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To extend previous simulations on the performance of propensity score (PS) weighting and trimming methods
to settings without and with unmeasured confounding, Poisson outcomes, and various strengths of treatment
prediction (PS c statistic), we simulated studies with a binary intended treatment T as a function of 4 measured
covariates. We mimicked treatment withheld and last-resort treatment by adding 2 “unmeasured” dichotomous
factors that directed treatment to change for some patients in both tails of the PS distribution. The number of
outcomes Y was simulated as a Poisson function of T and confounders. We estimated the PS as a function
of measured covariates and trimmed the tails of the PS distribution using 3 strategies (“Crump,” “Stirmer,”
and “Walker”). After trimming and reestimation, we used alternative PS weights to estimate the treatment
effect (rate ratio): inverse probability of treatment weighting, standardized mortality ratio (SMR)-treated, SMR-
untreated, the average treatment effect in the overlap population (ATO), matching, and entropy. With no
unmeasured confounding, the ATO (123%) and “Crump” trimming (112%) improved relative efficiency compared
with untrimmed inverse probability of treatment weighting. With unmeasured confounding, untrimmed estimates
were biased irrespective of weighting method, and only Stiirmer and Walker trimming consistently reduced bias.
In settings where unmeasured confounding (e.g., frailty) may lead physicians to withhold treatment, Stirmer and

Walker trimming should be considered before primary analysis.

bias (epidemiology); epidemiologic methods; propensity score; simulation study; trimming; unmeasured

confounding; variance; weighting

Abbreviations: AUC, area under the receiver operating characteristic curve; IPTW, inverse probability of treatment weighting; PS,
propensity score; RE, relative efficiency; RR, rate ratio; SMR, standardized mortality ratio.

The propensity score (PS), proposed by Rosenbaum and
Rubin in 1983 (1), allows pharmacoepidemiologists to focus
on treatment decisions, including timing and alternatives,
and highlights the importance of choosing an appropriate
study population in the presence of treatment effect het-
erogeneity (2—4). Weighting of observations on the basis
of some function of the PS allows researchers to balance
covariates across treatment groups and hence estimate
unconfounded treatment effects in defined populations. For
dichotomous treatments, researchers commonly use weights
to estimate treatment effects in 3 possible target populations:
the treated and untreated combined (average treatment
effect in the population), the treated population (average

treatment effect in the treated), and a group that gets much
less attention, the untreated population (average treatment
effect in the untreated). Recently, additional balancing
weights have been proposed, including matching weights
(5), overlap weights (6), and entropy weights (7), which can
increase efficiency and reduce imbalances if the PS model
is misspecified but which have uncertain performance in the
presence of unmeasured confounding.

Restricting the study population provides another way to
reduce the variance of weighted estimates and to reduce
bias from confounding in the tails of the PS distribution.
Methodologists with different goals have proposed various
methods of trimming the study population based on the PS
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or a function of the PS. Crump et al. (8) proposed reducing
the variance of inverse probability of treatment weighting
(IPTW) estimates of the average treatment effect in the
overall population by trimming both tails of the PS distribu-
tion, thereby restricting the study population to observations
without an extreme preference for one of the treatments
compared. Motivated by studies that found both unmea-
sured confounding and treatment contrary to prediction to
be more common in the tails of the PS distribution (9, 10),
Stiirmer et al. (11) proposed a different trimming approach
to reduce confounding in settings where unmeasured factors
may result in patients’ being treated contrary to prediction.
Trimming by a function of the PS, the preference score, was
extended to the setting of comparative effectiveness research
by Walker et al. (12), to enhance validity through focus on
comparison of subjects in treatment equipoise.

While trimming has been proposed to reduce the mag-
nitude of unmeasured confounding in pharmacoepidemiol-
ogy and comparative effectiveness research, the separate
and joint effects of trimming and more recent weighting
strategies that down-weight observations in the tails of the
PS (i.e., matching weights, overlap weights, and entropy
weights) have not been assessed with respect to their poten-
tial to reduce unmeasured confounding. Here we extend the
simulations of Stiirmer et al. (11), Yoshida et al. (13), and
Li et al. (14) to the combination of all established weight-
ing methods (IPTW, standardized mortality ratio (SMR)-
treated, and SMR-untreated) and novel weighting methods
(matching, overlap, and entropy) with all proposed trimming
methods (Crump, Stiirmer, and Walker) in the setting of a
dichotomous treatment and a Poisson outcome more closely
mimicking pharmacoepidemiologic settings, and with and
without unmeasured confounding concentrated in the tails
of the PS.

METHODS
Data generation

We used the same simulation setup as Stiirmer et al.
(11), outlined in Web Figure 1 (available online at https://
doi.org/10.1093/aje/kwab041). In brief, we simulated 5,000
cohort studies with a sample size of n = 10,000 each and
a binary intended treatment 7 as a function of 6 measured
covariates—instruments (X; and X4), risk factors (X, and
X5s), and confounders (X3 and X¢), each category being both
dichotomous (X;, X», and X3) and continuous (X4, X5, and
Xe). We then mimicked the overriding of the predicted treat-
ment decision by adding 2 rare (prevalence approximately
1% each) “unmeasured” dichotomous confounders (X7 and
X3g) that directed treatment assignment to change for a small
number of patients in both tails of the PS distribution. X7
directed last-resort treatment, leading to treatment in some
patients who are very unlikely to be treated (e.g., because
they have a very bad prognosis) while strongly increasing
the risk for the outcome. Xg directed treatment withheld,
leading to nontreatment of some patients who are very likely
to be treated (e.g., because they are frail), again strongly
increasing the risk for the outcome. X7 was set to 1 (present)
when a random uniform number was less than or equal to
[y — p(T1X1—Xg)] and set to O otherwise. Thus, observations
with a probability of intended treatment close to 0 would be
most likely to have X7 = 1, and no one with a probability
of intended treatment greater than y would have X7 = 1.
The values for y ranged from 0.037 to 0.520, depending
on the scenario (mostly, prevalence of treatment). Xg was
set to 1 (present) when a random uniform number was less
than or equal to [p(T1X1—X¢) — 3] and set to O (absent)
otherwise. Thus, observations with a probability of intended
treatment close to 1 would be most likely to have Xg = 1, and

Table 1. Parameters Covered in the Simulation Study and Their Values

Variable? Distribution ORy RR,
X4 Binomial (10,000, 0.2) 2.0 1.0
Xo Binomial (10,000, 0.2) 1.0 2.0
X3 Binomial (10,000, 0.2) 0.2 0.2
X4 Normal (0, 1) 1.5 1.0
X5 Normal (0, 1) 1.0 1.5
Xs Normal (0, 1) 0.5 0.5
X7 Binomial (10,000, ~0.01) 1.0, 10.0 1.0, 10.0
Xg Binomial (10,000, ~0.01) 1.0, 0.1 1.0, 10.0
T,P=0.2,05,0.8 Binomial (10,000, P) 1.0,2.0

YIT=0
AUC 0.75 (0.85, 0.65)

Poisson (x ~0.1)

Abbreviations: AUC, area under the receiver operating characteristic curve; OR, odds ratio; RR, rate ratio.

a T, treatment; X1-Xg, covariates; Y, outcome.
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Table 2. Propensity Score Trimming Methods Implemented in the Simulation Study

Method Term Used

Lower Cutpoint Upper Cutpoint

No trimming N/A N/A

Remove nonpositivity regions Common range

Sturmer et al. (11) Stirmer
Walker et al. (12) Walker
Crump et al. (8) Crump

Lowest PS in the treated

Fifth PS percentile in the treated?®
Preference score® <0.3

PS <0.1

N/A

Highest PS in the untreated

95th PS percentile in the untreated?®
Preference score® >0.7

PS >0.9

Abbreviation: N/A, not applicable; PS, propensity score.

a Sthrmer et al. (11) also proposed first/99th and 2.5th/97.5th percentile cutpoints.
b | ogit(preference score) = logit(PS) — logit(treatment prevalence); this transformation makes it possible to use absolute cutpoints irrespective

of the treatment prevalence.

no one with a probability of intended treatment less than
would have Xg = 1. The values for § ranged from 0.285 to
0.967, depending on the scenario (again, mostly prevalence
of treatment). The number of outcomes Y (over a constant
follow-up period) was then simulated as a Poisson function
of T (uniform treatment effect), all confounders (including
unmeasured), and the 2 risk factors. Table 1 shows the preva-
lence (distribution) and effects on treatment and outcome of
all measured and unmeasured covariates, and Web Figure
2 shows the distributions of the PS based on measured
covariates according to treatment and to the c statistic of the
PS model.

Estimands

In all studies, we estimated the PS with main-effects
logistic regression as a function of measured covariates only
(i.e., ignoring X7 and Xg). We trimmed the tails of the PS
distribution using 5 strategies (Table 2): 1) no trimming
(i.e., allowing for PS tails containing only treated or only
untreated (i.e., nonpositivity); 2) common range trimming
(trimming observations below the lowest observed PS in the
treated and above the highest observed PS in the untreated);
3) “Crump” trimming (trimming observations below a PS
of 0.1 and above a PS of 0.9); 4) “Stirmer” trimming
(trimming both treated and untreated observations below
the fifth percentile of observed PS in the treated and above

the 95th percentile of observed PS in the untreated); and
5) “Walker” trimming (trimming observations below a pref-
erence score of 0.3 and above a preference score of 0.7,
where higher scores reflect higher preference for treatment
given measured covariates and the logit of the preference
score is defined as the logit of the PS minus the logit of
the treatment prevalence). These trimming methods have
recently been described and compared in detail with regard
to the resulting study populations (15). While Crump et al.
(8) and Walker et al. (12) proposed only 1 set of cutpoints,
Stiirmer et al. (11) originally proposed using a range of
cutpoints (the first, 2.5th, and fifth percentiles of the treated
and their complements on the upper end of the untreated
PS distribution). For our simulations, we chose the fifth
and 95th percentile trimming only, since Glynn et al. (15)
used the fifth percentile cutpoint for Stiirmer trimming when
comparing the number trimmed (and remaining after trim-
ming) across the 3 trimming strategies and Yoshida et al. (13)
similarly compared the number trimmed for 3 treatments
(using adapted but unique cutpoints).

After trimming (if applicable), we reestimated the PS
to improve covariate balance. Reestimation of the PS in
the trimmed populations is important, since the PS model
estimated in the untrimmed population will be misspecified
in the population remaining after trimming (16). We then
implemented 6 different PS weights (Table 3) to estimate the
treatment effect (rate ratio), including 3 defined populations:

Table 3. Propensity Score Weighting Methods Implemented in the Simulation Study and Their Target Populations

Target Population Term Used Treated Untreated

Combined IPTW 1/PS 1/(1 — PS)

Treated SMR-treated weights 1 PS/(1 — PS)

Untreated SMR-untreated weights (1 — PS)/PS 1

Overlap Overlap weights (1 - PS) PS

Matched Matching weights min(PS, (1 — PS))/PS min(PS, (1 — PS))/(1 — PS)
Combined Entropy weights —[PS x log(PS) + (1 — PS) x log(1 — —[PS x log(PS) + (1 — PS) x log(1 —

PS)I/PS

PS)I/(1 — PS)

Abbreviations: IPTW, inverse probability of treatment weighting; PS, propensity score; SMR, standardized mortality ratio.
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the overall population (i.e., both the treated and the untreated
(average treatment effect in the population)), the treated
(average treatment effect in the treated), and the untreated
(average treatment effect in the untreated). Three alterna-
tives targeted less well defined populations: overlap weights,
which are proposed to increase efficiency by emphasizing
the population with the most overlap in observed charac-
teristics (6); matching weights, which mimic 1:1 matching
without replacement and varying target populations depend-
ing on the treatment prevalence (5); and entropy weights,
which were originally proposed as an iterative process to
lead to better covariate balance (7). For our simulations,
we used closed-form entropy weights, multiplying IPTW
weights with a semicircular tilting function recently pro-
posed by Zhou et al. (17).

Performance measures

We report the exponent of the mean log rate ratio (RR)
across simulations and used the empirical variance of the
log(RR) across simulations to derive empirical 95% confi-
dence intervals. The mean squared error was estimated as the
mean (across simulations) of the squared bias within simu-
lations. We used the within-simulation variance ignoring the
estimation of the PS when assessing coverage probabilities.
The relative efficiency (RE) of estimators versus untrimmed
IPTW was calculated by multiplying the inverse of the
empirical variance of the specific estimator by the empirical
variance of the untrimmed IPTW (x100). Nonconvergence
was defined as an estimated treatment effect | § | or its
standard error being greater than 5; all values for such studies
were set to missing.

RESULTS

All scenarios assessed had fewer than 20 out of 5,000
studies with nonconvergence. We present efficiency results
without unmeasured confounding for the basic scenario in
Figure 1 (for a treatment prevalence of 20%) and Web Table
1 (for all treatment prevalences). As expected, all estimates
were unbiased. RE as compared with the untrimmed IPTW
ranged from 61% (for SMR-untreated weights with Walker
trimming) to 123% (for overlap weights without any
trimming or with trimming to a common PS range). Crump
trimming improved efficiency for IPTW (RE = 112%)
but did not further increase efficiency for overlap weights
(RE = 120% with Crump trimming vs. RE = 123% with-
out prior trimming). With increasing treatment prevalence
(Web Table 1), differences in RE generally became more
pronounced while maintaining the patterns observed for a
treatment prevalence of 20%. For a treatment prevalence
of 80%, untrimmed IPTW is especially variable, leading
to more pronounced efficiency gains with the untrimmed
overlap, matching, SMR-untreated, and entropy weights (all
>200%). This imprecision of the untrimmed IPTW is due
to the simulation setup with an incidence rate ratio of 2.0
and an incidence in the unexposed of 0.1. This setup leads to
few events in the unexposed and, in combination with large
weights in those few unexposed with high propensity for
treatment, an imprecise untrimmed IPTW estimator.

Strategy RR (95% CI) RE
IPTW
No trimming — 1.00 (0.85,1.16) 100
Common range —e 0.99 (0.85,1.15) 101
Stiirmer . S— 0.99 (0.83,1.19) 78
Walker —<—>  0.99 (0.82,1.21) 65
Crump — 1.00 (0.86,1.15) 112
SMR-treated weights
No trimming —_— 1.00 (0.86,1.17) 100
Common range — 0.99 (0.85,1.16) 102
Stirmer — 1.00 (0.84,1.18) 84
Walker —<+—— 0.99 (0.82,1.20) 69
Crump — 1.00 (0.85,1.17) 99
SMR-untreated weights
No trimming — 0.99 (0.83,1.19) 78
Common range e 0.99 (0.83,1.17) 80
Stiirmer — 0.99 (0.83,1.19) 72
Walker ——> 0.99 (0.81,1.21) 61
Crump — 1.00 (0.85,1.17) 98
Overlap weights
No trimming — 1.00 (0.87,1.15) 123
Common range —— 1.00 (0.87,1.15) 123
Stirmer — 1.00 (0.84,1.18) 86
Walker —<——  0.99(0.83,1.20) 69
Crump — 1.00 (0.87,1.15) 120
Matching weights
No trimming e 1.00 (0.87,1.15) 118
Common range e 1.00 (0.87,1.15) 118
Stirmer — 1.00 (0.84,1.18) 84
Walker ———  0.99(0.82,1.20) 69
Crump — 1.00 (0.86,1.15) 116
Entropy weights
No trimming — 1.00 (0.87,1.15) 123
Common range — 1.00 (0.87,1.15) 123
Stlirmer — 1.00 (0.84,1.18) 85
Walker —<——  0.99(0.82,1.20) 69
Crump — 1.00 (0.87,1.15) 120
0.8 1.0 1.2
Rate Ratio

Figure 1. Mean rate ratios (RRs) and relative efficiency (RE) from
5,000 simulated studies without unmeasured confounding. RRs are
exponentiated mean log(RRs) across simulations; 95% confidence
intervals (Cls) are derived from the empirical variance of the log(RR)
across simulations; and the REs of estimators versus untrimmed
inverse probability of treatment weighting (IPTW) are calculated
by multiplying the inverse of the empirical variance of the specific
estimator by the empirical variance of the untrimmed IPTW (x100).
True RR = 1.0; treatment prevalence = 20%. Bars, empirical 95% Cls.
SMR, standardized mortality ratio.

In Web Tables 2 and 3, we present results without unmea-
sured confounding for the scenarios with stronger prediction
of treatment (area under the receiver operating character-
istic curve (AUC) (c statistic) = 0.85; Web Table 2) and
weaker prediction of treatment (AUC = 0.65; Web Table
3). The differences in RE were greater with stronger predic-
tors of treatment, but the patterns were again preserved. In
these scenarios, Stiirmer trimming increased efficiency for
IPTW, SMR-treated weights, and SMR-untreated weights as
compared with untrimmed estimators, but not for overlap
weights, matching weights, and entropy weights. Stiirmer
trimming came close to Crump trimming for SMR-treated
weights (treatment prevalence = 20%).

Figure 2 shows results for the basic scenario with unmea-
sured confounding due to treatment withheld (mimicking
frailty) with a treatment prevalence of 20%, and Table 4
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Figure 2. Mean rate ratios (RRs) from 5,000 simulated studies with unmeasured confounding due to treatment withheld, mimicking frailty. RRs
are exponentiated mean log (RR) across simulations, and 95% confidence intervals (Cls) are derived from the empirical variance of the log(RR)
across simulations. True RR = 2.0; treatment prevalence = 20%; area under the receiver operating characteristic curve (c statistic) = 0.75. Bars,
empirical 95% Cls. IPTW, inverse probability of treatment weighting; SMR, standardized mortality ratio.

shows results for unmeasured confounding due to last-resort
treatment, treatment withheld, and their combination. Since
most of the differences were observed for treatment withheld
(and similarly for the combination of the 2 unmeasured
confounding patterns), we focus here on treatment withheld.
Note that we simulated the unmeasured confounding sce-
narios with a true incidence rate ratio of 2.0. Unmeasured
confounding due to treatment withheld led to a considerable
bias in the direction opposite the bias due to measured con-
founding. All weighting approaches, when controlling only
for the measured confounders, were biased without trim-
ming. This included the 3 approaches that down-weight the
tails of the PS distribution (overlap, matching, and entropy
weights), which might be expected to reduce bias due to
unmeasured confounding concentrated in the tails of the
PS distribution. Without trimming, SMR-treated weights,
matching weights, and entropy weights were most biased
and SMR-untreated weights were least biased. Only Stiirmer
and Walker trimming consistently reduced bias from unmea-

Am J Epidemiol. 2021;190(8):1659-1670

sured confounding for all weighting approaches, whereas
Crump trimming consistently did not reduce bias.

Web Tables 4 and 5 show results for the scenarios with
treatment prevalences of 50% and 80%, respectively. Pat-
terns were similar to the results with a treatment prevalence
of 20% (Table 4), with a few notable exceptions. With a
treatment prevalence of 50%, Crump trimming reduced bias,
since the absolute PS cutpoints of 0.1 and 0.9 now trimmed
away both tails of the PS distribution. With a treatment
prevalence of 80%, Walker trimming outperformed Stiirmer
trimming with respect to mean bias but not mean squared
error. Since bias is mainly due to treatment withheld, we
focus here on Xg for an explanation with results on its
prevalence stemming from a single simulated data set with
n =200,000. We simulated Xg to have an overall prevalence
of close to 1% in all scenarios. Stiirmer trimming effectively
reduced the prevalence of Xg in both treated and untreated
persons to less than 0.05% (with little difference in preva-
lence, and therefore confounding remaining) with treatment
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prevalences of 20% and 50%. With a treatment prevalence of
80%, however, the prevalence of Xg was reduced much less,
leaving a more pronounced difference between the treated
(Xg prevalence of 0.14%) and the untreated (Xg prevalence
of 0.37%). In this situation, the prevalence of Xg, which is a
strong risk factor for the outcome, is high enough to produce
noticeable residual confounding. All weighting methods
up-weight at least some of those who are treated contrary
to prediction. After IPTW, Xg had a prevalence of 1.29% in
the untreated.

In Table 5, we present results for scenarios with unmea-
sured confounding due to treatment withheld (mimicking
frailty) with a treatment prevalence of 20% according to the
AUC of the PS model. Compared with the results from the
basic scenario with an AUC of 0.75 (middle columns), a
higher AUC (0.85) leads to similar patterns, with Stiirmer
and Walker trimming performing equally well. With a lower
AUC (0.65), Stiirmer trimming generally removes more bias
than Walker trimming. In Web Table 6, we present results for
unmeasured confounding due to treatment withheld accord-
ing to the AUC of the PS model for a treatment prevalence
of 50%. With a lower AUC (0.65), Stiirmer trimming out-
performed Walker trimming. With a higher AUC (0.85),
Stiirmer and Walker trimming removed all of the bias due
to unmeasured confounding, and Crump trimming removed
most of it. In this setting, SMR-untreated weights were least
biased without trimming, followed by matching weights.

DISCUSSION

Our simulations confirmed that overlap weights and
Crump trimming of IPTW consistently reduce the variance
of PS-weighted treatment effect estimates in comparison
with untrimmed IPTW (14). Adding Crump trimming
to overlap weights does not further reduce the variance,
however. In settings where some treatment decisions are
based on unmeasured confounders (e.g., frailty), only
Stiirmer and Walker trimming consistently reduced bias
due to unmeasured confounding in the scenarios assessed,
whereas overlap, matching, and entropy weights did not,
despite the fact that they down-weight at least 1 tail of
the PS distribution. Crump trimming, overlap, matching,
and entropy weights were never intended to reduce bias
from unmeasured confounding. That said, Crump trimming
will do so when the relevant tail of the PS distribution falls
into the range of trimming—that is, last-resort treatment
with low treatment prevalence, treatment withheld with
high treatment prevalence, or, to some extent, either type
of confounding with a treatment prevalence close to 50%.

Assuming uniform treatment effects and no unmeasured
confounding, all weighted treatment effect estimates will be
the same and unbiased. The variance of weighted estimators
will be driven by large weights assigned to those obser-
vations treated contrary to prediction—that is, the treated
with a low PS and the untreated with a high PS. IPTW
is most affected by large weights due to the need to up-
weight both the treated at the low tail of the PS and the
untreated at the high tail of the PS. With IPTW, Crump trim-
ming removes observations with weights greater than 10 and
therefore reduces variance. Overlap, matching, and entropy

weights achieve similar efficiency gains by down-weighting
both tails of the PS distribution. The effects of matching
weights, however, will depend on the prevalence of the treat-
ment, since matching weights mimic 1:1 matching without
replacement but are generally more efficient (5, 13). With
a low treatment prevalence, matching weights will mimic
SMR-treated weights and mostly down-weight at the low
end of the PS, whereas with a high treatment prevalence,
matching weights will mimic SMR-untreated weights and
down-weight at the high end of the PS distribution.

With nonuniform treatment effects and no unmeasured
confounding, these different weighting estimators will obvi-
ously result in different treatment effect estimates. In such
settings, the choice of estimator will largely depend on the
scientific and public health question at hand rather than
any potential efficiency gains. IPTW, SMR-treated weights,
and SMR-untreated weights have obvious advantages in
the sense that their target populations are clearly defined
independent of additional parameters, at least under posi-
tivity. While matching weights and 1:1 matching without
replacement will produce the average treatment effect in
the treated when the treatment prevalence is low, a limited
number of untreated subjects with higher PSs will result in
the down-weighting (matching weights) or exclusion (1:1
matching) of some of those treated with the highest predicted
probability of treatment. This means that the estimand will
no longer be the average treatment effect in the treated.
Similarly, overlap and entropy weights have less clearly
defined target populations, which will vary depending not
only on the prevalence of the treatment but also on the AUC
(c statistic) of the PS. The latter issue introduces the problem
that the target population will depend on the variables used
to estimate the PS. Addition of an instrumental variable,
for example, will increase the AUC of the PS and therefore
increase the number of observations trimmed and reduce
the number of those observations remaining in the trimmed
population. This phenomenon will be more pronounced with
Walker trimming than with Stiirmer trimming (15).

With uniform treatment effects and unmeasured factors
inducing physicians or patients to make different treatment
decisions from those predicted by mismeasured PSs, trim-
ming the tails of the PS or, equivalently, focusing on study
populations with better equipoise between treatments will
generally reduce bias due to unmeasured confounding. This
concept was first proposed in 2010 by Stiirmer et al. in the
context of estimating a treatment effect versus no treatment
(11) and was then extended by Walker et al. to the setting
of comparative effectiveness research (12). These methods
have recently been compared with each other (and Crump
trimming) by Glynn et al. (15) with respect to the effects
of the PS AUC (c statistic) on the number of observa-
tions remaining in the restricted cohorts. Here we extend
these results to bias in estimating a simulated uniform treat-
ment effect. Our finding that aggressive (fifth/95th per-
centiles) Stiirmer and Walker trimming achieve comparable
bias reduction in many settings is novel, as is the finding that
Walker trimming outperforms Stiirmer trimming when the
prevalence of treatment is high. Glynn et al. have shown that
AUC:s or c statistics larger than about 0.67 lead to larger pop-
ulations remaining after Stiirmer trimming as compared with
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Walker trimming (15). The AUC was 0.75 in our basic sce-
nario. In Figure 2, both trimming methods perform similarly
with respect to bias reduction, since they both exclude the
PS tails where the small number of observations for persons
treated contrary to prediction reside. Nevertheless, there are
differences even for an AUC of 0.75; this is most pronounced
in Web Table 4 for treatment withheld and a treatment
prevalence of 80%, where Walker trimming leads to less
biased treatment effect estimates than Stiirmer trimming.
This difference occurs because Walker trimming removes
more observations than Stiirmer trimming and therefore
more of those treated contrary to prediction in the upper tail
of the PS. Assuming true uniform effects, the unclear defini-
tion of the target populations is not a problem. Unfortunately,
we cannot use the data to test this assertion, since unmea-
sured confounding may lead to nonuniformity of the treat-
ment effect estimate over the PS or mask real heterogeneity.

Finally, with nonuniform treatment effects and unmea-
sured confounding, it is impossible to estimate an unbiased
treatment effect. Logic might help to separate true hetero-
geneity from unmeasured confounding in specific settings.
In the striking example of apparent heterogeneity of treat-
ment effects described by Kurth et al. (9), for instance,
it may be very unlikely that thrombolysis would reduce
mortality in any subgroup of patients with stroke based on
pathophysiology and results from randomized trials. Recent
proposals to abandon the concepts of internal versus external
validity and to define bias as any deviation from the true
treatment effect in the target population (18) might allow
the use of trimming to reduce bias even in situations with
true treatment effect heterogeneity. This idea, as well as
the consideration to reweight trimmed populations to target
populations of interest, clearly needs further research.

Yoshida et al. (13) observed that multinomial Stiirmer
and Walker trimming were more successful in bias reduc-
tion when the 3 treatment groups had very different sizes
(10:10:80). Our simulation setup does not seem to lead to
similar conclusions, as Stiirmer trimming especially was
less successful in reducing bias with a treatment prevalence
of 80%. Yoshida et al. also observed a variance reduction
with all trimming methods for IPTW but not with matching
weights or overlap weights (13). This variance reduction
was more successful with multinomial Crump and Stiirmer
trimming than with Walker trimming (13). We observed little
or no variance reduction with either Stirmer trimming or
Walker trimming for any of the weighting methods assessed,
whereas we did reproduce the intended variance reduction of
IPTW with Crump trimming. Interestingly, Crump trimming
did not further decrease variance for SMR-treated weights,
overlap weights, matching weights, and entropy weights
in our basic scenario. Li et al. compared bias, variance
(RE), and confidence interval coverage of overlap weights
with Crump- and Stiirmer-trimmed IPTW in the setting of
uniform treatment effects on a continuous outcome without
unmeasured confounding (14, 19). They demonstrated the
validity of asymmetrical (Stiirmer) trimming (bias and cov-
erage) and the variance reduction with overlap weights in
this setting (19).

Matching weights, overlap weights, and entropy weights
have been shown to improve covariate balance as compared

Am J Epidemiol. 2021;190(8):1659-1670

with IPTW in settings where the PS model is misspeci-
fied (17). Our result that these weighting methods do not
reduce bias from unmeasured confounding concentrated in
the tails of the PS as compared with IPTW indicates that this
improved covariate balance provides no practical advantage
in this setting. Potential reduction of model misspecification
with respect to the measured confounders due to omission
of unmeasured predictors of treatment (the unmeasured con-
founders) has no noticeable beneficial effect on bias.

Our simulation study had several limitations. As always,
results were restricted by the limited number of scenar-
ios and parameter values assessed. Most importantly, we
assumed that unmeasured confounding was restricted to the
tails of the PS distribution, mimicking the data presented
by Kurth et al. (9), Lunt et al. (10), and Stiirmer et al.
(11). The data generation was based on the idea that an
infrequent factor, such as frailty, would lead the physi-
cian (patient, caregiver) to override the treatment decision
based on “usual” predictors of treatment, since more refined
measures of frailty based on health-insurance claims data
have been proposed and may capture some of this previ-
ously unmeasured confounding (20, 21). However, frailty
will remain a construct that is difficult to measure in the
absence of specific frailty assessments, and trimming might
be needed to reduce confounding by frailty even in set-
tings where some measures of frailty are available. We did
not change the incidence of the outcome; in future work,
researchers should assess the performance of weighting and
trimming methods in settings with rare outcomes.

Our results on trimming for both precision of treatment
effect estimates (without unmeasured confounding) and
bias reduction (in the presence of unmeasured confounding
concentrated in the tails of the PS) are dependent on the
cutpoints for trimming chosen by the investigators. While
Crump et al. (8) and Walker et al. (12) proposed only 1
set of cutpoints, Stiirmer et al. (11) originally proposed
using a range of cutpoints. Unfortunately, so far there has
been no guidance on choosing the best cutpoint for Stiirmer
trimming. In settings where the treatment effect estimate
changes with little trimming and remains stable with more
aggressive trimming, researchers might feel comfortable
choosing the minimum amount of trimming needed to
“stabilize” the treatment effect. While we have seen such
settings, it is straightforward to imagine settings where the
unmeasured confounding is not largely concentrated in the
tails of the PS or where the underlying treatment effect
heterogeneity will not allow the treatment effect to stabilize
with any amount of trimming. We need more guidance on
how to identify trimming cutpoints along the lines of work
on weight truncation (22). A useful sensitivity analysis could
evaluate the effect of an alternative choice, and this might
be most important if overlap of the PS distributions be-
tween treatment groups is limited (e.g., AUC (c statistic) >
0.7). We ignored the estimation of the PS when estimating
coverage probabilities based on within-simulation variance
of the treatment effect estimate. The coverage of the 95%
confidence interval is close to nominal in the unbiased
settings, and we therefore assume that any potential gain
in precision by taking the estimation of the PS into account
would be minimal.
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In the presence of nonuniform treatment effects, the choice
of weighting approach will depend on the population of
interest. Whichever weighting method is selected, the addi-
tion of Stiirmer and Walker trimming consistently reduces
bias when unmeasured confounding is concentrated in the
tails of the PS distribution. If the likelihood of unmeasured
confounding in the tails of the PS distribution is high and
particularly if overlap in the PS distributions of the compared
treatment groups is limited, one might follow the advice of
Walker et al. (11) and consider the treatment comparison in
the trimmed study population with the chosen weights as the
primary analysis.
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