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Abstract

Despite the value of mass spectrometry in modern natural products discovery workflows, it 

remains very difficult to compare datasets between laboratories. In this study we compared mass 

spectrometry data for the same sample set from two different laboratories (quadrupole time-of-

flight and quadrupole-Orbitrap) and evaluated the similarity between these two datasets in terms of 

both mass spectrometry features and their ability to describe the chemical composition of the 

sample set. Somewhat surprisingly, the two datasets, collected with appropriate controls and 

replication, had very low feature overlap (25.7% of Laboratory A features overlapping 21.8% of 

Laboratory B features). Our data clearly demonstrate that differences in fragmentation, charge 

state, and adduct formation in the ionization source are a major underlying cause for these 

differences. Consistent with other recent literature, these findings challenge the conventional 

wisdom that electrospray ionization mass spectrometry (ESI-MS) yields a simple one-to-one 

correspondence between analytes in solution and features in the dataset. Importantly, despite low 

overlap in feature lists, principal component analysis (PCA) generated qualitatively similar PCA 

plots. Overall, our findings demonstrate that comparing untargeted metabolomics data between 

laboratories is challenging, but that datasets with low feature overlap can yield the same qualitative 

description of a sample set using PCA.
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Mass spectrometry-based metabolomics is emerging as a central tool for determining the 

chemical composition of natural product samples, including botanical extracts.1,2 Botanical 

natural products are often evaluated using targeted methods, where the sample is analyzed to 

determine the presence of ‘marker compounds’ from a defined target list.3,4 The inherent 

disadvantage of this approach is that metabolites outside this target list are not considered. 

This can result in contaminants being overlooked or lead to incorrect taxonomic or origin 

assignments. These issues can be addressed using untargeted metabolomics approaches. 

With untargeted metabolomics, all detectable features (m/z-retention time pairs) are reported 

in ‘feature lists’, which can subsequently be annotated for known molecules using reference 

compounds or in silico methods. However, there is currently lack of consensus within the 

natural products community on the optimal methods for acquiring or processing untargeted 

metabolomics datasets.

Untargeted mass spectrometry workflow design includes a large number of instrumental and 

analytical parameters, each of which can influence data quality and content. In this study, we 

analyzed a set of botanical extracts in two independent laboratories on two different mass 

spectrometry platforms using similar acquisition and processing methods. From these data, 

we first evaluated the importance of replicate type selection on data quality. We assessed the 

impact on feature list composition of performing replicate injections in addition to replicate 

extractions, to provide guidance on replicate type selection. Secondly, we assessed how 

closely the results aligned between the two laboratories when acquired under optimized 

conditions to better understand the opportunities and challenges associated with sharing 

untargeted metabolomics datasets between research sites.

Results and Discussion

Botanical Selection.

We selected Camellia sinensis (green tea) as the test species for this study. Camellia sinensis 
has been studied extensively for chemical composition.5–7 Consequently, many of the 

common constituents are known, and authentic reference samples of both the complex 

botanical and many of its components are commercially available. These studies were 

conducted using a set of 37 different sources of green tea, including cut-leaves, powders, and 

supplements (green tea capsules) from 31 commercial vendors (Supporting Information 

Table S1). These same green tea samples have been used in previous studies in our 
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laboratory, which provided detailed data about their chemical composition.8 This sample set 

included the NIST (National Institute of Standards and Technology) green tea leaf standard 

(SRM 3254), which was used as an authentic green tea (positive) control and a mixture of 

Curcuma longa and Zingiber officinale (turmeric and ginger) tea, which was employed as a 

non-green tea (negative) control.

Experimental design.

The key considerations for data collection were: the number and type of replicates; 

instrument type; data acquisition method; chromatographic conditions; and data analysis 

strategy (Figure 1). To assess the relative influence of performing replicate extractions 

versus replicate injections, we prepared three separate extractions of each sample, and 

analyzed each extraction replicate by mass spectrometry as injection replicates. Replicate 

extractions were all prepared by the same researcher using the same source material and 

equipment. Extracts were concentrated to dryness under nitrogen gas and stored at −20 °C 

prior to analysis.

For chemical analysis, we employed two different ‘high-resolution’ instruments; a Waters 

SYNAPT G2-Si qTOF (Laboratory A) and a Thermo Fisher Q-Exactive Plus Orbitrap 

(Laboratory B). Both instruments were equipped with electrospray ionization (ESI) sources. 

In addition, the SYNAPT is equipped with a traveling wave ion mobility cell, which was 

disabled for this study. Both types of instruments (qTOF and Orbitrap) are commonly 

encountered in academic and industrial natural products research groups and are instruments 

of choice for many natural product-based metabolomics studies. Although they function in 

fundamentally different ways, both instruments generate similar types of data (MS1 and 

optionally MS2 data, typically coupled to a liquid chromatography inlet), making it practical 

to compare the results of analyses. While this study does compare the features detected 

between two different MS platforms, the goal was not to directly compare the capabilities of 

these instruments. This is because performance with a single sample type and under a single 

set of conditions is not representative of the overall performance of any system. For this 

study the data collected on the Waters SYNAPT G2-Si instrument are labeled Laboratory A, 

while the data collected in the Thermo Fisher Scientific Q-Exactive Orbitrap are labeled 

Laboratory B.

Following initial method development (Supporting Information), a short linear gradient 

method was selected, and the same column and chromatographic conditions were used on 

both instruments (Experimental Section). This method balances chromatographic separation 

against analysis acquisition time. The method was selected as representative of those used 

for untargeted metabolomics studies of natural products mixtures, rather than being 

extensively tailored to achieve the best possible separation for C. sinensis.

The two mass spectrometers used in the study differ in several important ways with respect 

to data acquisition parameters. To obtain datasets that were directly comparable, we selected 

acquisition parameters that could easily be performed on both instruments. Data were 

obtained in positive ionization mode, using data-dependent acquisition (DDA) for MS2 data 

with a maximum of five target masses per MS1 scan. The same inclusion list of precursor 

masses (Table S2) was used for all analyses.
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As has been clearly demonstrated, data processing software and parameter selection can 

have a dramatic impact on feature list composition.9,10 A recent study from Hohrenk et al. 
showed that processing the same experimental dataset using four different software 

platforms afforded feature lists with a maximum common overlap of 10%.10 Differences in 

instrument design and output data formats often complicate data analysis tool selection. For 

example, the SYNAPT instrument includes a ‘lockspray’ calibrant that is infused into the 

instrument from a separate nebulizer at a defined interval during the acquisition. These 

calibration scans complicate processing of the MS1 data and are not well tolerated by all 

open-source tools. Similarly, the Orbitrap instrument can be run in fast polarity switching 

mode, but not all processing packages can correctly identify and segregate these two data 

types from a single output file. To generate feature lists that were directly comparable 

between instruments, we selected the popular open source software platform MZmine 2, 

which could handle. raw data from both mass spectrometry platforms.11

Influence of Replicate Analyses on Data Quality.

A number of previous studies have highlighted the importance of performing replicate 

analyses for untargeted metabolomics analysis of natural products mixtures.1,12–14 However, 

analysts often have difficulty determining which type of replication is appropriate. 

Replication in chemical analysis fits into two broad categories, biological replicates, in 

which samples are collected from different individuals or pooled samples from a given 

population (i.e. multiple samples of different plants of the same species or multiple batches 

of bacterial cells) or analytical replicates, also called technical replicates, where the analysis 

is repeated multiple times on the same sample.15 The type of replicate that is appropriate 

depends entirely on the scientific question being asked. In the test case used for this study, 

we were not asking a biological question, but rather sought to compare the chemical 

composition of a series of botanical natural product samples (green tea) all obtained from 

different suppliers. Thus, we chose to create analytical replicates that captured the variability 

in the entire process of extraction and analysis of the different samples. We first extracted 

each sample three times, creating a series of extraction replicates. The question arose in 

these studies as to whether it would be helpful to conduct replicate analyses of each of these 

extraction replicates with the mass spectrometer (replicate injections). We addressed this 

question using the three separate replicate extractions prepared from the same sample of the 

NIST standard of C. sinensis (Experimental Section). Aliquots of each replicate extraction 

were delivered to Laboratories A and B, resuspended in MeOH, and each extract analyzed 

with three replicate injections using the standard column, gradient, mass spectrometer 

acquisition parameters, and schedule of blank injections (Experimental Section).

Data processing was performed with MZmine 2. The nine replicates of the NIST standard 

(three replicate injections of three replicate extractions) were peak picked using the ADAP 

workflow (chromatogram builder and deconvolution). The same key ADAP settings were 

used for data from both instruments (e.g. 5 ppm for feature matching and 0.01 min for 

retention time tolerance).16 Intensity filter values were selected individually for each 

laboratory as the instruments have different sensitivities and dynamic ranges, and samples 

were therefore injected at different concentrations. Final feature lists were then aligned and 

filtered (160–1300 m/z and 1–9 min) to remove features from the column wash (9 – 11 min).
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The output from this analysis was a set of nine feature lists from each laboratory, containing 

the features identified from each replicate analysis. These feature lists were internally 

consistent in terms of scale, with average feature counts of 2056 ± 49 (mean ± standard 

deviation) for Laboratory A and 6229 ± 156 for Laboratory B. Using these lists, we 

examined the variability in feature list composition as a function of replicate count for both 

replicate extractions and replicate injections (Figure 2). In one case, we grouped data from 

all three injection replicates for a single extraction replicate (Figure 2 panels Ai and Bi), 

while in the other case we grouped data from all three extraction replicates for a single 

injection replicate (Figure 2 panels Aii and Bii). In both cases, we assessed the number of 

features present in at least one, two or three replicates. Interestingly, in all cases feature 

counts were similar, with variation typically < 10%. This was true both within replicate 

types (i.e. between the three extracts in panel i) and between replicate types (i.e. between 

panels i and ii). In all cases, a sharp decrease in feature counts was observed between those 

present in at least one replicate and those present in at least two replicates. On average, 60% 

of the features in each list were observed only once, highlighting the variability of low 

intensity features between replicates.

Interestingly, the absolute numbers of features and the relative changes in feature count were 

closely aligned between both type of replicate for both laboratories. If variations in 

extraction protocol had a dramatic impact on the constitution or concentration of individual 

extracts, then we would have expected to observe a higher rate of decrease in feature counts 

in replicate extractions versus replicate injections. Instead, we see low variation between the 

feature counts in the two replicate methods as we increase the requirement to be in at least 

one, two or three replicates, suggesting that there is low variation in chemical composition 

between extraction replicates. Finally, we combined these two replicate methods in panel iii 

which provides the feature counts for all possible combinations of replicate counts. The 

largest bar (far left) is the count of all features present in at least one injection replicate and 

one extraction replicate. The smallest bar (far right) provides a count of features present in 

all three injection replicates of all three extraction replicates (the most stringent criterion). 

These results illustrate the impact of setting different requirements for feature presence in 

replicates and the dramatic effect that this can have on feature counts for downstream 

analysis.

However, feature counts alone are not sufficient to fully assess overlap between analyses. To 

examine the value of performing injection replicates in addition to extraction replicates, we 

used the data from panel iii to filter the feature lists for each extraction replicate to retain 

only those features present in at least two injection replicates. Using these filtered lists, we 

then determined the distribution of features between extraction replicates (Venn diagrams, 

Figure 2 panels Aiv and Biv). Overall, Laboratory A detected a lower number of features 

(1926) compared to the feature list from Laboratory B (6896). Furthermore, the distribution 

of features within each set was quite different, with 46% of features from Laboratory A 

appearing at least twice, and 68% of features appearing at least twice in the dataset from 

Laboratory B. Intrigued by the source of this discrepancy, we ordered the features by 

intensity and placed them in groups of 50 (Laboratory A) or 100 (Laboratory B) and then 

plotted median group intensity, color coding the data points by median extraction replicate 

count (Figure 2 panels Av and Bv). This analysis demonstrates, perhaps unsurprisingly, the 
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relationship between replicate extraction count and intensity. Intense features are 

consistently present in all three analyses, while weaker features are often present just once or 

twice in the dataset.

Overall, our study shows that a significant portion of the features detectable in a single 

replicate are not observed in 2/3 replicates (Figure 2); therefore, inclusion of injection 

replicates will significantly reduce feature lists if features appearing only once are removed. 

The question of the relative value of extraction replicates as compared to injection replicates 

is best addressed by considering how the data will be interpreted. If the goal of the study is 

to employ untargeted metabolomics to compare chemical composition between samples (as 

in the case presented here), rigorous experimental design requires that the replicates 

reproduce the entire method, from extraction through to analysis by the mass spectrometer. 

Failure to do so could introduce systematic errors into the dataset, whereby variations in 

extraction efficiency could be interpreted as variability in chemical composition of samples. 

The importance of conducting replicate extractions for rigorous metabolomics studies 

appears to be generally accepted by the metabolomics community. For example, in a recent 

survey, 73% of metabolomics practitioners reported the use of replicate extractions in their 

analyses.17 Although there has been no similar survey specifically directed at the natural 

products community employing metabolomics, it is likely that the use of replicate 

extractions is not particularly common among natural products scientists. This is at least in 

part because the goal of many natural products studies is not to compare different sources of 

the same material, but to profile, as comprehensively as possible, the chemical content of a 

single natural product extract. For such applications, replicates are advisable to improve 

dataset quality and ensure a robust feature list. However, triplicate injections of a single 

extract are sufficient if the analyst does not seek to make quantitative comparisons between 

different extracts. Finally, for the study conducted herein, the data suggest that there is little 

value to conducing injection replicates of replicate extracts, particularly given the increased 

instrument time required to analyze these samples (nine analyses per sample rather than 

three).

Comparison of Feature Lists Across Laboratories.

An overarching objective of our research programs is the development of methods for the 

accurate characterization of natural products mixtures using MS-based untargeted 

metabolomics methods. In contrast to targeted metabolomics, where the goal is to determine 

the presence of compounds from a fixed target list, untargeted metabolomics aims to 

generate a complete description of the small molecules (metabolites) present in any mixture. 

Targeted methods are tolerant of feature lists with very high false positive rates, because 

these erroneous features can be ignored provided that they do not accidentally align with the 

target list. By contrast, untargeted methods aim to create feature lists that contain exclusively 

features that derive from real molecules in the test mixture. The extent to which this goal is 

met in a given MS metabolomics study is difficult to evaluate, given the large size of 

metabolomics datasets and that the samples being analyzed are typically of unknown 

composition. Here we sought to compare datasets between laboratories to evaluate the extent 

of overlap as a strategy to address dataset quality.

Clark et al. Page 6

J Nat Prod. Author manuscript; available in PMC 2022 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An additional observation from Figure 2 is the discrepancy between the absolute number of 

features identified in the two laboratories (10,047 from Laboratory A vs 18,247 from 

Laboratory B). It is tempting to conclude that the data from Laboratory B is in some way 

‘better’ because more features were detected. However, if these additional features did not 

derive from the actual sample, then the results from Laboratory A would be a more accurate 

representation of the chemical constitution of the test mixture. Alternatively, if the two 

instruments produce different numbers of adducts and in-source fragments, then the two 

datasets could be equally valuable for describing composition, even though the absolute 

numbers of features are very different. We were interested to examine this discrepancy in 

more depth, to try to understand the source of differences in number of features present in 

the datasets from the different laboratories.

We asked three questions about the data from these replicated feature lists: 1) How many of 

a set of known reference compounds were observable in each dataset? 2) How many features 

overlapped between the two datasets? and 3) What was the origin of the unique features 

from each feature list? Question 1 was designed to determine whether the difference in 

feature list sizes was due solely to detection limit, and therefore to reduced coverage of low 

abundance molecules in Laboratory A. Question 2 assessed the issue of coverage from a 

different perspective, by determining whether the feature list from Laboratory A was a 

subset of the list from Laboratory B, or whether the two lists contained fundamentally 

different features. Finally, question 3 was designed to evaluate whether we could propose an 

origin for these unique features, based on differences in background signals or ionization 

and in-source fragmentation behavior between these two mass spectrometers.

To define a reference set of known chemical constituents of C. sinensis, we purchased fifteen 

reference compounds (Table S2) and analyzed them in both laboratories to generate a full 

suite of UHPLC-MS/MS data on both MS platforms. Manual inspection of the raw MS data 

for the extract prepared from the NIST standard of C. sinensis by Laboratories A and B 

demonstrated that all 15 reference compounds were detectable, based on retention time and 

MS feature matching (MS1 and MS2 data, Supporting Information Figure S1). The reference 

compounds covered a broad range of retention times and intensities, from caffeine, which 

was the strongest signal in the sample, to caffeic acid and gallic acid, both of which were 

present at intensities close to the intensity cutoff assigned to each instrument.

Feature lists were created from a single injection of each replicate extraction on each 

instrument, with the requirement that features be present in at least two of three extraction 

replicates. These feature lists were then compared against the reference table for the 

commercial reference compounds (Table S2) and presence or absence determined by the 

detection of the required [M+H]+ adduct within 5 ppm and 0.05 min of the reference table. 

In addition, we compared the results with (Table 1A) and without (Table 1B) the inclusion of 

the ‘isotope filtering’ option in MZmine 2, which excludes features from the feature list that 

do not have at least one 13C isotope feature.

Interestingly, the number of identified reference compounds was similar for the feature lists 

from the two laboratories, notwithstanding the differences in feature counts. Without isotope 

filtering, 10 of the compounds represented in the list of reference compounds were identified 
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by both laboratories, with Laboratory A identifying one additional reference compound, and 

Laboratory B identifying three additional reference compounds. With the inclusion of 

isotope filtering, the number of identified reference compounds reduced, with seven 

reference compounds identified by both laboratories, Laboratory B identifying three 

additional reference compounds, and Laboratory A identifying one additional reference 

compound. The inclusion of isotope filtering selects against low abundance features because 

of the requirement to observe at least one additional isotopologue peak, which is typically at 

an intensity of just a few percent compared to the base all 12C peak for small molecules. 

Because it negatively impacted limit of detection for the known reference compounds, the 

isotope filtering feature was excluded from subsequent analyses.

Manual inspection of the data revealed that gallic acid, chlorogenic acid and caffeic acid 

were detected with very low signal intensity in the analysis of the NIST green tea standard 

extract, and were not detected by MZmine 2 in the dataset from either laboratory even 

without the isotope filter. Similarly, coumaric acid was present with such low signal intensity 

that it was not identified in either dataset. By contrast, caffeine was present with a very high 

signal intensity. This interfered with the mass accuracy in Laboratory A, causing a mass 

error > 5 ppm and preventing identification of the [M + H]+ signal.

We repeated this analysis on a mixture of all 15 reference compounds at a fixed 

concentration (6.25 μg/mL Laboratory A; 0.78 μg/mL Laboratory B) using the same 

chromatographic conditions. Results from this analysis mirrored those from the individual 

reference compounds, with both laboratories identifying 14 reference compounds, indicating 

that combining the reference compounds into a single mixture did not impact their detection 

under these chromatographic conditions.

We next sought to assess what percentage of the features in each list were common between 

the two datasets. In theory, data acquired on two identical systems should produce two 

identical feature lists. In reality, however, differences such as background contamination, 

clustering and fragmentation within the source, environmental conditions, and column 

performance will all contribute to differences in feature lists. In this study, differences in 

feature lists were further increased by the use of two different types of mass spectrometers. 

A major objective of this study was to assess the degree of similarity between datasets 

acquired on these two instruments, to evaluate the feasibility of data comparison between the 

two laboratories.

To relate features in the datasets acquired on the two different instruments, we first 

considered using a match factor or cosine score between corresponding MS2 spectra.18 

However, this approach suffers from the major drawback that many of these features are of 

low intensity, and were not selected for DDA MS2 analysis.

An alternative strategy is to match features between lists based on retention time and mass to 

charge (m/z) ratio. To be viable as a matching strategy, there must be a defined relationship 

between the retention times of compounds on the two instruments. Plotting retention time in 

Laboratory A vs retention time in Laboratory B for the reference compounds demonstrated a 

strong linear relationship, with an R2 value of 0.99 (Figure 3A). Using the line of best fit to 
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correct for a small deviation in the void volumes of the two systems (Experimental Section), 

we compared the corrected retention times and mass to charge ratios between the two feature 

lists and identified all features that were within 0.1 min retention time and 5 ppm m/z of one 

another (Figure 3B).

To our surprise, these feature lists from the two laboratories showed a maximum 29% 

overlap. Given that both instruments used the same column make and model, elution 

conditions, and ionization source type (ESI), we expected a higher degree of overlap 

between feature lists at the MS1 level. Use of the same column and gradient conditions 

ensures that the mixture of analytes eluting at a given point in the chromatogram should be 

similar on each instrument. Under identical ionization conditions, one would expect similar 

MS1 signals, and therefore feature lists of similar magnitude and composition. Several 

possible justifications for this discrepancy present themselves. Firstly, it is possible that one 

or both of the feature lists contain a large number of interference features that are not related 

to true analytes in the mixture. Secondly, it is possible that different molecules are ionized 

between the two instruments. Thirdly, it is possible that the two instruments generate 

significantly different MS1 features (e.g., charge states, fragments, adducts etc.) for the same 

set of molecules.

Each of these possibilities raises different concerns for researchers wishing to compare 

metabolomics datasets between laboratories. Central among these is the question of whether 

differences in feature lists are due to differing degrees of signal interference, detection of 

different components of complex mixtures, or different signals from the same set of 

components. The detection of 11 of 15 reference compounds in both feature lists (Table 1) 

suggests that in this case differences in compound ionization is not a principal driver of 

feature list variation. All feature lists were subject to blank subtraction to remove chemical 

interference signals deriving from background chemical contamination (The procedure for 

blank subtraction is available in the Experimental Section). The requirement that features be 

present in at least two of three replicates decreases the likelihood that the features outside 

the combined region of the Venn diagram (Figure 3B) are largely due to electronic 

interference signals (Figure 1). Instead, we hypothesized that these differences were due in 

large part to differences in MS1 signal generation between the two instruments. To test this 

hypothesis, we analyzed the mixture of the 15 C. sinensis reference compounds (Table 1) in 

triplicate on both instruments. Following the standard processing workflow, we manually 

identified the [M+H]+ signal for each observable reference compound and, using an in-

house Python script that matched features based on alignment of chromatographic peak 

shapes, assembled all of the MS features associated with each compound. A comparison of 

the features for each reference compound from each laboratory is presented in Figure 4.

The results from Figure 5 support the hypothesis that differences between the feature lists 

from the two instruments are driven to a large extent by differential formation of adducts, 

clusters and in-source fragments. Interestingly, although the [M+H]+ signal was present in 

both datasets in almost all cases, the overall alignment between features was very low, with 

most compounds having <10% alignment. Also surprising was the observation that very few 

of the features for each compound could be assigned to common adducts or fragments 

(black ovals in Venn diagrams above each plot) in either laboratory. This is congruent with 
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several recent reports that have demonstrated that typical untargeted metabolomics feature 

lists contain vastly more features than compounds, and that these features derive at least in 

part from the generation of many unique features for each analyte during the ionization 

process.19,20,21

To test the hypothesis that variations in feature list composition between instruments were 

driven at least in part by differences in MS feature formation for the same set of molecules, 

we extended our study to a large set of samples containing a higher degree of chemical 

complexity. If this hypothesis were sound, then independent grouping of related samples 

based on metabolomic profiles should provide comparable results from both laboratories, 

regardless of the precise distribution of MS features generated by each analyte. By contrast, 

if differences in feature list composition were due in large part to chemical interference 

within the datasets, created by background noise from solvents, atmosphere surrounding the 

source, or contamination within the liquid chromatograph or mass spectrometer, then either 

one or both datasets should perform poorly at grouping chemically similar samples.

We prepared three replicate extractions for each of the 37 sources of green tea (Table S1),8 

and the control sample mixture of C. longa and Z. officinale. This included three NIST 

standards; NIST 3254 (green tea leaf) and NIST 3255 and 3256 (green tea supplements). We 

analyzed this sample set independently in Laboratories A and B using the same workflow 

employed throughout this study, and created replicated feature lists for each sample with the 

requirement that features be present in a minimum of two replicates. A total of 10,325 

features were detected in the dataset obtained by Laboratory A, and 12,121 features in the 

dataset from Laboratory B, of which 2,649 were detected in both datasets (Figure 6A). 

These results were broadly aligned with the previous evaluation of the reference compounds 

mixture, with ~20% of the features being present in both datasets.

Next, the two feature lists were subjected to principal component analysis (PCA) to assess 

their ability to discriminate between sample types, a common and practical application of 

untargeted metabolomics datasets. Inspection of the PCA scores plot using combinations of 

the first three components (Figure 6B) yielded similar sample distributions. The non-green 

tea sample (containing C. longa and Z. officinale) was located beyond the Hotelling’s 95% 

confidence ellipse in all cases (red dot in Figure 6B), and two green teas that contained 

additional botanical components (shown in orange in Figure 6B) were spatially located away 

from the main cluster of green tea samples. The scores plot from the data from Laboratory A 

evidenced greater separation between the tea and supplement samples when PC1 versus PC2 

was plotted (as compared to the plot of PC2 versus PC3), while the scores plot from 

Laboratory B showed better discrimination between tea leaves and supplements in the PC2 

versus PC3 plot than in the PC1 versus PC2 plot. Overall, the qualitative appearance of the 

PCA plots, with green tea leaves and supplements grouped separately and NIST standards 

located within the relevant data clusters, is consistent with the previously published data on 

this same sample set.8 The ability to effectively distinguish the various types of samples in 

the PCA scores plots served to strengthen the conclusion that the differences between 

feature lists represent ‘real’ features (i.e., those arising from green tea metabolites) and not 

noise or contamination.
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One question that arises when interpreting the data in Figures 5 and 6 is whether the larger 

number of features observed for Laboratory B compared with Laboratory A could be due to 

differences in the ability to detect low abundance ions. Under the conditions used in these 

analyses, the limits of detection for Laboratory A varied depending on the analyte but were 

typically 5 to 10 times higher than those for Laboratory B (Table 6S). To adjust for this 

difference, the C. sinensis samples were analyzed by Laboratory A at 10-fold higher 

concentration (1 mg/mL) than for Laboratory B (0.1 mg/mL). Even with the concentrations 

adjusted to address differences in limit of detection, the feature lists for Laboratory B were 

still quite different in both identity and number of features as compared to Laboratory A. 

Thus, we conclude that the differences in feature lists are due at least in part to differences in 

ionization behavior beyond what could be expected due to differences in limits of detection.

When comparing the differences in datasets across the two laboratories, it is also important 

to consider the question of whether interpretation might have been confounded by 

differences in the acquisition methodologies. For the design of this study, we intentionally 

attempted to harmonize the data acquisition parameters between the two laboratories to 

facilitate meaningful comparisons between the datasets acquired on the qTOF (Laboratory 

A) and the Q-Exactive Orbitrap (Laboratory B). Despite these efforts, there were some 

minor methodological differences across laboratories that were overlooked in the design step 

and did not become apparent until the data analysis stage. As described in the Experimental 

section, these included the type of solvent used as diluent prior to HPLC injection, the mass 

spectrometer scan rate, the column temperature, and the number of precursors chosen in the 

data dependent analysis. Even with these methodological differences, we contend that the 

conclusion that different platforms generated different numbers of features and types of 

adducts detected remains sound. The diluent used prior to injection to LC-MS should have 

negligible impact on ionization efficiency (given that it is diluted many-fold in the LC 

solvent) and the differences in MS scan rate, while impacting duty cycle and sampling 

across peaks, should not change the identity of the clusters and fragments detected. Any 

minor differences in retention time that may have arisen from the slightly different column 

temperatures used were addressed in the process of retention time correction demonstrated 

in Figure 3.

Importantly, even if all acquisition parameters were identical, it would be impossible to 

make a head-to-head comparison in the two mass spectrometry platforms due to dramatic 

differences in the instrument hardware. Although both instruments were equipped with an 

electrospray ionization source, the source design and ion optics differs between vendors. 

Furthermore, the two instruments are equipped with different types of mass analyzers, a 

hybrid quadrupole-time-of-flight for Laboratory A and a hybrid quadrupole-Orbitrap for 

Laboratory B. Some compromise was necessary to collect datasets with similar parameters 

on these two instruments, and, consequently, the parameters were not fully optimized for 

either instrument. Therefore, it is not possible based on this single study to draw a concrete 

conclusion as to which platform is “better.” We can, however, say based on the data 

presented here that both instruments effectively characterized the chemical differences in the 

C. sinensis samples.
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Conclusion

The majority of previous interlaboratory comparisons in MS have focused on targeted 

analysis; comparison of the abundance of known analytes in the datasets from different 

laboratories.22–24 This study attempted an interlaboratory comparison using an untargeted 

approach, comparing feature lists generated independently by each laboratory on the same 

sample set. We showed that retention times were strongly correlated between the datasets 

and could be used to facilitate feature-by-feature comparisons. In comparing the datasets, we 

observed dramatic differences in feature identity, which appear to result from differences in 

the adducts, fragments, charge states, and clusters generated by different mass 

spectrometers. Importantly, datasets with very different feature composition collected in two 

independent laboratories still effectively described qualitative differences in samples, which 

is typically the stated objective of metabolomics studies.

Our studies have some interesting implications for the community of scientists seeking to 

employ untargeted metabolomics to characterize natural products samples. Firstly, we 

demonstrated that the requirement that a feature be detected in at least two of three replicates 

results in a dramatic reduction in the number of features in an untargeted metabolomics 

dataset. Thus, the inclusion of replicates is important for improving dataset quality and 

preventing erroneous data interpretation, but will also result in rejection of some low-

abundance features that may represent real analytes. Secondly, these data suggest that unique 

feature lists are to be expected when analyses are conducted on different instruments, an 

observation that makes the typical inter-laboratory comparisons for validating analytical 

approaches very difficult. Our findings emphasize the important conclusion that untargeted 

metabolomics feature lists are not a description of the chemical constitution of the sample, 

but rather an instrument-specific snapshot of how the chemical entities in the sample 

respond to analysis by the particular mass spectrometer. As such, feature lists are useful for 

comparing samples all analyzed on the same MS platform, but such comparisons should not 

be extended to samples analyzed on different platforms or in different laboratories. Results 

from the evaluation of standards in both laboratories highlights the large number of adducts, 

fragments, and charge states that can derive from a single compound. As has previously been 

noted, these inflate feature list counts and artificially increase the assumed sample 

complexity in many cases. An effective and accurate deconvolution tool to reduce a complex 

feature list down to its component list of individual analytes (chemical entities) would 

greatly improve the ability to compare MS datasets across laboratories.

Experimental Section

Chemicals.

Unless otherwise noted, all chemicals were of reagent or spectroscopic grade and obtained 

from Fisher Scientific

Green Tea Product Selection and Extraction.

Commercially available green tea products were selected using consumer sales25 and 

product quality reports.26,27 The 34 products included 21 whole-leaf teas, six powders, and 
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seven supplements (Table S1). A single non-green tea (turmeric-ginger tea) was included as 

a negative control (GT23), and Camellia sinensis standard reference materials from NIST for 

loose leaf tea (GT26), supplement (GT27), and oral dosage form (GT37) (nos. 3254, 3255, 

and 3256, respectively) served as positive controls (Table S1). Two green teas that contained 

other botanical additives were also selected for comparison (GT24 and GT38). A retention 

sample of each product, containing several grams of material, was maintained in Laboratory 

B for future reference. Data about the chemical composition of the green tea samples used in 

this study is publicly available on the Center of Excellence for Natural Product Drug 

Interaction Research Data Repository, https://repo.napdi.org/.

Green tea products were extracted in triplicate. For each sample, to 200 mg tea sample was 

added 20 mL of reagent-grade MeOH, and the mixtures shaken overnight at room 

temperature, filtered, concentrated to dryness under nitrogen gas and stored at −20 °C prior 

to analysis.

Sample Preparation.

Weighed aliquots of dried samples prepared in Laboratory B (~10 mg each) were transferred 

to new 1-dram vials and shipped to Laboratory A over dry ice. Laboratory A prepared the 

sample in Optima grade MeOH to a concentration of 5 mg/mL. Vials were then sonicated 

and vortexed before being dilution to a final concentration of 1 mg/mL in a mixture of 50:50 

MeOH:H2O. Laboratory B reconstituted the dried samples to 4 or 6 mg/mL in Optima grade 

MeOH depending on the volume limits of the vial. Vials were then sonicated and vortexed 

before being diluted to a final concentration of 0.1 mg/mL with Optima grade MeOH.

A set of mixes was also created using 15 reference compounds purchased from ChromaDex. 

For consistency, the mixtures were prepared in Laboratory B, divided into two and one 

aliquot was shipped to Laboratory A over dry ice. Mixtures were made in equivalent 

amounts of each reference compound beginning with 100 μg/mL and following half 

dilutions ending with 0.195 μg/mL.

LCMS Conditions.

A total of nine samples (3 replicate extractions × 3 replicate injections) were injected for 

green tea sample 26 (GT-26; NIST sample SRM 3254). All other green tea samples were 

collected as single injections of replicate extractions. Additionally, each of the reference 

compound mixes were injected in triplicate. Approximately 20% of the sample lists were 

blank samples dispersed throughout, three were selected from each lab to be used for blank 

subtraction

All measurements were performed with an Acquity I-Class UPLC (Waters) for Laboratory 

A, or Acquity H-class UPLC (Waters) for Laboratory B, with both laboratories using an 

HSS T3 C18 column (100 mm × 2.1 mm, 1.8 μm, Waters). Separation of 5 μL of sample was 

achieved by a gradient of (A) H2O + 0.1% formic acid(FA) to (B) MeCN + 0.1% FA at a 

flow rate of 500 μL/min and for 12.8 min (5% MeCN, 0–0.3 min; 5–90% MeCN, 0.3–9.1 

min; 90–98% MeCN, 9.1–10.7 min; 98% MeCN, 10.7–11 min; 5% MeCN, 11.01–12.8 

min).
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For Laboratory A, the LC flow was directly infused into a SYNAPT G2-Si qTOF (Waters) 

operated in positive ion mode. Analysis was conducted using DDA mode with an inclusion 

list for the reference compounds and a maximum of three MS2 acquisitions per MS1 survey 

scan. The instrument was operated in electrospray mode with 200 pg/mL leucine enkephalin 

lockspray infusion enabled every 10 seconds. Mass spectra were acquired from 50–1500 m/z 
at a 5 Hz scan rate in centroid mode with lockmass correction.

For Laboratory B the LC flow was directly infused into a Q-Exactive Plus quadrupole-

Orbitrap mass spectrometer (Thermo Scientific) operated in positive ion mode. Analysis was 

conducted using DDA mode with an inclusion list for the reference compounds and a 

maximum of five MS2 acquisitions per MS1 survey scan. Mass spectra were acquired from 

120–1200 m/z at a 11 Hz scan rate in profile mode.

Data Analysis.

All Samples were processed using MZmine 2 (http://mzmine.github.io/) version 2.51.11 

Peak detection was performed using mass detection and the ADAP chromatogram builder 

module with using MS level 1, an m/z tolerance of 0.001 Da or 5 ppm, and a minimum 

group size of four scans for both labs. For peak detection Laboratory A used a mass 

detection (noise level) and group intensity threshold of zero, and a minimum highest 

intensity of 600, Laboratory B used a mass detection (noise level) of 1 × 104, a group 

intensity threshold of 5 × 104, and a minimum highest intensity of 1 × 105. Deconvolution 

was then performed using ADAP deconvolution with a signal to noise threshold of 10, peak 

duration range of 0–3, and a retention time wavelet range of 0–0.1 for both laboratories. 

Laboratory A used a coefficient area threshold of 50 and a minimum feature height of 600, 

while Laboratory B uses a coefficient area threshold of 120 and a minimum feature height of 

1 × 105. Feature lists were then deisotoped using an m/z tolerance of 0.001 Da or 5 ppm and 

a retention time tolerance of 0.05 min. Feature lists for each sample (in triplicate) were then 

join aligned using a weight of 10 for both m/z and retention time, and a retention time 

tolerance of 0.05 min. The join aligned list was then row filtered for mass range 160–1300 

m/z, time range of 0–9 min, and requiring occurrence in a minimum of two out of three 

samples. The new aligned and filtered lists for each sample were then join aligned together 

along with a list of blank samples processed identically to the samples, followed by deletion 

of features that showed up at least two of three times in the blank samples.

Comparison of Feature Lists.

Feature lists were compared using an in-house Python script (https://github.com/

liningtonlab/green_tea_ms). The script first performs a correction to the retention times for 

each feature from laboratory A using the line of best fit from Figure 3A and the following 

equation:

corrected retention time = (retention time − intercept) / slope

Secondly, the script identifies features between the two lists that have matching m/z and 

corrected retention times within a 0.05 Da (m/z window) and 0.1 min (retention time 

window).
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Feature Grouping and Annotation of Reference Compound Mixes.

To group features from each feature list, first the scan-by-scan data for each feature was 

exported from MZmine 2.0 as a csv file. An in-house Python script (https://github.com/

liningtonlab/green_tea_ms) was then used on the scan-by-scan data to compare intensities of 

pairs of features as a function of scan number. Plotting intensity vs intensity as a function of 

scan number provides a measure of the change in relative intensity for each feature pair. 

Features that displayed an r2 > 0.9 from the linear regression of these plots were grouped 

together and defined as a single analyte. Features associated with each analyte were retained 

if they were associated with that analyte in at least two out of three replicate injections.

In MZmine 2, MS1 annotations were performed through the identification modules (custom 

database and adduct searches). In addition to the calculated [M+H]+ of each reference 

compound, the platform MZedDB was employed to generate lists of potential adducts 

specific to each reference compound.28 For additional adducts and neutral losses, a list was 

compiled using reference data from several different sources. 29–34 The annotation modules 

were employed with a m/z tolerance of 0.002 Da or 5 ppm, and a retention time tolerance of 

0.05 min. A maximum relative adducts peak height of 10,000% were set for adducts and 

neutral masses. The annotation results are reported as [M+CC+NM]+ according to the model 

proposed by Kachman et al., 31 where CC denotes the Charge Carrier, and NM is the 

proposed Neutral Mass (gain or loss). The lists compiling the adducts and neutral losses are 

presented in Table S5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Project workflow.
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Figure 2. 
Replicate distributions of features for Laboratory A (blue) and B (green). i) distribution of 

features between replicate injections ii) distribution of features between replicate extractions 

iii) distribution of features between replicate extractions and replicate injections iv) Venn 

diagram of feature distributions between replicate extractions for features that are present in 

at least two replicate injections and v) relationship between feature intensity and replicate 

count for data from panel iv.
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Figure 3. 
A) Relationship between retention times for reference compounds detected in the NIST 

Camillia sinensis standard from Laboratory A (y-axis) and Laboratory B (x-axis). B) Venn 

diagram of feature list overlap for NIST standard between Laboratory A (blue) and 

Laboratory B (green).
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Figure 4. 
A) Butterfly plot of MS features for epicatechin in both laboratories and B) a simplified 

view of the butterfly plot in panel A. For panel B orange = features present in both datasets, 

blue = features only present in Laboratory A, green = features only present in Laboratory B. 

Diameter is proportional to the relative intensity of each datapoint. The Venn diagram above 

the trace indicates the number of features from Laboratory A (blue) or Laboratory B (green). 

Features in black boxes were annotatable adducts or fragments (e.g. [M+H]+, [M+Na]+, [M

+H-H2O]+ etc.). Interpretation of the Venn Diagram for epicatechin is as follows: 12 and 17 

features were grouped with the molecule for Laboratories A and B respectively. Four of the 

epicatechin-associated features in the dataset for Laboratory A and seven of the epicatechin-

associated features in the dataset for Laboratory B were annotatable, as adducts or clusters 

(numbers in black circle). Only one of the epicatechin-associated features was detected by 

both Laboratory A and Laboratory B, and none (zero) of the unidentified peaks were present 

in both datasets.
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Figure 5. 
Comparison of MS features for reference compounds analyzed in Laboratories A and B. 

Orange = features present in both datasets, blue = features only present in Laboratory A, 

green = features only present in Laboratory B. Diameter proportional to relative intensity. 

Venn diagram above each trace indicates number of features from Laboratory A (blue) or 

Laboratory B (green). Features in black ovals were annotatable adducts or fragments (e.g. 

[M+H]+, [M+Na]+, [M+Na+NaCOOH]+, [M+H-H2O]+, [2M+Na]+, etc.).
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Figure 6. 
A) Venn diagram of unique feature list counts and shared features between Laboratories A 

(blue) and B (green). B) Principal component analysis (PCA) scores plots of green tea 

samples: 27 “leaf” products, either whole-leaf teas (21) or powders (6), seven supplements, a 

single non-green tea (“non-gt”, turmeric-ginger tea) negative control, and three Camellia 
sinensis standard reference materials from NIST, drawn with Hotelling’s 95% confidence 

ellipse from Laboratory A (left) and B (right). Top plots are PC1 vs. PC2. Bottom plots are 

PC2 vs. PC3.
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Table 1.

A) Reference compounds identification from feature lists generated without isotope filtering and B) reference 

compounds identification from feature lists generated with isotope filtering in the NIST leaf extract (SRM 

3254)

A.

Standard Laboratory A Both Laboratory B

Caffeic acid +

Caffeine +

Chlorogenic acid +

Coumaric acid -

Epicatechin +

Epicatechin gallate +

Epigallocatechin +

Gallic acid +

Gallocatechin +

Gallocatechin gallate +

Kaempferol +

Myricetin +

Quercetin +

Rutin +

Theanine +

B.

Standard Laboratory A Both Laboratory B

Caffeic acid -

Caffeine +

Chlorogenic acid -

Coumaric acid -

Epicatechin +

Epicatechin gallate +

Epigallocatechin +

Gallic acid -

Gallocatechin +

Gallocatechin gallate +

Kaempferol +

Myricetin +

Quercetin +

Rutin +

Theanine +
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