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Stem cells are the central element of regenerative medicine (RM). However, in many clinical applications, the use
of scaffolds fabricated with biomaterials is required. In this sense, mesoporous bioactive glasses (MBGs) are going
to play an important role in bone regeneration because of their striking textural properties, quick bioactive
response, and biocompatibility. As other bioactive glasses, MBGs are mainly formed by silicon, calcium, and
phosphorus oxides whose ions play an important role in cell proliferation as well as in homeostasis and bone
remodeling process. A common improvement of bioactive glasses for RM is by adding small amounts of oxides of
elements that confer them additional biological capacities, including osteogenic, angiogenic, antibacterial, anti-
inflammatory, hemostatic, or anticancer properties. Moreover, MBGs are versatile in terms of the different
ways in which they can be processed, such as scaffolds, fibers, coatings, or nanoparticles. MBGs are unique
because their textural properties are so high that they still exhibit outstanding bioactive responses even after
adding extra inorganic ions or being processed as scaffolds or nanoparticles. Moreover, they can be further
improved by loading with biomolecules, drugs, and stem cells. This article reviews the state of the art and future
perspectives of MBGs in the field of RM of hard tissues.

1. Introduction

Regenerative medicine (RM) emerged from clinical practices, such as
the design of surgical implants, the use of biomaterials-based scaffolds, or
the transplant of organs or bone marrow, and is closely related to tissue
engineering [1-3]. Said practices have limitations, such as the loss of
prostheses with time, the inflammatory process induced by the scaffolds,
the contamination of the bone marrow aspirate, or the need to take
immunosuppressive drugs after organ transplantation. The bases of RM
are human stem cells [4-6] that can be of adult or embryo-derived
origin and also they can be the so-called induced pluripotent stem
(>iPS) cells obtained by reprogramming adult cells. Human embryos are
not the ideal source. Therefore, obtaining iPS cells is an attractive
approach, as it involves the transfer of genes to human cells, which brings
RM close to gene and cell therapies (Fig. 1).

Researchers specializing in cells generally try to use the minimum
possible amount of synthetic biomaterials. However, biomedical industry
of tissue regeneration is combining cellular therapies with others based
on genes, biomaterials, and drugs. A successful RM focused on human
stem cells could replace molecular pharmaceuticals and biomedical
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prostheses. For example, RM seeking cartilage regeneration restoration
can give way to a rational development of prosthetics. Moreover, there is
a growing link between gene therapy and RM. Cell therapy seeks to place
genes in cells to implant them. The current interest in reprogramming
adult cells into iPS cells is driving the linkage between genes and cells in
the use of a genetic approach to several therapies.

Typically, regeneration describes the process by which lost special-
ized tissue is replaced by the proliferation of specialized cells. In humans,
the process is limited to a few tissues, such as bone [7,8]. In this sense, the
goal of RM is to regenerate mainly by supplying cells, particularly stem
cells, that can stimulate a broader regeneration. Similarly, repair is the
replacement of lost tissue with granulation tissue that matures to form
scar tissue. Organ regeneration is different from organ repair after an
injury [9]. Repair leads to the restoration by synthesis of scar tissue
without restoration of normal tissue. As the ultimate goal of RM is to
return the patient to a healthy state, repair can be considered to fall
within technologies, such as surgery. In most cases, the goal of regen-
eration is to restore a deteriorated function.

RM includes tissue engineering, genetic engineering, and molecular
activators and is an interdisciplinary research field focused on the repair,
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Fig. 1. Foundations of Regenerative Medicine and its relationships with other advanced therapies.

replacement or regeneration of cells, tissues, or organs to restore the
deterioration of function resulting from birth defects, diseases, trauma, or
aging [10]. RM uses several approaches that move it beyond traditional
transplant and replacement therapies that may include the use of bio-
molecules, gene therapy, stem cells transplantation, tissue engineering,
and reprogramming of cell and tissue types [3,11].

At present, there are commercial products based on RM to treat skin
ulcers or knee cartilage injuries (Fig. 2). These therapies often include a
scaffold fabricated with biomaterials. More therapies involving embry-
onic stem cells and temporary scaffolding are expected to appear but, in
the situations where structural tissue is needed, it is difficult for cells
alone to succeed. Therefore, although stem cells are the central element
of RM, many clinical applications need the use of scaffolds, often fabri-
cated with bioceramics [12]. In bone regeneration, autografts, the

current gold standard, have many limitations, including morbidity or a
limited amount of material available [13-15]. In this area, synthetic
grafts obtained with RM approaches using mesoporous bioactive glasses
(MBGs) [16-20] are going to play a very important role, as is described in
subsequent sections.

2. Mesoporous glasses in the context of bioactive glasses

Bioactive glasses (BGs) are known for 50 years when the first melt-
prepared bioactive glass (MPG) belonging to the SiOy-Nay0O-CaO-P20s5
system was reported by Hench et al. [21]. These materials, prepared by
the traditional method of quenching of a melt, are dense materials, which
exhibit a particular surface reactivity when in contact with aqueous
biological fluids, leading to the formation of a mechanically strong bond
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Fig. 2. Many applications of RM require the use of biomaterials behaving as scaffolds of the stem cells as are the MBGs for hard tissues regeneration.
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between the biomaterial and living bone. This unusual property, denoted
as bioactivity in the field of biomaterials, is greatly sought in the devel-
opment of new biomaterials for regenerate bone. Other bioactive mate-
rials, most of them bioceramics, were reported, including calcium
phosphates, such as hydroxyapatite [22], or glass ceramics, such as
apatite/wollastonite glass ceramic [23]. However, none of the bio-
materials described so far has exhibited a bioactive response as quick as
BGs, which, as a result of their partial solubility in contact with physio-
logical fluids, release significant amounts of the ions that make them up
into the surrounding medium. In particular, the Si (IV) ions, the major
component of BGs, that benefit the presence of extracellular events,
including angiogenesis and the Ca>" ions that contribute to cell prolif-
eration and exhibit osteogenic activity, as well as play a very important
role in gene transfection [24,25].

MPGs showed room for improvement, considering the expected in-
crease of glasses reactivity if obtained as porous materials with high
specific surface areas and a greater number of silanol groups (Si-OH) on
their surface. Thus, in the 1990s, Li et al. proposed the synthesis of porous
BGs by sol-gel, a wet chemistry method [26]. Glasses so obtained are
denoted as ‘gel glasses’ or sol-gel glasses (SGGs). These glasses exhibit
high surface areas and nanometric pores in a great diversity of sizes. The
wide distribution of pores sizes of SGGs does not allow an optimal control
of the release of biomolecules and drugs if these glasses are used as
matrices for drug delivery systems (DDS). The sol-gel method does not
allow controlling the SGGs nanostructure, but the microstructure and,
consequently, their in vitro and in vivo behaviors can be controlled with
different synthesis parameters such as type and concentration of catalyst
used for the tetraethyl orthosilicate (the SiOg source) hydrolysis, the
proportion of water, or the glass composition [27-29]. Moreover, sol-gel
method allows processing BGs in complex forms such as fibers or
coatings.

To improve the SGGs capabilities, in 2004, Yan et al. [30] described
the synthesis of so-called MBGs. The synthesis method is based on the
sol-gel chemistry and supramolecular chemistry principles. A surfactant
that acts as a template to control the glass nanostructure is added. The
surfactants used to synthesize MBG are amphiphilic molecules capable of
self-assembling in aqueous solutions when a certain concentration —
called critical micellar concentration — is reached. At that point, meso-
phases formed to guide the obtaining of ordered arrangements of mes-
oporous channels with virtually identical pore diameter.

Fig. 3 shows the method of synthesis of MBGs called Evaporation-
Induced Self Assembly, proposed by Brinker et al. [31]. As observed,
after the surfactant removal, in this case, Pluronic 123, glasses exhibiting
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highly ordered arrangements of mesopores with diameters around 5 nm
in a very narrow pores size distribution are obtained [17,32,33]. MBGs
can be considered as intermediate materials between SGGs and pure
silica mesoporous materials, such as MCM-41, that were described in
1992 by Kresge et al. [34] for catalysis applications, which, in 2001, were
proposed by Vallet-Regi et al. as matrices for drug release systems [35].
Their very narrow mesopore size distribution and highly ordered meso-
pore structure convert MBGs in materials that allow a high control of the
processes of load and release of biomolecules and drugs. Therefore, they
are candidates to be used in DDS. Moreover, because of their excellent
textural properties, MBGs exhibit, as will be described below, faster
bioactive responses than MPGs and SGGs.

Currently, MBGs are often obtained as nanoparticles (MBGNSs) that,
having a smaller, controlled particle size, allow increasing the efficiency
of proper transfection and the ability to release biomolecules and genes
[36-38]. These nanoparticles contain ordered mesopores with sizes be-
tween 5 and 10 nm, and the particle size can be tailored by modifying the
solvent and the surfactant concentration. Indeed, the effect of the con-
centration of surfactant on the characteristics of MBGs has been widely
investigated [39,40].

Fig. 4 schematically depicts in a comparative way the time and
temperature conditions used for the syntheses of the three families of
BGs. As seen, MPGs synthesis requires shorter times, less than 1 day, but
much higher temperatures, close to 1,400 °C, which supposes extra en-
ergy costs. However, the production of SGGs and MBGs requires around
7 days, but takes place at lower temperatures, for most of the synthesis
stages close to room temperature (RT), except for the last one of calci-
nation and stabilization. In both cases, this stage requires thermal
treatments close to 700 °C for a few hours. Regarding the first stages of
synthesis of SGGs and MBGs, Fig. 4 also shows that in the SGGs synthesis,
the stages of aging and drying of the gels (from Days 3-6) are carried out
at temperatures somewhat above than RT. In general, gel aging takes
place at temperatures around 70 °C, and the drying stage rarely exceeds
150 °C. However, in the MBGs synthesis, the stages of gelation, aging,
and drying are performed at a constant temperature close to 30 °C. These
lower temperatures used for the synthesis of SGGs and MBGs suppose
lower energy costs, although this saving is partially offset because the
alkoxides used as sources of SiO,, tetraethyl orthosilicate and P50s, and
triethyl phosphate (TEP) are more expensive than the inorganic pre-
cursors used for the synthesis of MPGs. Moreover, the most common CaO
source in the three cases is Ca(NO3)3-4H30.

Therefore, it can be summarized that the most significant distinctive
features of the three families of BGs are the higher temperatures required

Templated
condensation

ﬂ

30°C/4d

MBG +
Pluronic®

CaO - P,0; MBG

Fig. 3. Schematic representation of the Evaporation-Induced Self Assembly method of synthesis used to obtain MBGs.
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Fig. 4. Schematic representation of the time vs. temperature conditions used to obtain the three families of BGs.

to obtain MPGs and the longer times and more expensive reactants
required to synthesize SGGs and MBGs. However, control over the mes-
ostructure in MBGs is significant because it opens up new capabilities for
this more recent family of BGs.

3. Textural properties of mesoporous glasses

Although the three families of BGs may have a similar or identical
chemical composition, MPGs are easily distinguished from the other two
types because they are dense materials. Thus, their porosity is null, and
their specific surface can be considered negligible when used as
monoliths and very small when used as particles. However, SGGs and
MBGs are highly porous materials. In addition, MBGs exhibit
outstanding structural and textural properties. The synthesis and char-
acterization of several SGGs and MBGs of interest as bioceramics can be
found respectively in Refs. [41,42,43]. The most significant textural and
mesostructural features of the three families of BGs are shown in Fig. 5
in comparative way.

As it is represented in Fig. 5, the pore volume and the surface area in
MBGs are approximately double than in SGGs of analogous composition.
Furthermore, as can be seen in the high-resolution transmission electron
microscopy images, the main difference between the two types of porous
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Fig. 5. Comparison of the textural properties (surface area, pore volume)
typically exhibited by the three families of BGs. High-resolution transmission
electron microscopy (HR-TEM) images of the two porous glasses, SGGs and
MBGs, are included.

glasses is that SGGs exhibit a great diversity of pore sizes, and they are
disordered. In MBGs, all mesopores display almost identical sizes, and
they are ordered, often in a two-dimensional hexagonal geometry.
However, by using the appropriate synthesis parameters, MBGs with
three-dimensional cubic mesopores arrangements can be obtained [40].
In short, the three families of BGs exhibit the amorphous structure of
glasses at the atomic scale, but MBGs also exhibit an ordered mesopore
structure, which confers upon them the outstanding properties that make
them optimal materials to use in RM of bone. A recent application of
MBGs under investigation, outside of bones and teeth repair, is for soft
tissues engineering applications [44].

Therefore, SGGs and MBGs are different at the mesoscale. The
remarkably high textural properties of MBGs are close to those of ordered
mesoporous materials made of pure silica, such as MCM-41 and SBA-15.
However, mesoporous silica materials have a very moderate or null in
vitro bioactive response when soaked in simulated body fluid (SBF). This
fact demonstrates that the huge textural properties of mesoporous silica
materials — surface areas around 1,000 m?/g with pore volumes over
1 em®/g — and the large number of silanol groups they have on the surface
do not guarantee a bioactive response in SBF [45]. Compared with these
materials, MBGs have lower textural properties, but still unusually high,
and the presence of CaO and P,Os5 together with SiO give them the
optimal reactivity to be coated with hydroxycarbonate apatite (HCA)
after being soaked for very short periods in SBF. So-called in vitro
bioactivity tests in SBF monitor the time it takes for the HCA layer to
form. The shorter the time, the more bioactive a biomaterial is consid-
ered to be.

Nitrogen adsorption/adsorption isotherms of MBGs are analogous
to SGGs. Both kinds of glasses show type IV isotherms, characteristic
of mesoporous materials, as well as type H1 hysteresis loops, char-
acteristic of cylindrical pores open at both ends. However, in SGGs,
the pore diameter distribution obtained was broader, and the
textural parameters of MBGs are approximately twice than SGGs
[32] (Fig. 5).

Another difference between SGGs and MBGs is that the textural
properties of SGGs are related to its composition, particularly to the CaO
content. When CaO increases, the surface area decreases, and the pore
volume increases. However, for MBGs, the variation in the CaO propor-
tion mainly affects the symmetry of the mesopore arrangement, which
can evolve from a two-dimensional hexagonal structure (p6mm) to a
three-dimensional bicontinuous cubic structure (Ia-3d). This variation in
symmetry can also be controlled by the aging temperature used for the
synthesis of MBGs [33].
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4. Bioactive response of mesoporous glasses

Regarding the in vitro bioactive response, MPGs exhibited bioactivity
for SiOy contents between 45 and 60 mol%. At this point, it must be
highlighted the low SiO, contents of an MPG exhibit a bioactive response
if compared with glasses designed for other technological applications,
which are close to 70%. Thus, the composition of Hench Bioglass, the first
bioactive material, has an unusually low SiO5 content. This yields a glass
reactive enough in aqueous media to experience a series of chemical
processes that result in the formation of a nanocrystalline HCA layer on
the glass surface, which is considered indicative of a bioactive response.

The left part of Fig. 6 shows the first five stages of the Hench mech-
anism that explains the formation of a strong union between a BG and
bone [46]. The full mechanism consists of 11 stages, the last six include
the participation of biological entities. However, the first five stages only
depend on the intrinsic reactivity of the BG, and they take place both in
vivo and in vitro. Therefore, they are the stages that are usually assessed in
simulated biological solutions, such as Kokubo’s SBF [47]. It must be
considered that although this mechanism was proposed for MPGs, it can
be applied to SGGs because the differences in the bioactive kinetics of
both types of glasses are minimum. However, there are significant dif-
ferences with MBGs that justify the extremely rapid bioactive response of
these glasses.

Most of the SGGs and MBGs investigated as biomaterials belong to the
Si0o—Ca0-P505 system. Our research group reported the influence of
P,0s in the bioactive response of BGs, a component that slightly speeds
up the kinetics of formation of the HCA layer but is not an indispensable
requisite for bioactivity [48]. For this reason, some compositions of SGGs
widely investigated even some ones commercial, are P,Os free, and
belong to the SiO2—-CaO system.

Although the high surface area and porosity of SGGs expand the
bioactivity window up to SiO, contents of 90 mol% in SGGs, the
bioactivity mechanism is similar for MPGs and SGGs. In both families of
BGs, an average period ranging from 3 to 7 days to form the nano-HCA
layer is considered appropriate to consider these glasses as potential
candidates for bone regeneration. However, MBGs exhibit noticeably
quicker in vitro bioactivity results. For instance, some MBG compositions
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were coated by the HCA layer after only 4 h in SBF. These MBGs are the
synthetic materials that display the fastest bioactive response described.
The right-hand side of Fig. 6 shows the differences that can explain the
extremely quick bioactive response of MBGs. First difference is the
lower pH value as a consequence of the stages 1-3 accelerated and
extended. The second difference is the formation of octacalcium phos-
phate, detected in the maturation process of bone but never before
observed in the in vitro tests as an intermediate phase that evolves to
nano-HCA.

5. Clinical applications of the three families of BGs

Fig. 7 displays the main clinical applications of the three families of
BGs in a comparative way. As is observed, each family exhibits the fea-
tures of the previous one, increased with additional ones. Thus, MPGs are
excellent biomaterials to be used as bone grafts because of their quick
bioactive response and possibilities for improvement, such as the inclu-
sion of therapeutic inorganic ions in their composition and the possibility
of processing them to obtain scaffolds and composites.

In addition to those capabilities, SGGs offer others arising from their
wet chemistry processing at low temperatures. First, the considerable
expansion of the bioactivity window to include SiO, contents of up to
90 mol% consequence of the excellent textural properties. However, this
fact is of scarce relevance for their clinical application. More significant
differences are that SGGs can be functionalized because of their higher
concentration of surface silanol groups and that some biocompatible
polymer can be added during their syntheses at low temperatures to
obtain organic-inorganic hybrid materials [49], also called nano-
composites, with the desired mechanical or degradation properties. Also,
by selecting the appropriate moment during the sol to gel transition, it is
possible to use this method of synthesis to obtain coatings or fiber meshes
of SGGs.

Finally, MBGs, which can be considered an improvement of SGGs,
show all the characteristics of MPGs and SGGs but present another new
one as a result of its synthesis in the presence of surfactants, which
produces a great control over the MBGs mesostructure. As it was told,
textural properties of MBGs are more advantageous than those of SGGs,
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Fig. 6. The first five stages of the Hench mechanism for the in vitro HCA formation on MPGs and SGGs. Variations in this mechanism for the highly bioactive MBGs are
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and its in vitro bioactive responses are much faster than of any other BGs
family. Moreover, the large volume of monodisperse pores makes MBGs
ideal candidates to host drugs and biomolecules, which is essential for
their use in bone RM applications and DDS. On the other hand, one of the
current most active areas of study in the MBGs field is obtaining as
nanoparticles that can be used as nanocarriers of biologically active ions
and biomolecules [36]. This field that is subjected to a great expansion is
out of the scope of the present review article.

6. MBGs in RM of bone

The remarkable quick bioactive response of MBGs is not the only
aspect that should be considered when selecting a BG for RM of bone. The
new physical/chemical features and the processing possibilities provided
by wet chemistry synthesis methods to obtain coatings and fibers must be
also taken into account. Moreover, the great pore volume and control
over the morphology and size of pores in MBGs provide the capability to
load them with osteogenic biomolecules that, together with their

Ordered /

mesoporosity

remarkably fast bioactive response, make these materials optimal can-
didates for use as scaffolds in RM [50,51].

Fig. 8 shows the main capabilities and properties of MBGs, including
the potential to obtain as nanoparticles (MBGNs) and also to add addi-
tional ions to those that usually make them up like silicon and calcium
[52-54]. Thus, Si (IV) ions favor certain cellular events, and the angio-
genesis and Ca2* jons contribute to cell proliferation and the osteogenic
activity exerting a crucial role in gene transfection. As can be seen, the
addition of certain ions considered therapeutic [55,56], and it is easy to
do because the composition of glasses can be easily altered in an almost
infinite compositional range bringing additional advantages, including
osteogenic, angiogenic, anticancer, or bactericidal properties [57-61].

As it was said, another important capability of MBGs in RM is their
ability to load and release drugs. However, in this area, the concept of
drug, generally used as a substance with antibiotic, anticancer, or anti-
inflammatory properties, expands to other types of biomolecules, such
as growth factors, bioactive proteins, enzymes, or non-viral genes, such as
DNA or RNA (see Fig. 9).
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Fig. 8. Properties and capabilities exhibited by MBGs in RM of bone tissues.
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7. Mesoporous glasses as scaffolds, microparticles, or
nanoparticles

In clinical application, MBGs can be used mainly as scaffolds and also
as particles, which are considered nanoparticles when they are less than
100 nm in size [62]. However, for practical purposes, nanoparticles are
also considered when their dimensions slightly exceed that value. On the
other hand, it is also common in the literature to list as nanoparticles of
MBGs to particles with sizes of 500 or even 800 nm [36]. Particles of
these dimensions may also be useful in bone RM applications, but they
should rather be considered as submicrometric particles or as micro-
particles when exceeding 1,000 nm size.

One of the first attempts to obtain scaffolds tailored to clinical ne-
cessities involved the preparation of an injectable paste made of MBGs
that was able to set as a calcium phosphate bone cement [63]. However,
this material failed in the macroporous architecture required for a scaf-
fold useful in RM because it only exhibited random macroporosity and
had poor pore interconnectivity. The incorporation of MBGs in scaffolds
to obtain materials with macro- and nano-porosity that could be opti-
mum candidates for bone regeneration was achieved in 2009. As it will
be mentioned later, the first method used was that of the sponge of
polyurethane that allowed obtaining scaffolds with a predesigned
macroporosity.

Keeping in mind the need for three-dimensional hierarchical scaffolds
for bone regeneration, several strategies were proposed to design the
macroporosity required for functions, such as bone cell ingrowths,
nutrient supply, and vascularization, as well as for the adhesion and

Giantchannels

Macropores

development of bone cells. These strategies include foaming, freeze
drying, fiber bonding, or RP technologies [64]. In all cases, it is very
important to confirm that the processing of MBG powders to obtain
scaffolds does not eliminate ordered mesoporosity or bioactivity deco-
rating with cells on the MBG surfaces.

Our research group has widely investigated MBG scaffolds obtained by
RP to apply in bone RM [65-67]. With the manufacturing technique used,
three-dimensional scaffolds with hierarchical porosity were obtained.
Indeed, this method of manufacture allows obtaining biomaterials
exhibiting mesopores around 5 nm, which are especially appropriated to
host drugs, pores close to 5 pm in size, formed during the evaporation of
the solvent used for preparing the printing ink, that are essential for cell
adhesion and growth and also pores close to 1 mm that are obtained in the
printing process and that allow the scaffolds to be colonized with cells and
blood vessels. The micrographs of Fig. 10 show images corresponding to
the three categories of pores present in the MBG scaffolds obtained by RP
and the main roles that each type of pore plays in bone RM.

Other methods of synthesis were successfully used to obtain three-
dimensional porous scaffolds with meso-macroporosity based on MBGs,
including the polyurethane sponge method [68] or pouring a suspension
of MBG powders in polyvinyl alcohol into a negative template of poly-
lactic acid that was subsequently removed by extraction [69].

8. Expanding mesoporous glass properties by adding inorganic
ions

A characteristic of glasses, regardless of the method of synthesis used,

Mesopores

Cells and vessels Cells adhesion Hosting drugs and
ingrowths and growth biomolecules

Fig. 10. Three types of pores in MBG scaffolds: giant channels, around 1 mm; macropores, close to 5 pm; and mesopores, around 5 nm. Their biological roles in bone

RM are also included.
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is that they can be obtained in a practically infinite range of composi-
tions. Indeed, during the synthesis of glasses by quenching a melt to be
used in industrial applications, besides the main components, it is com-
mon to add small amounts of other oxides, a process often called doping,
to confer upon them certain mechanical, optical, electrical, etc. proper-
ties. Similarly, in the design of glasses for bone regeneration, many re-
searchers have explored the doping of BGs with oxides of elements with
well-known biological activity, for example, osteogenic, angiogenic, or
bactericidal properties [55]. When these studies are carried out on the
three families of BGs, the limitation on doping is the ability of these extra
elements to be integrated into the glass network without eliminating
their bioactive response and maintaining biocompatibility, and, in the
case of SGGs and MBGs, without an excessive deterioration of their
textural properties.

The doping of MBGs with ions of elements with biological activity,
often denoted as therapeutic ions, is a subject investigated with great
interest in recent years [70,71]. In these studies, the first objective is to
determine the maximum amount of the extra oxide that can be incor-
porated into the MBG network to exert the desired biological action, but
maintaining the necessary bioactivity, biocompatibility, and ordered
mesoporosity. A comprehensive list of the elements included so far in the
MBGs composition and the biological activity sought in each case are
shown in Fig. 11.

The first point that catches your attention in Fig. 11 is the large
number of elements that have been investigated, practically most of those
considered non-toxic. In this sense, the absence of elements such as Cr,
toxic in certain oxidation states, Ni, which produces an allergic reaction
in a growing portion of the population, or Al, which has been related to
neurological disorders, can be highlighted. Likewise, the inclusion of
elements already present in very large quantities in the human body,
such as C or N, and others extremely abundant in extracellular or intra-
cellular fluids, such as Na, K, or Cl, were not investigated either. More-
over, it can be mentioned the small but increasing presence of elements
with high atomic numbers whose presence in the human body as
essential elements is minimal.

Regarding the chemical elements investigated, we can start with the
biological action of the three basic elements of the MBGs, that is, Si, Ca,
and P, to which an angiogenic character is attributed and, in the case of
the first two, also osteogenic [36]. With regard to the rest of the thera-
peutic inorganic elements of interest in the present article, we can
observe that in addition to the biological actions investigated several

[0 Angiogenic
QO Antibacterial

<>  Anti-inflammatory
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years ago, such as angiogenic, antibacterial, and osteogenic, new actions
were recently added, such as anti-inflammatory, antitumor, hemostatic,
antiangiogenic, cancer preventive, or manufacture nanoparticles to be
used as immobilization platforms.

To understand the criteria used in Fig. 11, we must indicate that the
solid lines signify well-established properties on which there is a broad
consensus on the part of the scientific community, whereas the dashed
lines correspond to biological effects more recently proposed or with a
minor consensus degree. For instance, Li is considered anti-inflammatory
and proposed as osteogenic [72], B is considered angiogenic and pro-
posed as osteogenic [73], Se, is recently proposed as antiangiogenic and
cancer preventive [74], Ta, which is gaining much recent notoriety as a
hemostatic agent [75], and so on. Likewise, the presence of several
lanthanide therapeutic elements investigated to be added to MBGs, such
as Ce [76], Sm [77], Eu [78], or Tb [79], must be highlighted. As is
observed, many other elements are under investigation, in several cases
more than one decade ago, including Ti, V, Mn, Fe, Co, Cu, Zn, Ga, and
Sr [61,80-87]. Moreover, studies about new elements added to MBGs are
frequently published, for example, the recently investigated antibacterial
and antioxidant properties of Te [88].

Up to now, our research group, sometimes in collaboration with other
research groups has been deeply interested in investigating the effect of
included Co, Cu, Zn, Ga, Sr, and Ce in MBGs with SiO, contents close to
80% [16,89-95]. Particularly, we have developed MBG scaffolds con-
taining 4% of ZnO, already investigated in three animal models. Finally,
to mention that, as is observed in Fig. 11, many chemical elements
exhibit osteogenic and angiogenic capabilities and that several of them,
such as Zn, Cu, Mn, Ga, and Ce, are very versatile exerting several
beneficial biological actions.

On the other hand, when investigating the addition of an extra oxide
to an MBG, generally with composition SiO,—CaO or SiOy—CaO-P,0s, the
first step is to perform the synthesis with increasing amounts of the new
oxide to determine the maximum amount able to be incorporated
without eliminating the bioactive response or the mesoporous order.
Then, biocompatibility in vitro assays and others must be performed to
check that the extra oxide does indeed provide the desired property.
Finally, the in vivo evaluation of biocompatibility and the biological ac-
tivity of this extra element must be assessed.

Therefore, a simple way to improve the biological behavior of any BG
is through the addition of therapeutic ions; however, this process will
modify the physicochemical properties of the initial glass. In the case of

<"t Bone cancer

Hemostatic
Antiangiogenic, cancer preventive

NPs as immobilization platforms
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Fig. 11. Elements included so far in the MBGs and their biological activity. Solid lines indicate well-established properties, whereas the dashed lines correspond to

biological effects proposed.
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MBGs, a slight decrease in the kinetics of the bioactive response is
observed and a decrease of about 40% in the textural properties with
additions up to 5% of the extra oxide. However, the starting values for
undoped MBGs are so high that substituted MBGs remain useful for their
intended use for bone RM and also as matrices for controlled DDS, as will
be seen in the following section.

9. Loading mesoporous glasses with biomolecules and drugs

Bone regeneration relies on three basic pillars: stem cells, signal
molecules, and scaffolds. In this last pillar, MBGs processed into three-
dimensional macroporous scaffolds are considered to be the finest option
for bone regeneration for the reasons exposed in previous sections. MBG-
based scaffolds designed for RM must exhibit interconnected and hier-
archical porosity. Thus, as observed in Fig. 10, they must contain giant
pores (channels) and macropores to allow angiogenesis and interaction
with cells [60] and pores in the range between 2 and 10 nm such as those
in MBGs, optimum to host and release substances with biological activity.
Such mesopores allow biomolecules with different biological activities to
be included in the scaffolds [96]. Particularly, signal molecules can be
included for RM of bone regeneration that induce bone formation, such
as bone morphogenetic protein (BMP) [97], growth factors such as
vascular endothelial growth factor [98], or different fractions of para-
thyroid hormone-related peptide (PTHrP) [99]. Table 1 collects a num-
ber of biomolecules and drugs which loading into MBGs has been
investigated.

As can be seen in the Table, a considerable number of drugs and
biomolecules have been loaded in MBGs, and very likely the inclusion of
more substances will be investigated soon. An inspiration to identify
other biologically active substances of interest to be loaded in MBGs can
be found in our comprehensive review article regarding drugs and bio-
molecules loaded in pure silica mesoporous materials. Such materials
have similarities with MBGs because both families exhibit nanopores and
a great number of surface silanol groups [96].

The great number of drugs and biomolecules included in Table 1 were
grouped attending their biological action as angiogenic, antibacterial,
anticancer, osteogenic, and other functions, such as anti-inflammatory or
disinfectant or various types of treatment or diagnosis. Because the table
is already self-explanatory, only a few comments not able to be found in
the table will be done here. For instance, the most investigated anti-
bacterial substance so far is gentamicin, which was investigated in more
than eight papers, although vancomycin and ciprofloxacin also appear in
several articles on the subject. Likewise, doxorubicin was investigated in
more than 10 publications as anticancer drug. Moreover, dexamethasone
and BMPs for its osteogenic action and ibuprofen for its anti-
inflammatory action also aroused a great interest to be loaded in MBGs.

On the other hand, our research group has a wide experience in
using the fraction 107-111 of this peptide, that is, PTHrP107-111,
which is usually denoted as osteostatin (OST), and sometimes
TRSAW, which is represented in Fig. 12. The Figure shows the five
amino acids forming this pentapeptide and the beneficial biological
effects that make it a promising osteoinductor substance, which some
authors propose may be more favorable for this purpose than the well-
known and used BMP-2 [50].

10. Interaction of stem cells with mesoporous glasses in bone
regeneration

Numerous studies have evaluated the biocompatibility of MBGs in
the presence of different cell lines. A recent review article by Saletes
et al. [127] identified around 100 articles of the period between 2015
and 2021 investigating the interactions of MBGs and living cells. The
main results of 63 papers were displayed in a highly comprehensive
table. Regarding the MBGs scaffolds, more used compositions were
those with SiOy contents of 58%, 64%, 80%, or 85%. In many cases,
adjuvants such as polycaprolactone (PCL), chitosan, or polymethyl

Table 1
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Drugs and biomolecules that can be loaded in MBGs and its biological activity.

Drugs and biomolecules

Main biological action

Angiogenic
DEX, dexamethasone, and QK QK peptide that mimics the a-helical [100]
peptide structure of VEGF
VEGF, vascular endothelial Stimulates blood vessels formation [101]
growth factor
Streptokinase Dissolves blood clots formed in blood [102]
vessels
DMOG, Used in hypoxia-inducible factor (HIF) [103]
dimethyloxaloylglycine activity assays
Antibacterial
Amoxicillin Antibiotic semisynthetic (beta-lactam) [104]
Ciprofloxacin Antibiotic (second-generation [105]
fluoroquinolone)
Gentamicin Antibiotic aminoglycoside [90]
Levofloxacin Antibiotic synthetic (fluoroquinolone) [90]
DNA replication inhibitor
Moxifloxacin Antibiotic (fluoroquinolone) [106]
Rifampicin Antibiotic semisynthetic [90]
Teicoplanin Antibiotic for prophylaxis and treatment [73]
gram-positive bacteria
Tetracycline Antibiotic of broad spectrum [107]
Triclosan Antibacterial and antifungal agent [108]
Vancomycin Antibiotic glycopeptides, gram-positive [90]
bacteria effective
Vancomycin/tetracycline Antibiotics [109]
Anticancer
Isothiocyanate Cancer-preventive activity [110]
Aflatoxins antibodies Carcinogens and mutagens produced by [111]
molds
Mitomycin C Chemotherapy agent with antitumor [112]
activity
Cisplatin Chemotherapy agent to treat cancer [113]
DOX, doxorubicin Chemotherapy medication to treat cancer [114]
DOX/vancomycin Chemotherapy medication to [109]
treat cancer/antibiotic
Osteogenic
BMP, bone morphogenetic Bone and cartilage formation [97]
protein
Icariin Osseous fractures repair [115]
Osteostatin Osteogenic activity, antiresorptive [93]
DEX, dexamethasone Osteogenic differentiation [116]
Phenamil Osteogenic, triggers osteoblastic [117]
differentiation, and mineralization
rh-BMP-2, recombinant Osteoinductive mesenchymal cells to [118]
human BMP chondroblasts and osteoblasts
Ipriflavone Osteoporosis: prevention and treatment [119]
Other functions
ACE, angiotensin-converting High blood pressure and heart failure/ [120]
enzyme/IBU anti-inflammatory
Aspirin Anti-inflammatory non-steroidal [102]
BSA, bovine serum albumin Cell nutrient and enzymes stabilizer [121]
Chlorhexidine Disinfectant and antiseptic [122]
Curcumin Multiple roles: cancer, anti-inflammatory, [123]
antioxidant, anti-arthritic
EGF, epidermal growth factor  Cell growth and differentiation [124]
stimulation
Fluorescein Diagnosis [110]
IBU, Ibuprofen Anti-inflammatory non-steroidal [125]
Metoclopramide Treatment of heartburn and of ulcers and [70]
sores in esophagus
Phenanthrene To make bile acids, cholesterol, and [127]

steroids

methacrylate (PMMA) were used, and often the MBGs were doped with
inorganic elements, such as Ga, Cu, Sr, Ce, or nano-Ti to increase the
biological capabilities of the MBGs. Several cell lines were used for the
studies, including MC3T3-E1 mouse osteoblast cell line, MG-63: human
osteoblast-like, human Saos-2, osteoclast-like cells, murine RAW264.7
murine macrophages, human umbilical vein endothelial cells, HUVECs,
and others.

Furthermore, and of a great interest of interest in the framework of
the present article, in 20 of the articles described in Ref. [127], the
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Fig. 12. Osteostatin, a pentapeptide, fragment of parathormone related peptide (PTHrP), with excellent features to be used as an osteoinductor signal in RM of bone.

biocompatibility of MBGs was investigated in the presence of bone
mesenchymal stem cells (MSCs), in most cases of rat (rMSCs) or human
origins (hMSCs), but also obtained from a donor rabbit. Despite the dif-
ferences in the MBG compositions, in all cases, the excellent cyto-
compatibility of MBGs was shown, evidenced by the enhanced
proliferation of MSCs and osteogenic differentiation of the MSCs grown
on the scaffolds. Moreover, the ionic dissolution products amplified
adhesion, proliferation, and the osteogenic differentiation of MSCs and
the proliferative and the in vitro angiogenic ability of HUVECs.

The use of MSCs for bone RM still arouses certain controversy
[128-130]. Effectively, because of the difficulties inherent in in vivo
studies, there are relatively few published results and also a great vari-
ability of methods, protocols, and animal models that impedes to
compare the results obtained by the different research groups. However,
most authors trust that the union of MSCs with scaffolds and signal
molecules will be the solution [131], although at this time, it is perceived
still far away.

On the other hand, our research group has recently reported the
biocompatibility of MBGs in the presence of hMSCs under in vitro [66]
and also in vivo conditions, after being implanted in an animal model in a
New Zealand rabbit [99]. The MBG scaffolds investigated contained 4%
of ZnO because of the osteogenic and bactericidal features of Zn*
ions and were loaded with OST, an osteoinductive and antiresorptive
pentapeptide. The in vitro study [66] showed an excellent internalization
of hMSCs cells in the MBG scaffolds and outstanding responses in terms
of cell adhesion, growth, and osteogenic differentiation. This system
allowed us to disclose, for the first time, a synergistic effect of zinc and
OST to enhance hMSCs cell growth and differentiation, suggesting its
potential for bone regeneration.

The excellent in vitro results prompted us to carry out in vivo studies
[99]. The investigated systems exhibited bone regeneration capability.
However, the trabecular bone to volume density values obtained by pCT
showed that the good bone healing capability of pristine Zn-MBG was
significantly improved by the scaffolds enriched with OST and hMSCs.
These in vivo findings suggest the interest of these MBG complete systems
is to improve bone repair in the clinical practice. New in vivo studies with
different animal models and in one case using rabbit MSCs instead of
hMSCs are in progress.

11. Present of mesoporous glasses in bone RM

In Fig. 13 are schematically depicted possible improvements of the
MBG scaffolds. It must be taken into consideration that MBGs are
biocompatible materials exhibiting an extremely quick bioactive
response. The scaffolds fabricated from MBGs powders can be improved
by adding inorganic ions, biochemical signals, antibiotics, or other
molecules with biological activity and stem cells [123,132-135]. Some
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examples of each element are indicated in Fig. 12. For instance, Cu®" ions
as a therapeutic inorganic ion and OST as biochemical signal. Regarding
the drugs able to be hosted and released from the mesopores, four anti-
biotics were selected and mesenchymal stem cells as cells decorating the
surface of the scaffolds. It must be highlighted that the biological prop-
erties brought by each of the additional elements are indicated at the
bottom of the figure.

The two main current trends regarding the use of MBGs in RM ap-
plications are based on processing them as three-dimensional scaffolds
exhibiting hierarchical porosity or as nanoparticles. The biological ca-
pabilities of the starting MBGs of the CaO-P305-SiOy system are
extended by adding relatively small amounts of diverse inorganic oxides.
Around 30 inorganic elements have been investigated (see Fig. 13)
looking for additional biological capabilities as osteogenic, angiogenic,
bactericidal, anti-inflammatory, anticancer, or hemostatic.

The processing of MBG powders into scaffolds or nanoparticles and
the inclusions of therapeutic inorganic ions produce a decrease in both
the textural properties and the bioactive response of the resultant bio-
materials. However, one of the main strengths of MBGs is that the orig-
inal values of these parameters are so high that even after some decrease,
they still are enough to be excellent candidates as bone grafts in RM.
Furthermore, the processing and the additions of inorganic ions some-
times partially destroy the order of mesopores, but for most clinical ap-
plications, this partial order designated as worm-like order is sufficient.
BGs exhibiting worm-like order show lower textural properties and
bioactivity than well-ordered MBGs but still higher than traditional
SGGs.

If MBGs are compared with the other families of BGs, we can observe
that MPGs are excellent biomaterials for bone graft substitution because
of their quick bioactive response and possibilities to be improved with
therapeutic inorganic ions and to be processed in scaffolds and com-
posites. In addition to all the above, SGGs offer new capabilities as the
considerable expansion of the bioactivity window up to 90 mol% of SiO,
the possible surface functionalization and obtaining organic-inorganic
hybrids with tailored mechanical or degradation properties [49] and the
obtaining of coatings or fiber meshes. Finally, MBGs, which can be
considered an improvement of SGGs, exhibit controlled nanostructure
and huge textural properties because their synthesis in the presence of
surfactants and in vitro bioactive responses much faster than the other
families of BGs. Moreover, the large volume of monodisperse pores
makes MBGs ideal candidates host biomolecules and drugs, an essential
feature for their use in applications in bone RM.

12. Future perspective of mesoporous glasses in bone RM

Several issues have to be addressed regarding the use of MBGs in RM,
including:
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Improving SiO,—CaO- P,0; MBG scaffolds for bone regeneration
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Fig. 13. Strategies used to improve MBG scaffolds adding bactericidal, angiogenic, and osteogenic capabilities.

> the extra elements added to MBGs sometimes bind so strongly with

the glass network that the desired biological action is not observed
because the inorganic ions are not released to the surrounding me-
dium. For instance, our group investigated an MBG including Ga;O3
because of the bactericidal properties of Ga>' ions. However, the
glass did not exhibit antibacterial properties in the in vitro assays
because the Ga>" ions remained in the glass network without being
released to the medium [89]. To solve this drawback, we designed
new Ga-MBGs able to release concentrations of Ga®" within the
therapeutic range [91], which now need further investigations.

> Often, the necessary concentrations of an inorganic element to ach-

ieve a biological effect, for instance, bactericidal properties, are so
high that the MBG obtained is not biocompatible. In this sense, we
investigated MBGs enriched with 4 and 7 mol% ZnO looking for the
osteogenic and bactericidal capabilities of Zn?* ions. The MBG with
7% of ZnO exhibited the highest antibacterial capability. However,
this material was not cytocompatible [89]. Therefore, the MBG with
4% of ZnO was selected for our later in vitro and in vivo studies [66,93,
99]. The lower bactericidal capability of this MBG was proposed to be
improved by adding small amounts of antibiotics [90]. The MBG with
4% of ZnO continues under study as a very promising candidate to be
used in bone RM.

> Sometimes, when the MBG scaffolds or nanoparticles are loaded with

biologically active substances such as biomolecules and drugs, the
interaction of such substances with the therapeutic ions can sub-
stantially modify their release kinetics. Such release kinetics can also
be modified by the partial solubility of the MBG in a physiological
medium. That way, our group investigated MBGs scaffolds loaded
with curcumin, which exhibits numerous positive biological effects,
including its possible uses as bactericidal [136], an alternative anti-
cancer drug [137]. We observed that the presence of some inorganic
ions in the glass network increased the amount of curcumin able to be
uploaded into the MBG scaffold. However, in some cases, the in-
teractions of the drug with the inorganic ions were so strong that the
curcumin release was hindered [123]. Thus, we learnt that when
several components are included in an MBG, all the possible in-
teractions between them must be investigated because they can in-
fluence their biological behavior.
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> Another factor that must be considered arises from the high bioac-

tivity of MBGs-based biomaterials. In some cases, the quick formation
of an apatite-like layer coating the MBG surface when it contacts to
biological fluids can hinder or slow down the release of the bio-
molecules, drugs, or therapeutic ions in the MBGs.

Other unexpected effect was observed when the MBGs scaffolds were
coated with a thin gelatin layer (6 wt%) to increase their mechanical
integrity and made easy its handling in the in vitro studies [66] and
when they were implanted in vivo [99]. Gelatin layer was slightly
swelled with the surrounding fluids improving the fit of the scaffold
into the bone defect. Moreover, the gelatin layer scarcely decreased
the textural properties of MBGs, but the in vitro studies showed that it
substantially improved the interchange of ions, biomolecules, and
drugs between the biomaterial and medium [66]. Consequently,
MBGs trying to be brought to the clinic must be thoroughly charac-
terized after any small variation in the processing parameters and
after the sterilization and packaging processes.

When the system becomes more complicated with the addition of
therapeutic ions, drugs, signals, and living cells, researchers must
consider not only the interactions of each element with the matrix but
also the interactions among elements. For instance, when we loaded
the MBGs scaffolds with the osteogenic peptide OST, an unexpected
synergic effect was observed among the Zn?* ions and the peptide in
terms of increasing the bone regeneration [66]. Similarly, when the
MBG scaffolds were implanted, a synergic effect between OST and
mesenchymal stem cells was observed [99].

One of the current most active areas of study in the MBGs is obtaining
them as nanoparticles (MBNs) to be used as nanocarriers of biologi-
cally active ions and biomolecules [36]. One of the aspects to clarify is
the size of the particles to consider them as true nanoparticles. In
general, nanoparticles must be smaller than 100 nm, but for pure
silica nanoparticles, particles around 120 nm are admitted in this
category. However, in MBGs, particles up to 800 nm were reported as
nanoparticles when they rather must be considered as sub-
micrometric particles. This field, which is subjected to a great
expansion, ought to produce soon materials with new capabilities for
bone RM. However, much research is needed before reaching the
clinical use.
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> Other approaches based on conventional routes and also more
imaginative ones must be explored. For instance, the enrichment of
MBGs with an on with double oxidation state, such as Ce3>*/Ce*",
exhibits an interesting behavior because it inhibits oxidative stress by
mimicking catalase enzyme activity [76]. Other approaches could be
tracing the degradation products from MBGs with isotopic labeling
such as %°Ca [54] or the use of molecular modeling [138] to under-
stand the interactions between the components included in the MBGs
and with the glass network.

Considerable research work is required before MBGs can be used
clinically in humans. However, at the moment, it is clear that three-
dimensional scaffolds and nanoparticles based on CaO-P305-SiO;
MBGs enhanced with oxides of metals with biological activity, loaded
with biological signals, and decorated with stem cells is one of the most
promising approaches for RM of bone tissues.
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