotective genes 
that lead to the expression of major antioxidant enzymes. Created with BioRender.com. APE1/Ref-1: AP endonuclease1/Redox effector factor 1; HIFs: Hypoxia-
inducible factors; NF-B: Nuclear factor kappa-light-chain-enhancer of activated B cells; Nrf2: Nuclear factor erythroid-related factor 2; SOD: Superoxide dismutases.

interferon-induced protein with tetratricopeptide repeats 3, a group of genes that are 
stimulated by interferon and upregulated in aggressive PC cells[50]. Pro-survival and 
proliferation pathways regulated by ERK1/2 have been reported in Panc-1 cells[51]. In 
Capan-2 cells, another human PC cell line, hypoxia upregulated ERK1/2 and activated 
HIF-1α, which conferred chemoresistance of cells to gemcitabine[52]. On the contrary, 
a decrease in the phosphorylation of ERK1/2 was accompanied by a drop in the prolif-
eration of L3.6pl human PC cells[53]. ERK1/2 were also involved in the malignant 
transformation and development of PDAC under hypoxia; and as has been shown in 
other pancreatic tumor cell lines, implication of HIF-1α expression was also reported
[54].

Involvement of p38 MAPK in the modulation of cancer cell survival has also been 
shown. Its inhibition protected of MiaPaCa2 cells from death in response to 15-deoxy-
delta-prostaglandin J2[55]. Conversely, p38 was activated in MiaPaCa2 cells subjected 
to simulated ischemia, and led to activation of HIF-1α[56]. Moreover, inhibition of p38 
in MiaPaCa2 cells subjected to hypoxia-induced sensitization of cells to 2-deoxy-
glucose and D-allose and decreased their viability. Involvement of HIF-1α was 
probably responsible for the antiproliferative activity because the inhibitor decreased 
HIF-1α protein accumulation and transcriptional activity[57]. Participation of MAPKs 
in the development of stromal tissue in cancer has also been proposed[58,59]. In a 
recent study it has been shown that PSC subjected to hypoxia exhibited an increase in 
the phosphorylation of JNK, whereas that of p44/42 and p38 was decreased. PSC 
survival under hypoxia was dependent on JNK activation because incubation of cells 
with the specific inhibitor SP600125 decreased cell viability[14]. Another member of 
the MAPK family, extracellular-signal-regulated kinase 5 (ERK5), is required for the 
prevention of apoptosis, regulation of hypoxia, tumor angiogenesis, and cell migration
[60]. Inhibition of ERK5 diminished proliferation and migration of HepG2 and Huh-7 
human hepatocellular carcinoma cells[61]. Implication of ERK5 in other types of 
cancer, including renal cancer[62], prostate cancer[63], and leukemia[64] has also been 
reported.
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The ERK-5 inhibitor XMD8-92 inhibited pancreatic tumor growth via downregu-
lation of doublecortin-like kinase 1 and several of its downstream targets that are 
involved in oncogenic pathways, including c-Myc, KRAS, NOTCH1, ZEB1, ZEB2, 
SNAIL, SLUG, OCT4, SOX2, NANOG, KLF4, LIN28, VEGFR1, and VEGFR2)[65]. 
Inhibition of p44/42 and ERK5 synergistically caused loss of Myc protein, which is a 
key transcriptional factor with a key role in cell growth, differentiation, and tumor 
development. Inhibition of both MAPKs suppressed PDAC growth[66]. However, 
additional studies on the participation of ERK5 in the development of PC are currently 
lacking.

To our knowledge, little is known about the involvement of MAPK signaling in PC 
under hypoxia because of a lack of published studies. The available evidence indicates 
that differential inhibition of protein kinases might be used to attenuate the 
progression of the disease, but it is not conclusive. Therefore, additional research 
should be conducted in to unravel how this important signaling pathway is affected 
by hypoxia and to elucidate whether the targeting of MAPKs could be used in cancer 
therapy. The putative involvement of MAPK signaling under hypoxia is summarized 
in Figure 3.

HYPOXIA AND APOPTOSIS IN PC
Apoptosis is a regulated cellular process that occurs both in physiological and 
pathological conditions. It is designed to control the cell population within a tissue or 
organ[67]. The pathways involved in apoptosis can undergo defects that might lead to 
the transformation of damaged cells. This commonly occurs in cancer and has been 
reported as responsible for development, growth, metastasis, and chemoresistance in 
different types of tumors[68]. Bcl-2 is a major protein in the apoptosis pathway. It is 
considered a gene that suppresses the pathway in the sense that overexpression of Bcl-
2 blocks or delays the onset of apoptosis in cancer cells[69]; conversely, inhibition of 
Bcl-2 may lead cell death in some cancers that are resistant to apoptosis, for example 
breast cancer and PC[70]. Hypoxia has been associated with treatment resistance in 
various cancers, and apoptosis is among several signaling pathways that are thought 
to be involved. Many studies conducted in different cellular models of tumors have 
reported that the antitumor, and hence beneficial, effects of a variety of drugs depend 
on their ability to activate apoptosis[71]. However, few studies have focused on how 
the pathways that control apoptosis are modulated by hypoxia.

Cells with constitutive expression of HIF-1α have been shown to be more resistant 
to apoptosis than those without constitutive expression of the transcription factor, and 
the lack of expression was associated with increased in vivo tumorigenicity[72]. The 
expression of a regulator of hypoxia-induced cell death, Bcl-2/adenovirus E1B 19 kDa 
interacting protein 3 (BNIP3), was downregulated in PC cells and was associated with 
adaptation of the tissue to hypoxia and tumor resistance. Restoration of BNIP3 
expression increased cell sensitivity to death[73]. Decreased expression of thioredoxin 
1 has been reported in human PC tissues and was associated with decreased apoptosis 
and increased cell survival. The induction of thioredoxin-interacting protein, a tumor 
suppressor gene, resulted in increased apoptosis of Panc-1 cells even in cells with 
activation of HIF-1α[74].

In a mouse pancreas endocrine tumor model, it was shown that increased invasion 
into surrounding exocrine tissue was associated with decreased the expression of 
caspase-3, and occurred in areas were high levels of HIF-1α were noted[75]. In a 
related study, cleaved caspase-3 staining was increased in viable tumor tissue of 
hypoxic models. That was considered as indicating a remodeling process of the 
growing tissue by a counterbalanced cell loss by apoptosis in response to rapid cell 
proliferation[76]. Another study showed that MiaPaca2 cells exhibited increased levels 
of caspase-3 when cells were transfected with HIF-1α siRNA. That resulted in a 
decrease of cell proliferation and in an increase of chemosensitivity[77]. Overex-
pression of HIF evoked the expression of hypoxia-induced gene domain family-1a 
(Higd-1a), a mitochondrial inner membrane protein. The gene expression was believed 
to promote cell survival under hypoxia, because apoptosis was decreased. The antiap-
optotic effect of the genes resulted from the inhibition of cytochrome C release and 
from the reduction of caspase activity[78]. Another study showed that hypoxia and 
serum-free media, which were used to mimic tumor hypoxic-ischemic microenvir-
onment, reduced apoptosis and stimulated proliferation of MiaPaCa2 cells[79].

With respect to the tumor microenvironment, it is well accepted that it contributes 
to resistance to cancer therapy and to the evolution of the disease by regulation of 
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Figure 3 Contribution of mitogen-activated protein kinase signaling to cell responses under hypoxia. Mitogen-activated protein kinases comprise 
of a family of proteins that regulate physiological processes such as cell proliferation, differentiation, and survival, which play major roles in cancer development and 
progression. Differential inhibition of protein kinases might be used to attenuate the progression of the disease. Created with BioRender.com. ERK5: Extracellular-
signal-regulated kinase 5; JNK: c-Jun amino-terminal kinase; MAPKs: Mitogen-activated protein kinases; PC: Pancreatic cancer; PSC: Pancreatic stellate cells.

apoptosis[80]. Hypoxia has been shown to regulate the viability of PSC through p21-
activated kinase 1. The inhibition of this kinase decreased the activation, inhibited 
proliferation, and increased apoptosis of human PSC[12]. TH-302, a hypoxia-activated 
prodrug, was assayed in MiaPaCa2 and PANC-1 cell lines, and in BxPC-3 PDAC 
xenograft models in mice. The compound helped to reduce stromal density and intrat-
umoral hypoxia, and hence, increased the effectiveness of anticancer drugs[81]. The 
expression of fibulin-5 (Fbln5) is abundant in the stroma of PDAC[82]. This 
matricellular protein supports PDAC progression by blocking fibronectin-integrin 
interaction. Compared with normal pancreatic tissue, Fbln5 content was increased in 
mouse embryonic fibroblasts and 3T3 fibroblasts subjected to hypoxia. This involved 
transforming growth factor β (TGF-β)- and PI3K-dependent mechanisms, because 
inhibition blocked hypoxia-induced Fbln5 expression[83]. The balancing of apoptosis 
pathways could be a maneuver of PC cells to support the growth of tumor tissue[84]. 
Moreover, the modulation of HIF expression might be a valuable tool to control tumor 
cell proliferation under hypoxia[85].

AUTOPHAGY AND ADAPTATIONS OF CELLULAR BIOENERGETICS 
UNDER HYPOXIA IN PC
Autophagy is a metabolic pathway that is used by the cell for degradation of 
cytoplasmic proteins, macromolecules, and organelles in the lysosomes. It serves as a 
mechanism for protection of the cell and represents a major survival pathway that is 
activated in the presence of environmental and cellular stress[86]. However, is 
relationship to cancer development is contradictory. Both cell survival and cell death 
have been associated with autophagy because defects or partial reduction in 
autophagy transmit oncogenic stimulus and have been associated with cancer cell 
survival[70]. Autophagy is also activated under hypoxia and has been reported as 
potential contributor to the resistance of various types of cancer to therapy[71].

Inhibition of the pAkt/mTORC1 pathway, one of the critical regulators of 
autophagy, was observed in PC cells incubated under hypoxia, was found to promote 
autophagy, and was associated with enhanced cell survival[87]. Autophagy induction 
in response to hypoxia was detected in the PANC-1, BxPC-3 and AsPC-1 pancreatic 
cell lines, in which inhibition of AMP-activated protein kinase induced cytotoxicity 
and enhanced apoptosis. This suggested the involvement of this pathway in cell 
survival under hypoxia[88]. Serum-free media and hypoxic conditions protected 
MiaPaCa2 cells against death by stimulating autophagy. In that study, the ratio of 
LC3-II to LC3-I expression was increased, and treatment with the inhibitor of 
autophagy 3-MA decreased cell viability[79]. Autophagy was inhibited by chloroquine 
in MiaPaCa2 and S2VP10 cells that had been subjected to hypoxia, suggesting that the 
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pathway was responsible for tumor cell survival[89]. Autophagy was also involved in 
the survival of PDAC cells in spite of the deprivation of nutrients and O2 that derived 
from the hypoxic tumor microenvironment[90]. In the aforementioned study, LC3 was 
converted to the active LC3-II form, formation of autophagic and acid vesicles was 
detected, and PC cell survival and migration increased. Similarly, intermittent hypoxia 
increased the levels of HIF-1α. Enhanced autophagy was associated with increases in 
the levels of LC3-II and Beclin. As a consequence, hypoxia-induced stem-like 
properties of non-stem PC cells, which influenced tumor development and growth
[91]. Analysis of the expression of LC3 in different PC tissue samples revealed strong 
LC3 expression in the peripheral areas, which was related to poor outcome. It was 
concluded that activation of autophagy was associated with the responses of cells to 
factors in the cancer microenvironment, including hypoxia[92].

Changes in metabolism related to mitochondrial and bioenergetics adaptations also 
occur in response to hypoxia. It has been demonstrated that tumor cells survive and 
proliferate under hypoxic and glucose-deprived conditions that develop in PCs that 
are caused by a lack of vasculature that leads to a low blood supply to the growing 
tissue and to changes in energy metabolism[49]. In the same study 63 genes were 
identified, whose expression was increased under conditions that mimicked hypoxia. 
Thus, the expression of certain genes may determine the survival of cancer cells when 
the blood supply of O2 is compromised[49]. Mitochondria are the major organelles 
responsible for supplying energy to the cell in the presence of O2[93]. It has been 
suggested that mitochondria undergo changes in dynamics and distribution that are 
an adaptive response for survival and metastasis[94]. Along this line, PDAC cell lines 
are able to grow even when O2 tension is as low as 0.1%. Under such conditions, the 
cells maintain the mitochondrial parameters and oxidative metabolism needed for the 
synthesis of metabolites that maintain proliferation[8].

Glycolysis is of major relevance to tumor survival and proliferation because is the 
main provider of energetic substrates[95]. MUC1 is a large type I transmembrane 
protein that is overexpressed in several carcinomas including PDAC. It regulates, 
through interaction with HIF-1α, the expression of genes involved in glucose 
metabolism and enhances glycolytic activity[96]. Hypoxia has been shown to induce 
adaptive metabolic responses, such as a high glycolytic rate and activation of the 
hexosamine biosynthetic pathway, which favor hypoxic and normoxic cancer cell 
survival[97]. Hypoxic glycolysis, with increases in glucose uptake and lactate 
production, was found to be governed by ERK2 in PDAC cells and was associated 
with malignant progression[54]. Phosphoglycerate kinase 1, an enzyme that is 
involved in the generation of ATP in glycolysis, is involved in the energy supply in 
PDAC cells via Nuclear Factor of Activated T Cells 5[98]. Activation of glycolysis was 
shown in another study carried out using PDAC cells subjected to hypoxia. The 
authors showed that carbonic anhydrase 9 (CA9), an enzyme that is involved in the 
regulation of cellular pH, was upregulated. It functions as a part of the cellular 
response to hypoxia to promote cell survival. The inhibition of CA9 reduced the 
cellular pH, decreased glycolysis, and increased cellular sensitivity to gemcitabine[99]. 
The use of inhibitors of CA9 was also suggested by Logsdon et al[100], who showed 
that inhibition of APE1/Ref-1 decreased HIF1α-mediated induction of CA9 and might 
reduce PDAC cells viability.

The expression of the enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphos-
phatase-3 and -4 (PFKFB-3 and PFKFB-4) was increased in different cancer cell lines, 
including PC, in response to HIF[101]. It is known that those enzymes play a major 
role in the regulation of glycolysis in cancer cells to support proliferation and survival. 
Correlation with the enhanced expression of VEGF and glucose transporter-1 (Glut-1) 
was observed[101]. The M2 isoform of pyruvate kinase (PKM2), a molecule involved 
in glycolysis, was shown to participate in the metabolic reprogramming of cancer cells 
and regulated cell cycle progression. Impairment of PKM2 expression decreased cell 
proliferation and augmented apoptosis and, hence, impaired tumor growth[102]. 
Another study showed that the activity of aldehyde dehydrogenase 1 was increased in 
cells subjected to hypoxia and was associated with the induction of colony and 
spheroid formation[103].

Glucose enters the cell via glucose transporters (GLUTs), of which various classes 
exist[104]. Targeting GLUTs might be a valuable tool to help anticancer drugs to exert 
their effects[105]. Increased expression of Glut-1 in cancer cells can maintain the 
energy supply needed for development and growth[106]. Expression of the genes 
Glut-1 and aldolase A, which are associated with the regulation of anaerobic 
metabolism, was found to be increased in cells with constitutive expression of HIF-1α 
compared with cells without it. It was assumed that expression of HIF-1α was 
associated with increased survival and proliferation of PC cells, and that cells undergo 
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activation of anaerobic metabolism under conditions of hypoxia and glucose 
deprivation[72].

Adaptation responses to glucose deprivation and hypoxia are also necessary for the 
survival of cells in the tumor microenvironment[107]. A number of genes, including 
Glut-1, Glut-3, and Hexokinase-2, were expressed at high levels in human PC tissue 
specimens where hypoxic conditions were detected[108]. Guillaumond et al[97] 
reported that hypoxic PDAC tissue was comprised of abundant epithelial cells 
harboring epithelial-mesenchymal transition features and expressing glycolytic 
markers. Hypoxia led to a change in the glycolytic metabolism of PC cells from 
oxidative phosphorylation to lactate production. As a consequence, the growth of 
normoxic cancer cells was favored[109]. Interestingly, PDAC cells might use PSC-
derived alanine to increase their biochemical flexibility in order to adapt to the austere 
conditions resulting from hypoxia[110]. Finally, Munc18-1-interacting protein 3 
(Mint3) was found to promote ATP production via glycolysis by activating HIF-1α in 
cancer fibroblasts[58].

HYPOXIA AND ENDOPLASMIC RETICULUM STRESS IN PC
Specific conditions and factors within tumor masses, for example hypoxia, nutrient 
starvation, low pH, and increased levels of free radicals, induce a situation that has 
been termed "endoplasmic reticulum (ER) stress". It is also known as unfolded protein 
response[111]. In tumors, this response is found in malignant cells and other cell types 
present in the stroma[112]. In general, ER stress works in favor of cell survival and 
adaptation to hostile environmental conditions. Nevertheless, the ER stress can also 
induce cell death if it is unresolved. It can also be connected to inflammation and 
immune suppression within tumors[113]. For information about the branches 
operating ER stress see Chern and Tai[114].

As mentioned above, glucose deprivation and hypoxia often occur in solid tumor 
cells, including PC cells. A study showed that with glucose deprivation, ER stress was 
activated in cancer cells and upregulated glucose-regulated protein 78 (GRP78), which 
protects cells from death. Inhibition of ER stress by pancastatin A (PST-A) and B (PST-
B), which are glabretal triterpenoid moieties, suppressed the accumulation of GRP78, 
and exhibited selective cytotoxicity in Panc-1 cells[115]. Hypoxia and ER stress 
contributed to the overexpression of endoplasmic reticulum oxidoreductase 1 alpha 
(ERO1L) in PDAC. ERO1L is an ER luminal glycoprotein that participates in the 
formation of disulfide bonds in secreted and membrane proteins. This oxidoreductase 
has been associated with the proliferation of PDAC cells in vitro[116]. To our 
knowledge, little is known about how ER stress evolves under hypoxia. Further 
studies need to be carried out in order to better understand how this dual-sided 
pathway determines cell fate under hypoxia.

HYPOXIA AND INFLAMMATION IN PC
PDAC is characterized by a significant inflammatory response[103]. During malignant 
progression, cancer cells acquire various features that include increased secretion of 
VEGF and interleukin 6 (IL-6), to which inflammation contributes to a certain extent 
and confers chemoresistance[50]. Hypoxia induces the accumulation of metabolites 
that can enter signaling cascades and contribute to the inflammatory response[117]. 
The expression of IL-6 was enhanced by hypoxia and proteins involved in PC 
development like Kras, mesothelin or ZIP4. The cytokine contributed to the generation 
of a pro-tumorigenic microenvironment and was probably involved in angiogenesis
[118]. The expression of IL-6 was also reported as responsible for the aggressiveness of 
PC cells under hypoxia[119]. PC cell lines expressed higher levels of IL-6 than normal 
human pancreatic tissue. Moreover, exogenous application of IL-6 in Panc-1, MIA 
PaCa-2, and BxPC-3 cells increased the secretion of multiple Th2-type cytokines. In 
addition, IL-6 activated ERK2 signaling pathways[120]. Under hypoxia, involvement 
of downstream elements of the pathways regulated by VEGF and tumor necrosis 
factor has been suggested[121].

Human IL-37 possesses anti-inflammatory and immunosuppressive properties. It 
also suppresses tumor growth and progression[122]. A study by Zhao et al[123] 
showed that HIF-1α attenuated IL-37 transcription. A decrease in the expression of IL-
37 was observed in PDAC this was associated with increased histological grade, tumor 
size, metastasis, and vessel invasion. On the other hand, IL-37 suppressed the 
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expression of HIF-1α through the inhibition of Stat3. Stat3 exhibits a range of 
oncogenic functions that include suppression of antitumor immune responses and 
promotion of inflammation. Another found showed that PC cell death was induced by 
blockade of the expression of Stat-3-related genes[124]. It has been suggested that IL-1β 
was involved in cell proliferation after Myc-induced cell cycle entry. Following Myc 
activation, cells rapidly exhibited expression and release of the proinflammatory 
cytokine IL-1β, which could be the reason why pleiotropic Myc oncoproteins 
contributed to the expansion of the vascular compartment during tumor progression
[124].

In PDAC the abundant stroma participates in the recruitment of immunosup-
pressive cells through the activation of cancer-associated fibroblasts and the secretion 
of TGF-β[125]. It has been proposed that PSC and myofibroblasts subjected to hypoxia 
contribute to the recruitment of myeloid-derived suppressor cells and B cells in PDA 
caused by the release of cytokines[26]. Recruitment of macrophages in PDAC was 
found to induce the activation of PSC that was associated with a certain degree of 
inflammation in the tumor region. The process was dependent on HIF-1α[27]. In a 
study by Maruggi et al[126], it was shown that hypoxic cancer cells secreted the inflam-
matory chemokines IL-1β and IL-8. Moreover, analysis of the tumor stroma revealed 
enrichment of myeloid dendritic cells 1 and 2, which secreted proangiogenic cytokines. 
Another study showed that IL-8 was significantly overexpressed in regions 
surrounding necrotic areas of PC tissue in which the cells were exposed to hypoxia 
and an acidic pH. IL-8 was reported to participate in the growth and metastasis of 
variants derived from COLO 357 human PC cells[127]. Additionally, IL-8 increased 
tumorigenesis by promoting angiogenesis and metastasis via VEGF and neuropilin 
expression. IL-8 also stimulated ERK1/2 signaling in the human PC cell line BxPC-3
[128]. It may be possible that controlling the inflammatory response and the release of 
cytokines by cells within the tumor mass would facilitate treatment and restrain tumor 
growth[129].

EXTRACELLULAR VESICLES AND HYPOXIA IN PC
Extracellular vesicles, also known as exosomes, consist of diverse types of membrane 
vesicles of endosomal and plasma membrane origin that are released by the cells into 
the extracellular milieu[130]. They are considered as an important mode of cell-to-cell 
communication because they function as vehicles to transfer membrane and cytosolic 
proteins, lipids, and RNA between cells[131]. The hypoxic microenvironment 
promotes tumor cells to release exosomes, which is an activity of solid tumors that 
allows invasion and metastasis[132]. As in other types of cancer, exosomes have a key 
role pancreatic tumor pathobiology by facilitating intercellular communication. 
Exosome, are considered as important mediators of the crosstalk between tumor cells 
and the microenvironment[133].

Hypoxia was found to stimulate the release of exosomes in MiaPaCa2 and AsPC1 
cells and to promote the survival of cells subjected to hypoxia. HIF-1α was involved in 
exosome release[134]. Another study showed that exosomes derived from PC cells 
subjected to hypoxia-activated macrophages, a process that was dependent on HIF-1α 
or HIF-2α. Following release, the exosomes facilitated the migration, invasion, and 
epithelial-mesenchymal transition of PC cells, thereby worsening the prognosis[133]. 
Regarding the stroma, feedback loops are established between stromal elements and 
tumor cells in the cancerous tissue. Along this line, PSC are responsible for direct 
nutrient transfer via vesicles[135]. As with other aspects that have been reviewed 
above, modulation of exosome signaling under hypoxia deserves further study.

MICRORNA AND HYPOXIA IN PC
Micro (mi)RNAs are noncoding RNAs comprising of a single-stranded chain of 18 to 
22 nucleotides, and they play major roles in the regulation of gene expression. 
Extracellular miRNAs function as chemical messengers to mediate cell-to-cell 
communication[136]. Synthesized miRNAs can be released from the cell into the 
extracellular space by (1) selective incorporation in the exosomes, (2) being coupled 
with Ago2 protein, and (3) by release attached to high-density lipoproteins. Once in 
the extracellular medium miRNAs will reach other cells to alter their functions[133,
137].
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Hypoxia was found to decrease the expression of miR-519 in Panc-1 and SW1990 
cells[138], and was regarded as a survival mechanism because transfection with miR-
519 mimics inhibited cell growth and invasiveness and induced apoptosis. Similarly, 
HIF-1α induced the downregulation of miR-548an in PC cells during hypoxia. The 
vimentin content was inversely correlated with miR-548an expression and was 
associated with facilitation of pancreatic tumorigenesis[139]. miR-454 was found to be 
present in low levels in PDAC and it was associated with cell growth because overex-
pression of the miRNA led to slower cell growth[140]. The expression of other 
miRNAs has been associated with increased cell proliferation and cancer malignancy
[141]. miR-210, which is induced by HIF-1α, was reported to have many targets within 
cells that can regulate the cell cycle, mitochondrial oxidative metabolism, angioge-
nesis, DNA damage response, and thus, cell survival[142]. A regulatory mechanism of 
HIF-1α on miR-191 expression was detected in MiaPaCa2 and Aspac1 cells subjected to 
hypoxic conditions. The expression of miR-191 in tissues from PC patients was closely 
associated with tumor size, stage, lymph node metastasis, and perineural invasion
[143]. Similarly, miR-212 was associated with increased tumor size, lymph node 
metastasis, and vessel invasion in PDAC. A positive correlation between this miRNA 
and the expression of HIF-1α was noted, indicating that the miRNA was induced by 
hypoxia[144]. Hypoxia also increased the detection of miR-21 in BxPC-3 and AsPC-1 
PC cells. Antisense constructs targeting miR-21 diminished cell proliferation by 
activating apoptosis[145]. Similarly, a study by Bao et al[119] reported that miR-21 and 
miR-210 were associated with increased cell migration, invasion, and angiogenesis.

The long noncoding (lnc)RNA UCA1 released from hypoxic PC cells and was 
shown to promote angiogenesis and tumor growth both in vitro and in vivo by 
regulation of miR-96-5p[132]. The synthesis and release of circ_0000977 was induced 
by hypoxia and conferred resistance to natural killer (NK) cells by Panc-1 cells. 
Inhibition of miR-153-mediated repression of HIF-1α and ADAM10 allowed the 
immune escape of the cancer cells[146].

Another hypoxia-induced microRNA, miR-646, blocked the expression of migration 
and invasion inhibitory protein (MIIP), which has been identified as an inhibitor of 
tumor development. MIIP acted to suppress the activity of histone deacetylase 6 and 
promote the degradation of HIF-1α, therefore impairing HIF-1α accumulation[147]. 
Inhibition of MIIP by miR-646 led to increased proliferation and invasion of PC cells. 
miR125a, the content of which was regulated by HIF-1α, inhibited mitochondrial 
fission and contributed to cellular survival in PDAC by preventing apoptosis[148].

The existing evidence signals that miRNAs differentially participate in regulating 
cell fate. Whereas certain types are downregulated in cancer cells, others have 
increased expression compared with healthy cells[149,150]. The expression of miRNAs 
is regulated by HIF-1α when hypoxic conditions are established, and that confers the 
tumor cells with adaptations that allow cancer growth. A summary of the roles of 
miRNAs in PC under hypoxia is provided in Table 1. Fewer studies have investigated 
miRNAs in the pancreatic stroma. Along this line, Bynigeri et al[151] reported that 
miRNAs were involved in the inflammatory and profibrogenic functions of PSC. 
Within the stroma, the interaction of PSC and tumor cells that include signaling 
through miRNAs can promote tumor progression, metastasis, immune evasion, and 
drug resistance, which impact the evolution and prognosis of PC[152].

POTENTIAL TREATMENTS DIRECTED AGAINST HYPOXIA
As noted earlier in this review, cells growing within the tumor mass make key 
adaptions and changes in intracellular pathways that might convey resistance to death 
and to treatment. In fact, the most frequent treatment of PDAC is radical surgery and 
chemotherapy, and they are the only treatments that seems to work in a only a few 
patients. Despite treatment, PDAC remains a highly lethal disease. In addition to 
surgery, various combinations of drugs of different types have been evaluated as 
chemotherapy and remains as the standard adjuvant therapy[153]. For example, the 
combination of FOLFIRINOX and nab-paclitaxel plus gemcitabine as found to 
improve the survival of patients with metastatic disease[154] and to improve surgical 
and clinicopathologic outcomes following pancreatic resection[155].

It must be noted that failure of chemotherapy, targeted therapy, and immuno-
therapy have all been attributed to the PDAC microenvironment[156]. Dysregulation 
of the tumor microenvironment promotes an intense fibrosis and immune suppression 
that plays a key role in drug resistance[157]. Therefore, targeting the extracellular 
tumor microenvironment via inhibition of signaling pathways, alteration of DNA 
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Table 1 List of oncogenic and tumor suppressor microRNAs in pancreatic cancer cells under hypoxia

MicroRNA Oncogenic activity Function Ref.

miR-519 Anti-tumor Inhibits cell growth and invasiveness [138]

miR-58an Anti-tumor Reduces tumorigenesis [139]

miR-454 Anti-tumor Decreases cell proliferation [140]

miR-210 Pro-tumor Regulates cell cycle and promotes angiogenesis [142]

miR-191 Pro-tumor Promotes tumor growth, invasion, and metastasis [143]

miR-212 Pro-tumor Promotes tumor growth, vessel invasion, and metastasis [144]

miR-21 Pro-tumor Induces cell proliferation, invasion, and metastasis [119,145]

miR-210 Pro-tumor Increases migration, invasion, and angiogenesis [119]

miR-646 Pro-tumor Promotes proliferation and invasion [147]

miR-125a Pro-tumor Increases tumor cell viability [148]

miR-96-5p Anti-tumor Inhibits angiogenesis [132]

miR-153 Anti-tumor Avoids immune escape of tumor cells from natural killer cells [146]

repair pathways, immunotherapy and/or modulation of cell metabolism, might serve 
as novel tools for PDAC treatment. Treatments under study include vaccines, oncolytic 
viruses, MEK inhibitors, cytokine inhibitors, and targeting hypoxia[125]. Recently, 
intense efforts have been carried out to evaluate the effectiveness of therapies aiming 
to increase tumor immunogenicity and promote the recruitment and activation of 
effector T cells[125]. Along this line, it has been suggested that challenging the 
immunosuppression occurring within pancreatic immune infiltrate might diminish 
tumor aggressiveness[154]. Because hypoxia contributes to aggressive tumor behavior, 
mainly involving tumor progression, malignancy, and promoting resistance to conven-
tional and targeted therapeutic agents[158], finding drugs that are effective in the 
modulation of cell proliferation under hypoxia is a major challenge. HIF has been seen 
as a potential therapeutic target in the pathobiology of PDAC. Interestingly, HIF might 
exert its oncogenic influence through the modulation of the stroma rather than the 
modulation of cancer cells[159]. Cyclopamine, a hedgehog inhibitor plus paclitaxel in a 
polymeric micelle formulation, exhibited effects on the stroma by increasing 
microvessel density, alleviating hypoxia, and reducing matrix stiffness while 
maintaining the tumor-restraining function of extracellular matrix. As a result, tumor 
growth was suppressed and animal survival was prolonged[160]. Targeting HIF by 
siRNAs delivered to cancer cells might be an effective cancer treatment. Indeed, 
recombinant adeno-associated virus has been employed to deliver siRNA targeting 
HIF-1α into MiaPaCa2 human PC cells subjected to hypoxia. As a consequence, cell 
proliferation and migration decreased and apoptosis was induced [85]. siRNA 
targeting of HIF-1α in MiaPaCa2 cells subjected to hypoxia-induced apoptosis through 
both NF-kB-independent and -dependent mechanisms[161].

Additionally, hypoxia-activated prodrugs designed to overcome the resistance of 
cancer cells have shown clinical efficacy[162]. TH-302 is an investigational hypoxia-
activated prodrug. Its combination with gemcitabine and nab-paclitaxel was effective 
in PDAC xenograft models in mice[81]. Moreover, TH-302 significantly decreased in 
vivo tumor growth, increased survival in a MiaPaCa cancer model and improved 
survival in Hs766t tumors[162]. Recently, we showed that PSC adapted to pro-oxidant 
conditions under hypoxia, and that the adaptations may have been responsible for 
increased cell viability and proliferation[14]. Interestingly, melatonin modulated the 
antioxidant responses and signaling by inflammatory regulators. Therefore, this 
indoleamine is emerging as another potential treatment of PDAC[163].

CONCLUSION
Hypoxia is a common condition that is created in solid tumors and it results from 
rapid, uncontrolled growth of the tissue that is accompanied by insufficient 
development of blood microcirculation. Along with tumor cell proliferation, a fibrotic 
reaction is established that involves the parallel growth of several types of cells 
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Figure 4 Hallmarks of hypoxia in pancreatic cancer. The figure summarizes the major adaptive features of pancreatic tumor cells in response to hypoxia. In 
general, low O2 availability worsens the prognosis of pancreatic cancer by promoting increases in tumor progression, drug resistance, immune evasion, and 
metastatic ability. Created with BioRender.com. ECM: Extracellular matrix; PSC: Pancreatic stellate cells.

different from tumor cells, and the deposition of extracellular components, which 
comprises a stromal component. As a consequence of the low O2 availability that 
develops, all the cells included in the mass adapt in order to survive. HIF is the major 
regulator of cell responses to hypoxia. Activation of different intracellular pathways 
and changes in cellular energy metabolism take place, and are all modulated by 
hypoxia. These conditions are responsible for tumor progression, malignancy, and 
resistance to therapy, which are major features of PC. Additionally, capabilities of 
invasion of neighbor tissues, organs, and metastasis are acquired, all of which are 
critical determinants of the extreme malignancy of PC. A summary of the major 
adaptations of pancreatic tumor to hypoxia is shown in Figure 4.
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