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A B S T R A C T   

To prevent the spread of the COVID-19 epidemic, the Chinese megacity Wuhan has taken emergent lockdown 
measures starting on January 23, 2020. This provided a natural experiment to investigate the response of air 
quality to such emission reductions. Here, we decoupled the influence of meteorological and non-meteorological 
factors on main air pollutants using generalized additive models (GAMs), driven by data from the China National 
Environmental Monitoring Center (CNEMC) network. During the lockdown period (Jan. 23 – Apr. 8, 2020), 
PM2.5, PM10, NO2, SO2, and CO concentrations decreased significantly by 45 %, 49 %, 56 %, 39 %, and 18 % 
compared with the corresponding period in 2015–2019, with contributions by S(meteos) of 15 %, 17 %, 13 %, 
10 %, and 6 %. This indicates an emission reduction of NOx at least 43 %. However, O3 increased by 43 % with a 
contribution by S(meteos) of 6 %. In spite of the reduced volatile organic compound (VOC) emissions by 30 % 
during the strict lockdown period (Jan. 23 – Feb. 14, 2020), which likely reduced the production of O3, O3 
concentrations increased due to a weakening of the titration effect of NO. Our results suggest that conventional 
emission reduction (NOx reduction only) measures may not be sufficient to reduce (or even lead to an increase of) 
surface O3 concentrations, even if reaching the limit, and VOC-specific measures should also be taken.   

1. Introduction 

With the rapid development of China, the air quality problem in this 
country has gradually become more serious in this century (Yin et al., 
2019). To prevent and control air pollution, the Chinese government has 
taken many measures to reduce anthropogenic emissions, such as the Air 
Pollution Prevention and Control Action Plan issued in September 2013 
(Chinese Government, 2013). With the implementation of these mea-
sures, air quality in China has greatly been improved (Vu et al., 2019; 
Zhang et al., 2019b). The number of severe haze pollution days in Bei-
jing–Tianjin–Hebei (BTH) and the Changjiang River Delta (YRD) areas 
decreased from 122 to 33 in 2013 to 31 and 25 in 2017, respectively (Li 

et al., 2019a). Air quality can be affected not only by anthropogenic 
emissions but also by meteorological conditions (Han et al., 2020; Yin 
et al., 2021; Yin et al., 2020). For instance, a higher planetary boundary 
layer height (PBLH) is propitious to the disappearing of air pollutants (Li 
et al., 2017a; Su et al., 2018). Meteorological factors in winter are more 
unfavorable to diffusion and dilution of pollutants and cause the accu-
mulation of more pollutants at the surface (Yang et al., 2019). The 
importance of meteorological conditions in controlling ozone (O3) 
pollution was described by Han et al. (2020). Ansari et al. (2019) 
demonstrated that under unfavorable meteorological conditions, the 
same reduction emission measurements as under favorable conditions 
would not achieve satisfactory effects for fine particulate matter (PM). 
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Because of the complicated non-linear relationship between meteoro-
logical conditions and air quality, it is still a challenge to separate the 
influence of emissions and meteorological factors on air quality (Zhang 
et al., 2019a; Zhong et al., 2018). In one of our previous studies, the 
generalized additive models (GAMs) model was employed to quantify 
the contribution of meteorology and anthropogenic emissions to the 
variation in the concentrations of tropospheric nitrogen dioxide (NO2), 
sulfur dioxide (SO2), and formaldehyde (HCHO) in four megacities in 
China, i.e., Beijing, Shanghai, Guangzhou, and Chengdu (Zhang et al., 
2019a). 

During many important social events, such as the Beijing Olympic 
Games in 2008, the Beijing APEC conference in 2014, the Grand Military 
Parade in Beijing 2015 as well as the Youth Olympic Games in 2014 in 
Nanjing and the G20 conference in 2016 in Hangzhou, anthropogenic 
emissions reduced greatly through a strict temporary emission control 
(Gao et al., 2016; Huang et al., 2017; Li et al., 2017c; Liang et al., 2017; 
Su et al., 2017). Such events provide a natural laboratory to assess the 
impact of emission reduction and meteorology on air pollution. For 
instance, during the Sino-African Summit in Nov. 4–6, 2006, traffic re-
strictions induced a reduction in particle number concentrations in 
Aitken and accumulation modes at the ground by 20%–60 % and a 
reduction of the vertical column density (VCD) of NO2 by 40 % (Cheng 
et al., 2008; Wang et al., 2007). Gao et al. (2011) concluded that 
emission control and favorable meteorological conditions together 
induced the decrease of aerosol species by 30–50 % during the Olympic 
period, while emission control was the dominant factor. Huang et al. 
(2017) found that emission reduction had a dominant influence on the 
improvement in air quality during the Nanjing Youth Olympic Games in 
spite of unfavorable meteorological conditions. Using a generalized 
linear regression model, Liang et al. (2017) found that emission control 
and meteorological conditions contributed to a 30 % and 28 % decrease 
in PM2.5 concentrations during the APEC conference, respectively, and a 
38 % and 25 % decrease during the China Victory Day Parade 2015, 
respectively. However, during the G20 conference, temporary measures 
took no immediate effect on controlling O3 pollution in the boundary 
layer, while meteorological conditions dominated the variation of O3, 
although PM2.5 concentrations decreased significantly (Su et al., 2017). 
Li et al. (2017c) reported that the of PM2.5 concentrations predicted by 
the Weather Research and Forecast and Community Multi-scale Air 
Quality (WRF-CMAQ) model were reduced by 56 % due to reduction 
emission measurements. 

The Corona Virus Disease 2019 (COVID-19) is a serious infectious 
disease that had spread all over the world by March 2020. Up to April 
30, 2021, the virus had caused more than 3 million deaths worldwide 
(World Health Organization, 2021). To prevent the spread of the 
epidemic, the city of Wuhan in China adopted the measures of shutting 
down local enterprises and restricting traffic transport (referred to as 
"lockdown") as the first city in the world to reduce the gathering of 
people. Wuhan has a permanent resident population of 11.212 million 
(Wuhan Government, 2021) and has suffered from air pollution in 
recent years (Shi and Brasseur, 2020b). During the lockdown period, the 
emission of air pollutants, except from residences, almost ceased, which 
may have abruptly changed the concentrations of air pollutants in 
Wuhan. Bauwens et al. (2020) evaluated the column of NO2 over China 
via TROPOMI and OMI satellite data and reported a decrease by 40 % 
during the COVID-19 lockdown period compared with the correspond-
ing period in 2019. However, there is still lack of an effective assessment 
of the influence of meteorological factors and emissions for this phe-
nomenon. Shi et al. (Shi and Brasseur, 2020a) found a large increasing 
variation of O3 by 35%–95 % in Wuhan during the COVID-19 outbreak, 
and attributed this increase to the decrease of NOx because during 
winter, O3 is in volatile organic compound (VOC)-limited conditions and 
the production of O3 is inversely related to that of NOx. Wang et al. 
(2020) also reported that compared to the same period in 2019, con-
centrations of PM2.5, PM10, SO2, NO2, and CO in Hangzhou decreased by 
42.7 %, 47.9 %, 28.6 %, 22.3 %, and 58.4 %, respectively, during the 

COVID-19 lockdown period, but O3 increased by approximately 50 %. Le 
et al. (2020) investigated the causes of haze pollution by WRF-Chem 
during the COVID-19 lockdown period in the North China Plain. Not 
only in China, but also in Southeast Asia, where pollutant concentrations 
have fallen significantly due to lockdown in response to COVID-19 (Roy 
et al., 2021). However, due to the lack of VOCs data, the investigation on 
the causes of this phenomenon was not conclusive. In this paper, we aim 
to separate the effect of a change in anthropogenic emissions on the 
variation of air quality in Wuhan due to the lockdown measures from 
that of meteorological conditions. The concentrations of main air pol-
lutants at the surface from the China National Environmental Moni-
toring Center (CNEMC) network and the tropospheric vertical column 
densities (VCDs) of HCHO from satellite-based remote sensing data were 
used to analyze the variation in air pollutants during the lockdown 
period in Wuhan. GAMs were adopted to single out the change in con-
centrations of different air pollutants induced by the anthropogenic 
emission reduction in Wuhan due to the lockdown measures from the 
influence of meteorological conditions. Our study provides useful in-
sights into the role of extreme emission reduction measures in the 
improvement of air quality. 

2. Methods 

2.1. Data from the CNEMC network 

The CNEMC network provides hourly records of the concentrations 
of PM2.5, PM10, NO2, SO2, CO, and O3 all over China (http://www.cne 
mc.cn/en/, last access: 10 May 2020). The dataset has been widely 
used in numerous air quality studies (Li et al., 2018; Li et al., 2019b; Lu 
et al., 2019a; Meng et al., 2018; Shen et al., 2019). In this study, data of 
Wuhan from January 2015 to April 2020 were adopted. We applied a 
data quality control method, similar to that used in previous studies, to 
remove error data (Canton et al., 2015; Lu et al., 2018). Hourly observed 
datapoints were transformed into Z scores, and then, the observed data 
were removed if the corresponding Zi met one of the following condi-
tions: (1) Zi is larger or smaller than the previous one (Zi-1) by 9 (|Zi −

Zi− 1|> 9), (2) The absolute value of Zi is greater than 4 (|Zi|> 4), or (3) 
the ratio of the Z value to the third-order center moving average is 

greater than 2 
(

3Zi
Zi− 1+Zi+Zi+1

> 2
)

. The formula for calculating Zi is as 

follows: 

Zi =
Xi − X

σ (1)  

where Xi represent the i-th item in the dataset, and X and σ are the 
average and standard deviation of dataset X, respectively. The distri-
bution of CNMEC sites in Wuhan is shown in Fig. S1. 

2.2. TROPOspheric monitoring instrument (TROPOMI) data 

Tropospheric VCDs of HCHO and NO2 were retrieved from the 
TROPOMI satellite spectrum to trace the variation of VOCs and study the 
spatial distribution of emission reductions (Su et al., 2020; Veefkind 
et al., 2012). TROPOMI is a satellite instrument on board the Copernicus 
Sentinel-5 Precursor satellite. The Sentinel-5 Precursor (S5P) is the first 
of the atmospheric composition Sentinels, launched on October 13, 
2017, planned for a mission of seven years. TROPOMI has four 
two-dimensional spectrometers with wavelengths from 270 to 2385 nm. 
The third band is from 320 to 405 nm for HCHO retrieval. The spectral 
resolution of this band is about 0.5 nm (half height and width). The 
spatial resolution of the instrument is 3.5 × 7 km2 (Su et al., 2020). 
Details of the S5P operational HCHO algorithm can be found in (Smedt 
et al., 2018). The quality indicators for our TROPOMI products were as 
follows: (a) Root mean square (RMS) values of the spectral fit residual 
smaller than 10− 3. (b) Cloud fraction (CF) < 0.3. (c) Air-Mass Factor 
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(AMF) > 0.1. (d) SZA (Solar zenith angle) < 70◦. (e) Quality assurance 
(QA) > 0.55. 

2.3. GAMs model 

To separate the contribution of meteorological factors to air quality 
from other factors, we applied a statistical fitting method based on the 
GAMs model (Wood Simon, 2004). The GAMs model uses penalized 
smoothing splines to evaluate the influence of meteorological factors 
and anthropogenic emissions on the variation of air quality. The GAMs 
model uses a nonparametric smooth function, which can be a smooth 
spline function, a kernel function, or a local regression smooth function. 
Its nonparametric form makes the model very flexible, so that it can well 
reveal the nonlinear effect of independent variables. Pearce et al. (2011) 
estimated the responses of air pollutants, like O3, PM10, and NO2, to 
meteorological parameters such as temperature, water vapor pressure, 
and others through the GAMs model. Otero et al. (2020) investigated the 
effect of NOx reductions in the O3-temperature relationship using GAMs 
and found that the reduction of NOx was not the only factor causing 
variation in meteorology. In our previous study, GAMs was successfully 
applied to distinguish the contribution of meteorological and 
non-meteorological factors to pollutant concentrations, and the 
non-meteorological factors were verified to indicated emissions through 
comparison with the Multi-resolution Emission Inventory for China 
(MEIC) (Zhang et al., 2019a). The smoothing function was developed by 
combining model selection with automatic smoothing parameter selec-
tion using penalty regression splines, which were optimized to minimize 
dimensions in the model (Pearce et al., 2011). The selection of 
smoothing parameters was carried out by limiting the maximum likeli-
hood (REML), and the confidence interval was estimated using the un-
conditional Bayesian method (Pearce et al., 2011). The fitting equation 
of the GAMs model can be written as follows(De Veaux, 2012): 

log(y) ∼ β+
∑n

i
S(Xi) + ε (2)  

where y is the daily-averaged concentrations of air pollutants, β is the 
constant mean of the response, S(Xi) is the smoothing function term of 
the i-th component of n total covariates, and ε is the residual of fitting. 
The covariates included meteorological factors and other temporal 
variables, including the day number (daynum) and the day of the week 
(dow), to consider the short-term temporal persistence and control for 
temporal autocorrelation in the residuals. The meteorological parame-
ters included zonal (east-west) wind (ua), meridional (north-south) 
wind (va), relative humidity (RH), downward shortwave solar radiation 
at the surface (swdown), planetary boundary layer height (pblh), and 
temperature (temp) at the surface. The meteorological parameters were 
extracted from National Centers for Environmental Prediction (NCEP) 
Final Operational Global Analysis (FNL) datasets and simulated using 
the Weather Research and Forecasting (WRF) model with the horizontal 
resolution of 0.1◦. In this study, we divided the dataset from 2015 to 
2020 into a testing dataset and a training dataset, in which the training 
dataset accounted for 80 % and the testing set for 20 %. Data for 2020, 
were divided into the testing dataset. 

3. Results 

3.1. Validation of the GAMs model 

The GAMs fitting results showed reasonably good agreement with 
the daily-average CNEMC-measured data for each pollutant from 
January 2015 to March 2020. The Pearson correlation coefficients (R) 
with the training dataset were 0.64, 0.68, 0.79, 0.76, 0.81, and 0.55 for 
PM2.5, PM10, NO2, SO2, O3, and CO, respectively (Fig. S1). Moreover, the 
correlations with the testing dataset were 0.64, 0.67, 0.79, 0.77, 0.81, 
0.55 for PM2.5, PM10, NO2, SO2, O3, and CO, respectively (Fig. S2). In 

particular, correlation for all datasets in 2020 of 0.64, 0.67, 0.79, 0.77, 
0.81, and 0.55 for PM2.5, PM10, NO2, SO2, O3, and CO, respectively 
(Fig. S3). We also carried on several groups of different species for cross 
validation, including NO2 and CO, NO2 and SO2, SO2 and CO, and PM2.5 
and PM10. These had high correlations of 0.75, 0.65, 0.91, and 0.82 
(Fig. S4). The reason for choosing these groups for cross validation was 
that these pollutants have similar sources. Although this method does 
not include physical and chemical processes, the results well reproduced 
the variations in the measured air pollutants. The uncertainty of GAMs 
fitting did not exceed that of the statistical model used in other studies, 
such as Liang et al. (2017) (Table S1). The results for non-meteorological 
factors reflect well the decreasing trend of pollutant emissions in China 
in recent years (Fig. 1, Figure S5-S8 and S10). 

3.2. Marginal effect of individual variables on air pollutants 

To explain the impact of individual factors on air pollutants, we used 
the effect of the smooth term S(Xi) in GAMs, calculated as 100 %⋅[eS(X

i
)- 

1], which represents the relative effect of an individual term to the total 
factor, where Xi is the individual factor, and S(Xi) represents the influ-
ence of each meteorological factor Xi on pollutant concentration (Figs. 1, 
2, and S12-15). The estimated degrees of freedoms (EDFs), which show 
the linear or nonlinear degree of fitting, corresponding to the individual 
terms are noted in each figure. An EDFs of 1 indicates a linear effect. 

The influence of temperature on pollutants (S(temp)) was generally 
similar, except for O3. Assuming that other influencing factors remain 
constant, the concentrations of pollutants except for O3 rose by ~20 % as 
compared with the average values in 2015–2019, when the air tem-
perature was below 10 ◦C (Fig. 2 (e)). With an increase in temperature, 
the formation of secondary sulfate would be enhanced due to the ac-
celeration of the SO2 oxidation rate (Jacob and Winner, 2009; Tai et al., 
2010). For NO2 and SO2, this phenomenon may be partly explained by 
the accelerated evaporative emission rate of NOx and SO2 at higher 
temperature (Pearce et al., 2011) (Figs. S13 and S14 (e)). When the air 
temperature was higher than 10 ◦C, pollutant concentrations decreased. 
For O3, the influence of temperature was opposite to that of other pol-
lutants. When the air temperature was higher than 15 ◦C, the concen-
tration of O3 strongly increased as compared with the average value in 
2015–2019, as the reaction rate of the photochemical formation of O3 is 
positively related with temperature (Ordonez et al., 2005); however, 
when temperature was below 15 ◦C, the concentration of O3 decreased. 
Tropospheric O3 is mainly produced by photochemical reactions of ni-
trogen oxidation (NOx = NO + NO2) and VOCs (Jacob and Winner, 
2009; Lu et al., 2019b). Temperature can also affect O3 formation 
through altering the emission of precursors. At high temperature, both 
biological and evaporative emissions of anthropogenic VOCs were 
increased (Jacob and Winner, 2009; Ordonez et al., 2005). A similar 
effect of meteorological conditions on air pollutants has been reported 
by some studies (Neftel et al., 2002; Weber and Prevot, 2002). 

The influence of relative humidity (RH) on PM2.5 was positive in the 
range of less than 60 % (Fig. S1 (c)). When RH is high, heterogeneous 
reactions and the formation of secondary aerosols can accelerate with an 
increase in water vapor in the ambient air (Pendergrass et al., 2019; 
Wang et al., 2016; Zhang et al., 2020; Zheng et al., 2015), causing higher 
PM2.5 masse concentrations. However, in the range of 60%–80 %, the 
influence of RH on increasing PM2.5 masse concentrations weakened. 
RH is generally negatively correlated with PM10, NO2, SO2, and O3 
(Jacob and Winner, 2009)(Fig. 2 (c) and Figs. S12–14 (c)). Due to the 
fact that PM10 is mainly composed of coarse particles and originates 
from primary emissions, a higher RH may accelerate the settlement and 
removal of PM10 (Leung et al., 2018; Zhu et al., 2012). Because OH 
radicals consume NO2, SO2 in the troposphere, and the reaction of water 
vapor with O(1D) atoms is the main source of OH radicals, RH showed a 
negative influence on the concentrations of NO2, SO2 (Atkinson, 2000; 
Johnson et al., 1999). In addition, humidity increases the heterogeneous 
conversion of NO2 and NO to HNO3 and SO2 to H2SO4 (Khoder, 2002; 
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Kleffmann and Wiesen, 2005). This reason is also responsible for the 
negative correlation between RH and O3, but some studies found that 
this occurs mainly in remote regions, and even enhances ozone pro-
duction in high NOx regions (Sillman et al., 1990). Other factors also 
include: (1) the correlation of humid days with increased cloud and 
reduced photochemistry (Xu et al., 2011). (2) the association of wet days 
with rainout and reducing precursor emissions (Elminir, 2005). (3) the 
greater susceptibility to stratospheric intrusion in dry weather (Jiang 
et al., 2015). In Wuhan, during 2015–2019, O3 concentrations under dry 
days were on average 22%–50 % higher per year than under humid days 
(Fig. S16). RH increased the concentrations of CO, but with an increase 

in RH, the increasing trend slowed down, and even a slight decrease in 
concentration occurred when RH > 60 % (Fig. S15 (c)). 

The planetary boundary layer height (PBLH) showed a negative 
correlation with PM2.5, PM10, NO2, SO2, and CO concentrations but a 
positive correlation with O3. The primary emission or secondary for-
mation of PM2.5, PM10, NO2, SO2, and CO mainly occurs at the surface. 
However, O3 concentrations in the upper boundary layer are usually 
higher than those in the lower boundary layer (Su et al., 2017; Zhao 
et al., 2019), so that a higher boundary layer height is conducive to the 
downward transport of O3 from the upper layer. Therefore, for an in-
crease of the PBLH from 0 m to 1000 m, the concentrations of PM2.5, 

Fig. 1. The effects of each individual meteorological variable in the GAM model on hourly PM2.5 in Wuhan. (a)–(f) variables of zonal wind (ua), meridional wind 
(va), relative humidity (RH), downward shortwave solar radiation at the surface (swdown), temperature (temp) and planetary boundary layer height (pblh) are 
presented in these plots. 

Fig. 2. The effects of each individual meteorological variable in the GAM model on hourly O3 in Wuhan. (a)–(f) variables of zonal wind (ua), meridional wind (va), 
relative humidity (RH), downward shortwave solar radiation at the surface (swdown), temperature (temp) and planetary boundary layer height (pblh) are presented 
in these plots. 
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PM10, NO2, SO2, and CO would decrease by about 40%–80 % of their 
average values in 2015–2020 (Fig. 1 (f), Figs. S12–S15 (f)), respectively; 
however, O3 concentrations would increase by about 60 % of their 
average value (Fig. 2 (f)). 

There was an increasing effect between O3 and downward shortwave 
solar radiation (swdown) (Fig. 2 (d)). Higher levels of swdown at the 
surface could promote the elevation of O3 because intense radiation 
would lead to the enhancement of photochemical reactions producing 
O3 (Lacis and Hansen, 1974). Swdown had a slight influence on PM2.5, 
PM10, and CO, and a negative influence on NO2 and SO2 concentrations 
(Fig. 1 (d), Figs. S12–S15 (d)). 

The influence of zonal wind on pollutants was consistent. The posi-
tive values of ua represent easterly winds and negative values represent 
westerly winds, while the positive value of va represents the north wind 
and the negative value represents the south wind. For particulate matter, 
the eastern winds led to a large decrease in PM2.5 and PM10 concen-
trations. The concentration of CO is affected more similarly to the par-
ticulate matter. The south and east winds caused a large decrease in NO2 
and SO2 concentrations. For O3, east, west and south wind increased 
concentrations, while north wind decreased concentrations (Fig. 2 (a) 
and (b)). Other meteorological factors also had a slight impact on air 
pollutants, but the impact range was not obvious in the specific analysis 
above. 

From the marginal effect of S(dow), we conclude that there was no 
weekly variation cycle in Wuhan. According to our previous study, the 
contribution of the day number (daynum) for primary pollutants like 
NO2, SO2, represented the influence of emissions(Zhang et al., 2019a). 
However, for air pollutants which contain secondary components like 
O3, PM2.5, and PM10, S(daynum) may not only represent the influence of 
emissions, but also of chemical reactions. 

The contribution of meteorological factors (s(meteos), the amount of 
pollutant change due to meteorological factors) and non-meteorological 
factors (s(non-meteos), the amount of pollutant change due to non- 
meteorological factors, i.e., temporal terms), on air pollutants were 
calculated as the sum of the contributions of individual factors. In 
general, s(non-meteos) can be considered an indicator of anthropogenic 

emissions to some extent (Zhang et al., 2019a). Similar to our previous 
study, meteorological factors dominated day-to-day variation with 
Pearson correlation coefficients of 0.63–0.82 for the observed pollutants 
(Fig. 3); however, on the interannual scale, the variations of air pollutant 
concentrations were determined by non-meteorological factors. From 
2015 to 2019, concentrations of PM2.5, PM10, NO2, SO2, and CO in 
Wuhan decreased by 23 μg/m3, 32 μg/m3, 6 μg/m3, 8 μg/m3, and 0.1 
mg/m3, respectively, while those of O3 increased by 5 μg/m3. S 
(non-meteos) for PM2.5, PM10, NO2, SO2, and CO also decreased by 
26 μg/m3, 43 μg/m3, 10 μg/m3, 9 μg/m3, and 0.1 mg/m3 compared with 
2015 and 2019, respectively. However, S(non-meteos) had positively 
contributed to O3 concentrations, which increased by 5 μg/m3. S 
(meteos) for PM2.5, PM10, NO2, SO2, O3, and CO increased by 4 μg/m3, 5 
μg/m3, 2 μg/m3, 1 μg/m3, 1 μg/m3, and 0.01 mg/m3 compared with 
2015 and 2019, respectively (Fig. 4). 

3.3. Variation of particulate matter during the lockdown period 

To investigate the influence of the control measures on air quality in 
Wuhan, we compared air quality in different control stages: I. pre- 
lockdown stage (Jan. 1 – Jan. 22, 2020), during which anthropogenic 
activities went on as usual; II. lockdown stage (Jan. 23 – April 8, 2020), 
including the strict-lockdown (Jan. 23 – Feb. 14) period, during which 
prohibited almost all anthropogenic polluting activities, and the slight- 
lockdown stage (Feb. 15 – April 8, 2020), during which some enterprises 
in Wuhan gradually returned to work, but civilian traffic in Wuhan still 
suspended; III. post-lockdown stage (April 9–30, 2020), during which 
anthropogenic activities and transportation in Wuhan gradually recov-
ered. The different lockdown periods and measures are presented in 
Fig. S17 and Table S2. Here, we discuss the effect of the lockdown on the 
variations of PM2.5 (Fig. 5) and O3 (Fig. 6) concentrations in detail, while 
the variations of other pollutants are presented in the Supporting In-
formation (Figs. S18–21). 

Compared with the corresponding period (Jan 23-Apr 8) of 
2015–2019, PM2.5 concentrations in Wuhan during the lockdown period 
in 2020 decreased by 31 μg/m3 (45 %). The S(meteos) of PM2.5 

Fig. 3. The correlations between observations and S(meteos) data.  
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decreased by 4.6 μg/m3, which only contributed 15 % to the decline in 
PM2.5. The higher temperature, RH (>60 %), and PBLH caused a 
decrease of 1.5 μg/m3, 1.4 μg/m3, and 1.1 μg/m3, respectively (Figs. S22 
and S23). These results indicate that the reduction of emissions played 
the critical role in the decrease of PM2.5 concentrations during the 
lockdown period. Although meteorological conditions dominated the 
day-to-day variations of air pollutants(He et al., 2017), the reduction of 
anthropogenic emissions played the critical role for pollutant concen-
trations, from the pre-lockdown to the lockdown period. 

From January to April in 2020, manufacturing and construction in-
dustry production values had dropped dramatically by − 49.3 % and 
− 39.3 % compared with the corresponding period in 2019 in Wuhan 
(Hubei Provincial Bureau of Statistics, http://tjj.hubei.gov.cn/). More-
over, the energy consumption, especially the consumption of coal 
decreased significantly because of the large-scale shutdown during the 

COVID-19 lockdown period, which was an important factor leading to 
the decrease in particulate matter, and more significantly, its precursors. 
For the main chemical species of PM2.5, Zhang et al.(Zheng et al., 2020) 
reported that the main components of PM2.5 decreased in Wuhan, 
especially trace elements (0.65 %) and elemental carbon (0.67 %), 
indicating that primary emissions were reduced due to the lockdown. 
However, the photochemical reactions involving O3 and OH radicals 
contribute significantly to PM2.5 formation during the lockdown period 
due to the increase in ozone and this may explain the slight decrease in 
PM2.5 during confinement in comparison with other pollutants like NOx 
and SO2 (Sbai et al., 2021). 

Moreover, compared with the strict-lockdown stage, PM2.5 concen-
trations during the slight-lockdown stage decreased by 14 μg/m3 (29 %), 
and the S(meteos) of PM2.5 decreased by 10.2 μg/m3, which contributed 
73 % to the decline in PM2.5. The main reason was increasing of 

Fig. 4. The bar plots of annual variation of pollution and their S(meteos) and S(non-meteos) relative to the averages of those during 2015–2019. (a) PM2.5, (b) PM10, 
(c) NO2, (d) SO2, (e) O3, (f) CO. 

Fig. 5. The box plots of (a) and (b) 
present observed PM2.5 and the contri-
bution of meteorological conditions to 
PM2.5 concentrations (S(meteos)) dur-
ing the pre-lockdown, lockdown 
including strict-lockdown and slight- 
lockdown, and post-lockdown periods 
in 2020, as well as during the corre-
sponding periods in 2015–2019. Each 
box plot is composed by mean value 
(blue square points in the middle of 
boxes), median value (cross in the mid-
dle of boxes), 25 % and 75 % value (the 
lower and upper bounds of each box-
plot). The top and bottom extend to a 
maximum of 1.5 * IQR (interquartile 
range) from the hinges. (For interpre-
tation of the references to colour in this 
figure legend, the reader is referred to 
the Web version of this article.)   
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temperature by 6 ◦C (Fig. S23), which contributed 11 μg/m3 (Fig. S22). 
The concentrations of PM2.5 were mainly determined by meteorological 
conditions because anthropogenic emission sources had basically been 
eliminated in this period. Additionally, during the post-lockdown 
period, PM2.5 concentrations continued to decrease by 5 μg/m3 

compared with the lockdown period, in which meteorological condi-
tions caused a decrease of 12 μg/m3. This indicates that although 
pollution sources such as factories had been reopened, the PM2.5 con-
centrations decreased due to the favorable meteorological conditions 
during the post-lockdown period. 

3.4. Variation in O3 during the lockdown period 

Although the concentrations of primary pollutants and particulate 
matter significantly decreased, the average concentration of O3 during 
the lockdown period in 2020 increased by 19 μg/m3 (43 %) compared 
with that during the corresponding period in 2015–2019 (Fig. 6(a)). The 
contribution of S(meteos) decreased by 1.3 μg/m3, which was mainly 
caused by RH (contributing 1.9 μg/m3) due to increasing of RH (Figs. 6 
(b) and S23). Compared with those during the pre-lockdown period in 
2020, the O3 concentrations increased by 28 μg/m3 (117 %) with S 
(meteos) contributing 7.9 μg/m3, accounting for 28 % (Fig. 6(b)), which 
was mainly caused by RH (contributing 2.3 μg/m3), temperature 
(contributing 3.3 μg/m3), and PBLH (contributing 2.2 μg/m3) (Figs. S23 
and S24). As O3 is a secondary species, its concentrations were affected 
by several factors, such as the emission of precursors (Jin et al., 2017; Jin 
and Holloway, 2015), chemical processes (Baertsch-Ritter et al., 2004; 
Jacob, 2000), and meteorological conditions (Nan et al., 2018; Wu et al., 
2008). Meteorological factors could only partially explain the increase 
in ozone, so that the main reasons for this increase were precursor 
emissions and chemical process effects. 

To further investigate the impact of changes in precursors and their 
photochemical reactions, we used VCDs of formaldehyde (HCHO) 
extracted from satellite-based observations to trace the variation of 
VOCs. The contribution of VOCs to the production of O3 was determined 
by their total reactivity with OH radicals (Sillman, 1995). HCHO is a 
short-lived oxidation product of nearly all VOC species, and VOC species 
with higher OH reactivity tend to produce more HCHO (Valin et al., 
2016). HCHO is also produced at high yields during the oxidation of 
many NMVOC species (Millet et al., 2006) and emitted directly from 

anthropogenic and biomass burning activities (Akagi et al., 2011; Li 
et al., 2017b). Jin et al. (2017) and Li et al. (2019b) used the total HCHO 
column observed by OMI and TROPOMI satellite products to study the 
influence of VOC on the formation of O3. Based on their approach, 
HCHO can be used as an indicator of the total reactivity of VOCs to 
analyze the formation of O3. As NOx in the ambient air exists mainly in 
the form of NO2, NO2 can be used as an indicator of NOx (Lin et al., 
2010). The results of S(meteos) derived by the GAMs model were used to 
remove the effect of meteorological factors for CNEMC data to better 
study the impact of emissions and chemistry reactions on O3. As O3 
produced from photochemical reactions would be immediately titrated 
by fresh NO in the ambient air (NO + O3 → NO2 + O2) (Lin et al., 1988; 
Liu et al., 1987; Sillman, 1999), odd oxygen (Ox = O3 +NO2) was chosen 
instead of O3 to trace the intensity of photochemical reactions forming 
O3 (Mazzeo et al., 2005; Tonnesen and Dennis, 2000; Xue et al., 2014). 
The data for NO2 of CNEMC are consistent with those of the TROPOMI 
satellite (Fig. S25). 

From the pre-lockdown period to the strict-lockdown period, both 
NO2 and HCHO dropped significantly; however, the decrease in NO2 (by 
56 %) was much larger than that of HCHO (by 30 %) (Fig. 7(a), (e)). 
These reduction percentages were close to those of NOx and VOCs in 
eastern China estimated according to the variations of the level of 
anthropogenic activities (Huang et al., 2021). Nevertheless, Ox showed 
no significant change, with a slight decrease of 3 μg/m3 for the average 
value, indicating that the photochemical production of O3 did not 
changed significantly (Fig. 7 (d)). Furthermore, lower emissions of NOx 
would weaken the titration effect of NO and result in a larger accumu-
lation of O3 (Liu et al., 2020). During the strict-lockdown period, the 
average concentration of O3 was 58 % higher than that during the 
pre-lockdown period (Fig. 7 (c)). On the basis of the O3–VOCs-NOx 
empirical kinetic modeling approach (EKMA) isopleth mapped via 
WRF-Chem modeling by Huang et al. (2021), O3 production in eastern 
China (30◦N-40◦N, 110◦E− 120◦E) in the winter is VOC-limited, and 
would increase by 40–50 % with an emission decrease of NOx and VOCs 
by 43 % and 30 %, which is in good agreement with our observation 
results. This VOC-limited regime is also certified by the variations of 
HCHO, NO2, and O3 in 2019. From January to April in 2019, NO2 
declined gradually, while HCHO remained stable, which resulted in a 
slightly decreasing trend for Ox and an increasing trend for O3. Due to 
the VOC-limited regime for O3 production in the winter in China (Li 

Fig. 6. The box plots of (a) and (b) present observed O3 and the contribution of meteorological conditions to O3 concentrations (S(meteos)) during the pre- 
lockdown, lockdown including strict-lockdown and slight-lockdown, and post-lockdown periods in 2020, as well as during the corresponding periods in 
2015–2019. The meanings of the symbols in the box plots are the same as those in Fig. 5. 

H. Yin et al.                                                                                                                                                                                                                                      



Environmental Pollution 289 (2021) 117899

8

et al., 2019b; Xing et al., 2011), O3 concentrations would not decline if 
NOx emissions diminished alone, but probably increase due to the 
weakening of the titration effect of NO (Liu et al., 2020). 

Compared with the strict-lockdown period, NO2 concentrations were 
relatively stable during the slight-lockdown. The titration effect after the 
strict-lockdown period changed little. However, HCHO, O3, and Ox 
concentrations in the slight-lockdown period increased slightly, and the 
means even exceeded those in strict-lockdown period by 1.02 × 1015 

molecules/m2 (15 %), 4 μg/m3 (5 %), and 2 μg/m3 (2 %), respectively 
(Fig. 7 (c)–(e)). Thus, owing to the VOC-limited regime, the increased 
abundance of VOCs versus NOx caused an accelerated photochemical 
production of O3, which, combined with a still weakened titration effect 
by NO, caused a rapid increase in the O3 concentration after the strict- 
lockdown period. 

Compared with the corresponding period in 2019 (1.1–4.30), HCHO 
concentrations decreased significantly. However, HCHO concentrations 
during the slight-lockdown and post-lockdown periods were even 
slightly higher than those during the corresponding period in 2019 
(Fig. 7 (e)). Under atmospheric conditions the depletion of ozone by NOx 
is more important than its production (Sbai et al., 2021). The titration 
effect mainly affects the daily depletion of ozone (Anshika et al., 2021; 
Feng et al., 2019; Kumar et al., 2010; Reddy et al., 2010; Wang et al., 
2020). For diurnal variations, the maximum value of Ox appeared at 5 p. 
m. during all pre-lockdown, lockdown, and post-lockdown periods. 
Nevertheless, during the pre-lockdown and post-lockdown periods, the 
maximum value of O3 occurred at 3 p.m. (Fig. S26 (a), (d)), which in-
dicates that titration started before the end of photochemical reactions, 
and titration consumed O3 generated by photochemical reactions. 
However, during the strict-lockdown and slight-lockdown periods, the 
maximum value of O3 occurred at 5 and 4 p.m. (Fig. S26 (b), (c)), 
respectively. This means that the titration effect was weakened during 
daytime, and the titration effect could not consume the O3 generated by 
photochemical reactions during that time, which resulted in a large in-
crease of the concentration of O3. Meanwhile, during all periods, O3 
increased from 7 a.m., suggesting that the large reduction in NOx has no 
particular effect on O3 production, even though NOx is also the main 
source of O3 production (Fig. S26). Accordingly, O3 concentrations 
during the slight-lockdown and post-lockdown periods in 2020 were 
above those during the corresponding periods in 2019. In Wuhan, the 
generation of O3 is controlled by VOCs. Conventional emission 

reduction measures would result in a sharp reduction of NOx, but the 
reduction in VOCs was insufficient to reduce O3 concentrations in 
Wuhan in the winter, even if the measures had been implemented to the 
limit. To further prevent O3 pollution, more refined and VOC-specific 
measures should be considered. 

4. Conclusion 

In this study, the significant variations in air pollutants in Wuhan, 
where the first city implemented lockdown measure during COVID-19 
were presented, including PM2.5, PM10, NO2, SO2, and CO decreased 
by 45 %, 49 %, 56 %, 39 %, and 18 % compared with the corresponding 
period in 2015–2019, yet O3 increased by 43 %. We evaluated the 
meteorological and non-meteorological influence of each pollutant 
during COVID-19 period using GAMs model. The significant variations 
in each pollutant are mainly caused by non-meteorological factors (e.g., 
anthropogenic emissions). The weakening of the titration effect of sur-
face ozone depletion due to the significant reduction emission of NOx 
(43 %) was the main cause of the significant increasing of O3. Therefore, 
we believe that conventional emission reduction (NOx reduction only) 
measures may not be sufficient to reduce (or even lead to an increase of) 
surface O3 concentrations, even if reaching the limit, and VOC-specific 
measures should also be taken. For the control of O3 pollution, a syn-
ergistic control of multiple pollutants including PM2.5, NOx and VOCs 
should be carried out. 
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