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Abstract

Bayesian causal inference offers a principled approach to policy evaluation of proposed 

interventions on mediators or time-varying exposures. Building on the Bayesian g-formula method 

introduced by Keil et al., we outline a general approach for the estimation of population-level 

causal quantities involving dynamic and stochastic treatment regimes, including regimes related to 

mediation estimands such as natural direct and indirect effects. We further extend this approach 

to propose a Bayesian data fusion (BDF), an algorithm for performing probabilistic sensitivity 

analysis when a confounder unmeasured in a primary data set is available in an external 

data source. When the relevant relationships are causally transportable between the two source 

populations, BDF corrects confounding bias and supports causal inference and decision-making 

within the main study population without sharing of the individual-level external data set. We 

present results from a simulation study comparing BDF to two common frequentist correction 

methods for unmeasured mediator-outcome confounding bias in the mediation setting. We use 

these methods to analyze data on the role of stage at cancer diagnosis in contributing to Black-

White colorectal cancer survival disparities.
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1 | INTRODUCTION

The value of causal evidence from a statistical analysis depends on the quality and suitability 

of the data source. In the era of Big Data, many large data sources valuable for health 

research are used in ways that were not foreseen by the original collectors and are often 

missing one or more key covariates. For example, electronic health records and tumor 

registries may lack important socioeconomic and behavioral factors. If these unmeasured 

factors act as confounders of the relationship(s) of interest, causal quantities may not be 

estimated using the observed data, regardless of the sample size.

Analyses leveraging the rich, longitudinal nature of data sources like electronic health 

records are still vulnerable to time-varying confounding by unmeasured variables. Proper 

control of confounding is particularly difficult when exposure status changes over time, 

with later exposure determined in part by covariates influenced by previous exposure. 

For example, doctors often tailor treatment based on patient history and current health 

state. Analogous problems arise in the context of mediation analysis, within which the 

temporal ordering of treatments, mediators, and outcomes can yield structures analogous to 

time-varying exposures.

When missing important confounders, researchers typically conduct sensitivity analyses to 

assess whether bias due to the unmeasured confounding is likely to alter the substantive 

conclusions of the research. Recent methodological advances have identified sharp 

nonparametric bounds for common causal estimands such as average treatment effects 

(Ding and VanderWeele, 2016) and various mediation quantities (Ding and Vanderweele, 

2016). Bias correction formulae adjust point estimates and confidence intervals based on 

bias values found in the literature (VanderWeele and Chiba, 2014; VanderWeele, 2015). 

Without information about the sources of confounding, they can be used to determine 

the strength of confounding needed to obtain the observed result when the truth is below 

some practical or statistical threshold. Individual approaches may require rare outcomes, 

specific link functions, or assumptions about effect modification (VanderWeele, 2015). With 

notable exceptions (Robins et al., 2000; Greenland, 2005; McCandless and Somers, 2017), 

correction methods rarely incorporate uncertainty surrounding the bias parameters. We 

contribute to the literature offering practical guidance in longitudinal settings or those with 

arbitrary confounding structures (Scharfstein et al., 1999; Tchetgen Tchetgen and Shpitser, 

2012).

Fortunately, the era of Big Data is also the era of abundant data. Relationships among the 

outcome, confounders, and exposure of interest can be found in alternative data sets, though 

these sources may not be as representative of the target population as the main source. A 

literature on data fusion methods has arisen to meet the need to combine information from 

multiple sources (Bareinboim and Pearl, 2016). Recent authors have proposed Bayesian 

variable selection methods with validation data sets (Antonelli et al., 2017) and integration 

of information measured on different levels (Jackson et al., 2006).

The motivating study for our work concerns the investigation of the causal impact of stage 

at diagnosis in explaining Black-White racial disparities in overall survival among colorectal 
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cancer patients. This involves estimating a variant of the randomized interventional analog to 

the natural direct effect, the “residual disparity” that would remain after an intervention that 

fixes the stage at diagnosis distribution in the Black population to match the one observed 

in the White population (VanderWeele and Robinson, 2014). Valeri et al. (2016) estimated 

this quantity using a U.S. cancer registry. Causal interpretability of that estimated requires 

complete adjustment for confounding of the stage-survival relationship. The analysis 

controlled for numerous confounders but not household-level poverty status—which was 

unavailable—potentially leading to bias due to unmeasured confounding. Fortunately, 

information on household-level poverty was collected in a separate, high-quality cohort 

study of cancer patients. Our goal was to incorporate information from this cohort study into 

the registry study analysis to reduce or eliminate the bias in the estimated residual disparity 

without the need to share individual-level data.

To address this question, we propose a general frame-work for incorporating information 

from external data sources to perform sensitivity analyses for unmeasured confounding. 

We first extend an existing Bayesian g-formula approach that adjusts for confounding 

using parametric models for covariate standardization (Keil et al., 2015) to the estimation 

of dynamic and stochastic treatment regimes, mediation contrasts, and direct and indirect 

effects in disparities research. We then outline a probabilistic sensitivity analysis that 

we refer to as Bayesian data fusion (BDF). If causal transportability holds (Pearl and 

Bareinboim, 2011), the method corrects for unmeasured confounding by generating 

informative priors using external data sources. We compare this data fusion approach with 

traditional sensitivity analysis techniques, paying particular attention to potential violations 

of causal transportability. Unlike existing approaches, these Bayesian g-formula methods 

generalize to accommodate unmeasured confounding of many different types, including 

time-varying confounding found in mediation and the analysis of longitudinal treatments.

Our paper is organized as follows. Section 2 develops a Bayesian g-method for the 

estimation of population average effects involving dynamic and stochastic treatment 

assignment mechanisms. Section 3 introduces Bayesian data fusion, an approach to conduct 

probabilistic sensitivity analysis for Bayesian g-estimators using informative priors derived 

from external data. This approach applies to contrasts involving dynamic and stochastic 

regimes—including mediation estimands—as well as static and deterministic regimes. 

A simulation study comparing Bayesian data fusion to traditional sensitivity analysis 

approaches is given in Section 4. In Section 5, we use the data fusion method from Section 3 

to augment cancer registry data with information from a cohort study in order to evaluate the 

role of stage at diagnosis in explaining Black-White disparities in colorectal cancer survival. 

We conclude with a discussion in Section 6.

2 | EXTENDING THE BAYESIAN G-FORMULA TO STATIC AND DYNAMIC 

REGIMES

2.1 | Causal notation and assumptions

Let Y denote the observed outcome of interest in a causal graph G, with the central 

scientific question concerning two intervention regimes g and g′. One of these regimes 
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may correspond to the “natural” assignment mechanism that generated the observed data. 

Let V be the intervention set (i.e., the nodes intervened on by either g or g′), and let Z be the 

set of baseline confounders and post-treatment variables not influenced by treatment. Let W 
be the set containing all other nodes in G, in which case W includes any variable influenced 

by treatment but not of primary interest (i.e., not the outcome Y) or directly intervened upon 

(i.e., W ∉ V). The complete set of observed data is O = (Z, V, W, Y). Let Yg denote the 

potential outcome for Y under regime g, with the causal contrast of interest τ = E Y g − Y g′ . 

Depending on the specifics of the regime, mediators of the treatment-outcome relationship 

may either be in the set W or V. Potential outcomes for W and V under regime g are 

denoted by Wg and Vg. When one mediator is of primary interest, we will denote it by M. 

Throughout this paper, we must assume Bayesian analogs to positivity and consistency 

(Keil et al., 2015), plus exchangeability conditional on observed variables and correct 

specification of all parametric models. Formal statements of these four assumptions can 

be found in the Web Appendix A. Additional assumptions needed for the data fusion method 

proposed in Section 3 are stated in Section 3.1.

2.2 | Static and deterministic treatment regimes

After adopting parametric models indexed by the parameter vector θ, the Bayesian 

g-formula algorithm outlined by Keil et al. (2015) gives the posterior predictive 

distribution for a newly observed outcome Y under intervention regime g0 ∈ {g, 

g′} as p yg0 |o = ∫ p yg0 |θ π(θ |o)dθ, where π(θ|o) is the posterior of the parameters 

θ given the observed data O. The posterior distribution of the causal effect τ is 

therefore p(τ |o) = ∫ p yg |θ − p yg′ |θ π(θ |o)dθ. Keil and colleagues outline a simulation-

based algorithm for estimating causal contrasts for static regimes. To facilitate our extension 

to the mediation setting, we introduce different notation to emphasize the distinction 

between covariates Z that are unaffected by treatment and covariates W that are caused by 

one or more variables in the intervention set. For parametric models p(z|θz), p(w|v, z, θw), 

and p(y|w, v, z, θY). Then the likelihood for the complete parameter vector θ = (θZ, θW, 

θY) is given by ℒ(θ) = p y |w, v, z, θY × p w |v, z, θW × p z |θZ . We assume that θY, θw, θZ 

are independent a priori such that π(θ) = π(θY) × π(θw) × π(θX). The resulting parameter 

posterior is π(θ |o) ∝ ℒ(θ) × π(θ), and the posterior predictive distribution for the outcome 

under regime g0 ∈ {g, g′} is

p yg0 |o = ∫ ⋯∫ p y |g0, w, z, θY p w |g0, z, θW p z |θZ π(θ |o)dθdwdz . (1)

We now develop a procedure for dynamic and stochastic treatment regimes g0, extending the 

approach of Section 3.3 to estimands like the motivating residual racial disparity.

2.3 | Dynamic and stochastic treatment regimes

Scientific questions of interest sometimes involve contrasts of regimes that assign 

exposure stochastically according to different distributions depending on prior covariates. 

In particular, we may be interested in the “natural” assignment mechanism generating the 

Comment et al. Page 4

Biometrics. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed data. This is exactly the case for mediation analysis, which decomposes the effect 

of an exposure on an outcome into component causal pathways in order to understand 

possible mechanisms enacting the overall effect. Figure 1 shows a classic causal structure 

in mediation, where the mediator M channels part of the effect of the exposure A on the 

outcome Y, with Z as a baseline confounder. The set W contains other mediators that also 

act as exposure-induced mediator-outcome confounders for the M →Y relationship.

All common mediation estimands can be formulated as contrasts in regimes, including 

controlled direct effects (CDE), natural direct and indirect effects (NDE and NIE), 

and randomized interventional analogs to these quantities (Didelez et al., 2012). For 

concreteness, we restrict attention in the main text to the randomized interventional analog 

to the natural direct effect (rNDE), which is identified under weaker conditions than the 

NDE; estimation algorithms for the CDE, NDE, NIE, and rNIE are available in Web 

Appendix B. The rNDE can be conceived as a contrast in dynamic regimes where part of the 

regime recreates the naturally occurring assignment mechanism (Didelez et al., 2012), which 

is unknown and must therefore be estimated. We add a parametric model for M reflecting its 

parents in the natural stochastic regime, and let θ = (θZ, θW, θM,θY). The likelihood is

ℒ(θ) = p y |m, w, a, z, θY × p m |w, a, z, θM × p w |a, z, θW × p z |θZ .

We now outline a strategy for estimating the rNDE that compares a = 1 to a = 0 when the 

mediator is stochastically assigned as it would be if A were set to 0. The rNDE contrasts 

regime g = (A = 1,M = Hz(a = 0)) with g′ = (A = 0,M = Hz(a = 0)), where Hz(a = 0) is a 

draw from the distribution of M among the Z = z group if A is set to 0 through intervention 

(VanderWeele, 2015). For any exposure-induced mediator-outcome confounders W, p(hz(a = 

0)|z) = ʃ p(m|a = 0, z, w)p(w|a = 0, z)dw.

The equation for p yg′ |o  for g′ = (A = 0,M = Hz(a = 0)) is analogous to Equation (1) with 

an added model for M. For the regime g = (A = 1,M = Hz(a = 0)), the W value used to 

assign M is different from the value for Y (i.e., a recanting witness) (Avin et al., 2005). 

The simulation-based Bayesian g-formula invokes an independence assumption that results 

in separate posterior predictive draws of wa for both a = 0 and a = 1. The posterior mean of 

the rNDE is thus given by

rNDE = ∫ ⋯∫ y p y |a = 1, m, w1, z, θY p w1 |a = 1, z, θW

−p y |a = 0, m, w0, z, θY p w0 |a = 0, z, θW
× p m |a = 0, z, w0, θM p z |θZ π(θ |o) dθdw0dw1dmdzdy .

(2)

2.4 | Targeting population causal estimands with the Bayesian bootstrap

Marginalization over the baseline confounder distribution may occur through posterior 

predictive sampling from p z |θZ , with Z modeled parametrically. In practice, Z can be 

high dimensional, introducing substantial risk of model misspecification. Because Z is, by 

definition, the same for all regimes, Keil et al. (2015) fix p(z|θz) to the empirical distribution 
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pN(z). However, treating the baseline covariates as fixed will estimate a “conditional 

average” causal effect rather than a population or “superpopulation” average effect (Imbens 

and Rubin, 2015; Kern et al., 2016). Web Appendix C elaborates on this distinction.

To facilitate estimation of superpopulation effects, we employ the Bayesian bootstrap as 

a flexible model for Z in the target population (Rubin, 1981). When all Zi values are 

unique for i = 1, …, n, the Bayesian bootstrap assigns observation weights (d1, …, 

dn) sampled from a Dirichlet(1, …, 1), with weights changing every MCMC iteration; 

because all observations are equally weighted, the resulting p(z |z) closely reflects the 

observed empirical distribution. An expected causal contrast τi that conditions on Z is 

calculated for each i, and the weighted population average causal effect is given by 

∑i = 1
n diτi. Many popular causal estimands have tractable closed-form solutions τ(Zi) 

for discrete data, which introduces an opportunity for computational efficiency when 

multiple observations have the same value of Z. Web Appendix D describes this, 

along with another source of computational gains that does not change the underlying 

probability model: QR decomposition for design matrices (Stan Development Team, 2018). 

Computational efficiencies become particularly important when adapting these models to 

perform sensitivity analyses for unmeasured confounding.

3 | BAYESIAN DATA FUSION: A DATA-DRIVEN PROBABILISTIC 

SENSITIVITY ANALYSIS APPROACH

We now consider the problem of making causal inferences when an important confounder 

is unmeasured in the primary (“main”) data set but is available in a secondary (“external”) 

source. Although the data fusion algorithm we outline accommodates arbitrary confounding 

structures and many different estimands, we restrict attention to estimating the rNDE with an 

exposure-induced unmeasured mediator-outcome confounder U as in Figure 2; algorithms 

for other estimands are available in Web Appendix B. The rNDE is interesting for two 

reasons: (1) the additional complexity involved with estimating the natural, stochastic 

assignment mechanism and (2) the need to accommodate exposure-induced confounding. 

Under weaker assumptions, this estimator can also yield estimates important for health 

disparities research (VanderWeele and Robinson, 2014).

3.1 | Notation and assumptions

Suppose an investigator wants to learn about an effect in some target population for which 

a large data source (N = n1) exists. The desired causal quantity is the rNDE in the 

population from which the n1 observations were randomly sampled. Figure 2 shows the 

causal structure, with outcome Y, exposure A, mediator M, and baseline confounders Z. 

There is also an exposure-induced mediator-outcome confounder U, which is unmeasured 

in the data set of size n1. Information on {Z, M, A, Y, U} exists in a smaller secondary 

data source (N = n2, with n2 < n1), which may or may not be from the same population. 

For g-computation, models for {A, M, Y} can be any univariate or multivariate generalized 

linear model, and there are no distributional restrictions on Z. However, imposing additional 

restrictions on U can dramatically improve MCMC performance. Marginalization over the 
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distribution of U is only guaranteed to result in a closed form when U has finite support, 

although certain continuous distributions can also be integrated out of the likelihood.

In addition to the assumptions of the Bayesian g-formula (Keil et al., 2015)—which 

are formally stated as Assumptions 1–4 in Web Appendix A—Bayesian data fusion 

requires causal transportability to hold. That is, although the smaller data set may not be 

representative of the target population with respect to the distribution of baseline covariates, 

the underlying causal processes operate in the same way.

Assumption 5 (Parametric causal transportability). Let P1 and P2 denote the 

superpopulations for the main and external data sources. If P1 ≠ P2, the causal graph 

structures of P1 and P2 must agree such that all Q ∈ {U, M, Y} have the same parent nodes 

pa(Q). Furthermore, the true underlying data-generative parameters θQ, P1 and θQ, P2 must 

be the same such that

p q | pa(Q), θQ, P1 = p q | pa(Q), θQ, P2 . (3)

The conditional exchangeability of Assumption 3 is still required for U (i.e., Uz ⫫ A|Z, a 

conditional independence that is encoded in Figure 2), but the requirements for M and Y are 

relaxed to allow the confounder U to be unmeasured.

Assumption 6 (Conditional exchangeability). Briefly, (Z, U) must be sufficient to control 
confounding. For the randomized rNDE in Figure 2, this implies

Ma ⫫ A |Z, U (4)

Y a ⫫ A |Z, U, M . (5)

3.2 | Specification of parametric models

To illustrate the closed-form estimator and facilitate contrasts with existing methods, we 

assume A, U, M, and Y are all binary with logistic link functions. The baseline confounders 

Z are also assumed to be discrete.

Letting πQ = P(Q = 1|pa(Q)) for Q ∈ {U, M, Y}, we adopt the following models:

logit πU, i = γ0 + γAAi + zi′γZ (6)

logit πM, i = β0 + βAAi + zi′βZ + βUUi (7)

logit πY , i = α0 + αAAi + zi′αZ + αMMi + αAMAiMi + αUUi . (8)
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Then θU = (γ0, γA, γZ), θM = (β0, …, βU), and θy = (α0, …, αU). For Q ∈ {U, 

M, Y}, p q | pa(Q), θQ = ∏i = 1
N πQ, i

qi 1 − πQ, i
1 − qi. Equation (9) shows the observed data 

likelihood for the full parameter vector θ = (θu, θM, θy) in the main data set, marginalizing 

over the missing U.

ℒ†(θ) = ∏
i = 1

n1
∑

u
p yi |mi, ui = u, zi, xi, θY p mi |ui = u, zi, xi, θM p ui = u |zi, xi, θU

(9)

For a generic prior π(θ), the posterior for θ marginalizing over the missing U is proportional 

to ℒ†(θ) × π(θ) How to set an informative prior π(θ) using the secondary data set is the focus 

of the next section.

3.3 | Specification of prior information with external data

Given that U is unmeasured in the main data source, any parameters involving U (e.g., θU, 

βU, and αU) cannot be identified from that data. Because the main data set is presumably 

more representative of the target population of interest, the sole reason for integrating the 

external data set is for providing information about the confounder unmeasured in the main 

data set. That information can be summarized through the use of informative priors.

Priors for θU, θM, and θY are derived by fitting in the external data frequentist maximum 

likelihood models corresponding to Equations (6) through (8). Under causal transportability, 

maximum likelihood estimators fit in the external data will be consistent and asymptotically 

normal about θQ, P1, the true θQ parameters for the Q ∈ {U, M, Y} outcome model in 

population P1. Let θQ, MLE denote the maximum likelihood estimate (MLE) of θQ in 

the external data, and let ΣQ, MLE be the estimated variance-covariance matrix. Then N
(θQ, MLE, ΣQ, MLE) is a sensible choice for prior π(θQ). With moderately large n2, this prior 

approximates the posterior distribution for θ in a Bayesian analysis conducted using the n2 

observations, assuming a noninformative prior. In fact, the BDF prior can be seen as an 

approximation of the power prior (Ibrahim and Chen, 2000; Chen and Ibrahim, 2006) that 

can be implemented using a different set of summary statistics; see the Web Appendix E for 

additional details on this useful connection. With a priori independence, the complete prior 

for θ is π(θ) = π(θU) × π(θM) × π(θY).

If P1 ≠ P2, some relationships may not be transportable, suggesting the use of less 

informative priors wherever possible. Consider the parameter αz, about which the main 

data source contains substantial information. In the model formulation given by Equation 

(8), variance and covariance hyperparameters for αz would be found along the second row 

and column of ΣY , MLE. If we multiply the off-diagonal elements in that row and column 

by a large inflation factor σ (e.g., 100) and the diagonal element by σ2, we assert a marginal 

prior distribution on αz that is virtually noninformative. However—critically—the prior 

correlation between αz and the unidentifiable parameter αU is preserved.
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3.4 | A simulation-based Bayesian data fusion algorithm

We now outline a simulation-based Bayesian data fusion approach for g-formula causal 

contrasts in the context of rNDE estimation.

1. Fit maximum likelihood models in the external data to obtain the prior π(θ) as 

detailed in Section 3.3.

2. Use a No-U-Turn sampler (NUTS) with target probability distribution 

proportional to ℒ†(θ) × π(θ) in order to obtain posterior samples of the regression 

parameter vector θ. The probabilistic programming language Stan has a NUTS 

implementation (Carpenter et al., 2016), and it is available to R users through the 

rstan R package (Stan Development Team, 2016). For some large B (e.g., 4,000), 

let θ(1), …, θ(B) denote the B posterior samples remaining after discarding 

warmup iterations.

3. For MCMC iteration b = 1, …, B, sample a length-n1 weight vector d1
(b), …, dn

(b)

sampled from a Dirichlet(1, …, 1). For i = 1, …, n1:

a. For g0 ∈ {g, g′} and a0 ∈ {0,1}, sample ui
a0, g0(b)

 as Bernoulli with 

success probability

logit−1 γ0
(b) + zi′γZ

(b) + a0γA
(b) .

b. For g0 ∈ {g, g′}, sample randomized mediator mi
0, g0(b)

 as Bernoulli 

with success probability

logit−1 β0
(b) + zi′βZ

(b) + βU
(b)ui

0, g0(b) .

c. Define individual-level causal contrast ϕi
(b) as

ϕi
(b) = logit−1 α0

(b) + zi′αZ
(b) + αM

(b)mi
0, g(b) + αA

(b) + αAM
(b) mi

0, g(b) + αU
(b)ui

1, g(b)

− logit−1 α0
(b) + zi′αZ

(b) + αM
(b)mi

0, g′(b) + αU
(b)ui

0, g′(b)

4. Calculate population estimate rNDE(b) = ∑i = 1
n1 di

b × ϕi
(b) .

5. Construct a point estimate for rNDE as the posterior mean 

rNDE = ∑b = 1
B rNDE(b)/B, and create quantile-based 95% credible intervals.

4 | SIMULATION STUDY

We designed a simulation study to evaluate estimator performance with rNDE in the 

main study superpopulation as the estimand of interest. Due to the fact that sensitivity 

analyses based on sharp nonparametric bounding and those based on externally derived 

bias parameters are not directly comparable, we focus our comparison between BDF and 
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two standard bias correction techniques. The first, which we refer to as the δ-γ (DG) 

method, imposes strict assumptions about functional form and does not allow for exposure-

mediator interaction (VanderWeele, 2015). A second method, which we refer to as the 

interaction correction (IX), allows for exposure-mediator interaction in the outcome model 

(VanderWeele, 2010). Neither method accommodates exposure-induced mediator-outcome 

confounding. For comparability with BDF, we elected to use the secondary data source, 

replacing component quantities in the bias formulae with maximum likelihood estimates 

derived from regression models in the external data. Additional details are available in Web 

Appendix F; Web Appendix H explores the use of inflation factors to increase robustness to 

certain types of violations of parametric transportability.

4.1 | Data generation procedure

We considered a number of scenarios with varying data generation schemes. We varied: 

sample sizes (n1 and n2 = n1/10), causal structure (ΔU,A = 1 if the mediator-outcome 

confounder U is caused by A; 0 otherwise), and presence of an interaction (ΔY,AM = 1 if 

there is an A-M interaction in the Y model; 0 otherwise). The strength of mediator-outcome 

confounding by U was governed by two quantities, the log-odds ratios of U in the M and Y 
models, respectively. When the same βU and αU were used to generate the main and external 

data, causal transportability holds; this was done for strong confounding by U (βU = αU = 

1.5, corresponding to odds ratios of ≈ 4.5). To investigate various estimators’ performances 

under violations of the transportability assumption, βU = αU = 0 was used to generate the 

external data, while βU = αU = 1.5 in the main data. Complete details of the data generation 

process are available in the Web Appendix G. For each simulation condition, estimator bias 

and interval coverage were assessed using 200 replicates.

4.2 | Implementation of the Bayesian data fusion bias correction

The simulation-based Bayesian data fusion estimator was implemented for each pair of 

simulated main and external data sets. Priors were constructed using the external data as 

described in Section 3.3 with variance inflation (σ = 100) for the covariance matrix. The 

models in the external data were correctly specified, with ΔY,AM and ΔU,A matching the 

underlying generation process for the main data. Posterior samples of the bias-corrected 

rNDE were obtained from three MCMC chains of 2000 iterations each, with the first 1000 

samples discarded as warmup. The posterior mean was taken as a point estimate, with 

uncertainty captured using 95% quantile-based credible intervals.

4.3 | Simulation results

Figure 3 shows estimates from the case with exposure-induced U. When the transportability 

assumption holds, the BDF estimator eliminates the confounding bias at all sample 

sizes. In contrast, the frequentist correction methods do worse than no correction at all. 

Although these corrections do not purport to address exposure-induced mediator-outcome 

confounding, this finding underscores the danger of using these corrections when U may be 

caused by Z.

In the presence of such a severe violation of transportability, the information extracted from 

the external data set by the BDF procedure is misleading, and the BDF estimator performs 
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poorly. Confounding bias is not eliminated, and the prior information leads to less posterior 

uncertainty. The frequentist estimators also do not correct the bias, but the uncertainty is the 

same as the uncorrected naive intervals.

Table 1 reports coverage for the 95% confidence and credible intervals. Since all variables 

were discrete, a closed-form expression of the BDF rNDE estimator was available. 

Simulation results for this variant demonstrated nearly identical properties as the simulation-

based version; Web Appendix H reports these results. In general, credible intervals from 

BDF approaches had widths comparable to the naive and frequentist corrected confidence 

intervals. However, the classical correction methods are not unbiased, and the interval 

coverage is low (< 10%). Conversely, as noted previously, BDF did not perform well under 

serious transportability violations, achieving less than 1% coverage. Web Appendix H.4 

explores using the prior variance inflation factor parameter σ to mitigate certain types of 

transportability issues when the external and main data sets are equal in size. Based on 

those findings, we recommend using moderate to large σ (e.g., 10–100) if transportability 

is in question for parameters with a relatively large impact on the estimand of interest (e.g., 

parameters relating to A for estimating the rNDE), with the caveat that credible intervals 

may still have less than nominal coverage. We urge caution with interpreting results if 

transportability violations are believed to affect parameters directly involving U.

5 | EXAMINING THE ROLE OF STAGE AT DIAGNOSIS IN BLACK-WHITE 

SURVIVAL DISPARITIES IN COLORECTAL CANCER

5.1 | Overview

We now use BDF to explore the extent to which differentials in stage at diagnosis contribute 

to apparent racial disparities in colorectal cancer survival. Our analysis estimates how much 

we could reasonably expect to reduce the observed survival disparity if we broke the link 

between race and cancer stage at the time of diagnosis, for example, by implementing 

targeted screening programs leading to earlier colorectal cancer detection among Blacks. 

This “direct effect disparity measure” or “residual disparity” can be estimated using rNDE 
formulae under slightly weaker identifiability conditions (VanderWeele and Robinson, 2014; 

VanderWeele, 2015).

Valeri et al. (2016) sought to address this question in a recent article with data from 

a registry of U.S. cancer patients from 1992 to 2005. The National Cancer Institute’s 

Surveillance, Epidemiology, and End Results (SEER) registry collects information on 

tumor site and stage for a sizable proportion of cancer patients from diverse geographic 

regions within the United States. They concluded that eliminating Black-White disparities in 

colorectal cancer stage at diagnosis would lead to a 35% reduction in survival disparities as 

measured by 5-year restricted mean survival time. Their analysis controlled for a number of 

covariates, including age at diagnosis, gender, time period of cancer diagnosis, geographic 

locale, and median county income as derived from the American Community Survey; 

however, it did not control for household-level poverty status, as that information was not 

available.
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5.2 | Analysis description

We extend the analysis of Valeri and colleagues to add information about confounding 

of the stage-survival relationship by individual-level income using data from the Cancer 

Care Outcomes Research and Surveillance (CanCORS) Consortium data. This observational 

study followed patients shortly after cancer diagnosis and aimed “to determine how the 

characteristics and beliefs of lung and colorectal cancer patients, physicians and health-care 

organizations influence treatments and outcomes spanning the continuum of cancer care 

from diagnosis to recovery or death” (Catalano et al., 2013). To support these ambitious 

aims, the CanCORS database contains detailed socioeconomic information, including 

household income for the year preceding cancer diagnosis. We chose U = 1 to correspond 

the lowest income group of <$40,000 per year. The goal was to assess the bias of the 

residual disparity measure as calculated in SEER, assuming the underlying race-poverty and 

poverty-survival relationships in SEER matched those in CanCORS. The survival outcome 

was a binary indicator Y for whether the patient was alive 5 years after diagnosis. Self-

reported race was coded such that A = 1 for non-Hispanic blacks and A = 0 for non-Hispanic 

whites; individuals reporting Hispanic origin were excluded. The intervening variable of 

interest, stage at cancer diagnosis M, took on values 1–4 for stages I-IV. Adjustment 

covariates included in all models were: gender, age at cancer diagnosis (<60, 60–65, or 

>65), and geographic region (West, South, or other). Patients whose cancer was unstaged 

were excluded, leaving a total of 146,031 colorectal cancer cases in the SEER analysis data 

set.

First, we fit two naive models using maximum likelihood in the SEER data: (1) stage at 

cancer diagnosis as a function of race and adjustment covariates, using a baseline category 

logit model; and (2) 5-year survival as a function of race, stage at diagnosis, and the 

adjustment covariates, using a logistic link. Coefficients were used to calculate a naive 

estimated residual disparity measure RDnaive and bootstrapped 95% confidence intervals.

Next, we implemented the BDF estimator to obtain poverty-adjusted estimates of the 

Black-White survival disparity. Formally, our estimand is the population average residual 

disparity RD = ∫ E Y g |A = 1, Hz, u(0), z − E[Y |A = 0, z])dz, where g = (M = Hz,u(0)). To 

construct priors, we fit three frequentist models using the 1613 CanCORS colorectal cancer 

patients for whom complete stage and covariate data were available. The two regression 

models described above were modified by adjusting for an indicator of income <40,000/year 

(“poverty”). Prior distributions were constructed as in Section 3.3 with no variance inflation 

applied due to the large sample sizes; a sensitivity analysis with σ = 10 was also performed. 

A third and final frequentist model was a logistic regression for poverty as a function of 

race, gender, region, and age category.

Using BDF, we estimated the poverty-adjusted residual disparity in the SEER data. Four 

chains of 2000 MCMC iterations each were run in Stan (Stan Development Team, 2016), 

with the first 1000 iterations discarded as warmup. Gelman-Rubin convergence diagnostics 

R (Gelman and Rubin, 1992) were calculated for all parameters. The number of MCMC 

iterations was chosen based on trace plots, an absence of divergent NUTS transitions, and R
< 1.01 for the residual disparity parameter.
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5.3 | Residual disparity results

Posterior samples of the poverty-adjusted population residual disparity measure calculated 

using simulation-based and closed-form BDF are shown in Figure 4. The null value of zero, 

which represents Black-White equality with respect to baseline covariate-adjusted survival, 

lies beyond the far right of the graph. Visible as a dotted line on the left is the disparity 

we currently observe without an intervention on stage. With a value of 0.099 (95% CI: 

0.092, 0.107), we estimate that Black patients are 9.9 percentage points less likely to survive 

5 years postdiagnosis than White patients of the same gender and geographic region. The 

naive estimate of the residual disparity after an intervention aligning Blacks’ cancer stage 

distribution to the current stage suggests that the remaining disparity in 5-year survival 

would be 6.6% (95% CI: 5.8, 7.4). The data fusion suggests that unmeasured confounding 

by poverty does not substantially change the estimated residual disparity, with an estimate of 

6.5% (95% CI: 5.3, 7.4). An additional analysis with inflation factor set to σ = 10 did not 

substantially change any results, as might be expected given the relative data set sizes.

Given the abundant literature documenting the role of socioeconomic status in cancer 

outcomes (Le et al., 2008), it may be surprising to see negligible impact of poverty 

adjustment. One possibility is that causal transportability may not hold between the SEER 

and CanCORS populations in ways related to poverty. Although CanCORS may appear to 

be representative of the larger U.S. population appearing in SEER (Catalano et al., 2013), 

the causal relationships determining cancer outcomes in CanCORS may differ those in 

SEER because many CanCORS study sites were academic medical centers in large cities 

(Ayanian et al., 2004). Thus, we may not see dramatic shifts because CanCORS does not 

indicate strong stage-survival confounding by poverty. Alternatively, there may residual 

confounding due to the coarsening of socioeconomic deprivation—a complex, multifaceted 

problem—into a single binary indicator. Nevertheless, the analysis gives policymakers two 

potentially valuable pieces of information: (1) a quantitative estimate of the poverty-adjusted 

residual disparity and (2) a better understanding of the true uncertainty surrounding that 

estimate.

6 | DISCUSSION

In this paper, we have proposed a general method for Bayesian data fusion that can be 

used to perform sensitivity analyses for unmeasured confounding in a variety of settings. 

Although there can be no substitute for a well-designed study in the target population of 

interest, decision makers cannot wait for the ideal analysis in the ideal data set and must 

often work from incomplete or imperfect information. BDF communicates the sensitivity of 

a research conclusion while incorporating some of what is already known about the problem.

The general nature of BDF makes it easily extendable. For example, any number 

of parametric models could be used for the unmeasured confounder. Although we 

demonstrated properties using randomized natural direct effects in mediation, these 

principles can be applied to any mediation estimand or to settings with time-varying 

confounding. Any generalized linear model can be adopted for the unmeasured confounder, 

allowing for both continuous and discrete distributions. The method can also adjust 

for multiple unmeasured confounders; information on multiple confounders could be 
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constructed from different external data sources, although doing so requires assumptions 

about the joint distribution of their bias coefficients.

With respect to the motivating question of Black-White racial disparities in U.S. colorectal 

cancer patients, we conclude that unmeasured confounding of the stage-survival relationship 

by poverty leads to residual disparity reduction estimates that are slightly too optimistic. 

Implementing an intervention—for example, a targeted screening program—to alleviate or 

eliminate delayed cancer diagnosis for Black colorectal cancer patients would substantially 

improve 5-year survival outcomes. However, without also intervening on the complex 

societal factors that lead to greater poverty among black patients, we cannot realize the 

full benefit of such an intervention.

Bayesian data fusion relies on three major assumptions. First, BDF assumes that parametric 

models are otherwise correctly specified, which means it does not account for uncertainty 

in model misspecification, as some sensitivity analyses do (Tchetgen Tchetgen and Shpitser, 

2012). A more comprehensive uncertainty quantification would incorporate additional 

uncertainty due to model selection. Second, as with most parametric causal inference, the 

models extrapolate causal effects (Vansteelandt et al., 2012), forcing analysts to detect 

nonoverlap. Recent advances in Bayesian nonparametrics (Roy et al., 2017) may be 

adapted to add flexibility to portions of the models. Third, like other data fusion methods, 

BDF requires causal transportability between the external and main data sets (Pearl and 

Bareinboim, 2014). When transportability holds completely, the proposed approach is both 

a data fusion technique and a sensitivity analysis with favorable bias correction properties, 

particularly with large external sample sizes. In the absence of transportability, we can 

no longer appeal to asymptotic consistency for the elimination of bias. In that context, 

BDF is best understood as a Monte Carlo sensitivity analysis with parameters that are 

informed, however, imperfectly, by the external data. The degree to which confounding 

bias is appropriately corrected will depend on the severity of the transportability violation. 

Assessing transportability is an exercise in scientific judgement and causal reasoning. 

Notwithstanding some useful identifiability results (Correa et al., 2018), the statistical 

literature needs additional research on the impact of various transportability violations. Here 

we proposed the use of a prior variance inflation factor as a strategy to reduce problems 

arising from certain types of violations, but future work should explore other solutions.

Nevertheless, our extension of the Bayesian g-formula for dynamic and stochastic regimes 

offers a Bayesian approach to the estimation of population average effects in the presence of 

time-varying confounding. BDF, a principled algorithm for data-driven sensitivity analysis, 

offers a significant step forward for statistical analyses to inform decision-making. As a 

sensitivity analysis method, BDF is flexible enough to allow for a much greater variety 

of causal structures and regression model specifications, and it works for any causal 

estimand that can be represented as a counterfactual contrast. As a data fusion approach, the 

underlying Bayesian principles allow for extensibility to multiple unmeasured confounders 

of various types. Information from the external data source enters exclusively through 

prior distributions, reducing computational burden, sidestepping data privacy concerns, and 

dramatically increasing the number of data sources that may be used as external data. 

Researchers cannot guarantee that the right data are always available, but developing 
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statistical methods to rigorously synthesize information from multiple sources gives decision 

makers the tools to make more informed choices.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Mediation causal structure with outcome Y, exposure A, mediator M, baseline confounder(s) 

Z, and exposure-induced mediator-outcome confounder(s) W. The controlled direct effect 

captures the A → Y effect when M is fixed to some m. Natural direct and indirect effects are 

not identified under this structure due to the A → W arrow, but randomized interventional 

analogs are identified
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FIGURE 2. 
Mediation causal structure with outcome Y, exposure A, mediator M, baseline confounders 

Z, and exposure-induced mediator-outcome confounder U that is unmeasured in the main 

data
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FIGURE 3. 
Randomized natural direct effects estimated with naive, delta-gamma (DG) correction, 

interaction (IX) correction, and simulation-based Bayesian data fusion (BDF-SIM), with 

and without exposure-mediator interaction and causal transportability between main and 

external data sets. This figure appears in color in the electronic version of this article, and 

any mention of color refers to that version
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FIGURE 4. 
Posterior samples of average residual disparity (ARD) estimates of differences in Black-

White 5-year colorectal cancer survival probabilities in the SEER population, accounting 

for unmeasured poverty using simulated-based Bayesian data fusion (BDF-SIM) from the 

CanCORS cohort study. This figure appears in color in the electronic version of this article, 

and any mention of color refers to that version
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