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Abstract

Purpose: Studies report molecular subtypes within muscle invasive bladder cancer (MIBC) 

predict clinical outcome. We evaluated whether subtyping by a simplified method and established 

classifications could predict clinical outcome.

Methods: Institutional cohort-1 (n=52; MIBC: 39), Oncomine-dataset (MIBC: 151) and The 

Cancer Genome Atlas (TCGA)-dataset (MIBC: 402) were subtyped by simplified panels (MCG-1; 

MCG-Ext) that included only transcripts common among published studies, and analyzed for 

predicting metastasis, cancer-specific survival (CSS), overall-survival (OS), and recurrence–free 

*Address for Correspondence: Vinata B. Lokeshwar, Ph.D. Professor and Chair; Department of Biochemistry and Molecular 
Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Room CN 1177A, Augusta, GA 30912-2100, 
Office: (706) 721-7652; Fax: (706) 721-6608; vlokeshwar@augusta.edu.
♣Contributed equally and are joint first authors

HHS Public Access
Author manuscript
J Urol. Author manuscript; available in PMC 2021 August 02.

Published in final edited form as:
J Urol. 2020 January ; 203(1): 62–72. doi:10.1097/JU.0000000000000351.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



survival (RFS). TCGA-dataset was further analyzed using Lund-Taxonomy, BC-Molecular 

Taxonomy Group Consensus (Consensus), and mRNA-subtype (TCGA-2017) classifications.

Results: MIBC specimens from cohort-1 and Oncomine-dataset showed intra-tumor 

heterogeneity for transcript/protein expression. MCG-1 subtypes did not predict outcome in 

univariate or Kaplan-Meier analyses. In multivariate analyses, N-stage (P≤0.007), T-stage 

(P≤0.04), M-stage (P=0.007) and/or age (P=0.01) predicted metastasis, CSS/OS and/or cisplatin-

based adjuvant-chemotherapy response. In the TCGA-dataset, publications report that subtypes 

risk-stratify patients for OS. Consistently, MCG-1 and MCG-Ext subtypes associated with OS, but 

not RFS, in univariate and Kaplan-Meier analyses. TCGA-dataset includes low-grade specimens 

(21/402) and subtypes associated with tumor-grade (P=0.005). However, MIBC is rarely low-

grade (<1%). Among only high-grade specimens, MCG-1 and MCG-Ext subtypes could not 

predict OS. Subtypes by Consensus, TCGA-2017 and Lund-Taxonomy associated with tumor-

grade (P<0.0001) and OS (P=0.01-<0.0001) univariately. Regardless of classification, subtypes 

had ~50%−60% sensitivity and specificity to predict OS/RFS. In multivariate analyses, N-stage 

and lymphovascular-invasion consistently predicted RFS (P=0.039) and OS (P=0.003).

Conclusion: Molecular subtypes reflect bladder tumor heterogeneity and associate with tumor-

grade. In multiple cohorts/subtyping-classifications, clinical parameters outperform subtypes for 

predicting outcome.
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Introduction

The high morbidity, mortality and healthcare cost associated with muscle-invasive bladder 

cancer (MIBC) present a need for individualizing patient care1. While the divergent but 

interrelated two-molecular-pathway model for the development of low-grade and high-grade 

bladder cancer (BC) is well-established, molecular profiling has revealed heterogeneity in 

MIBC regarding genetic landscape and clinical outcome2–4. Furthermore, molecular 

profiling has been proposed in individualizing treatment for MIBC patients5. Retrospective 

transcriptome profiling studies from different institutions and The Cancer Genome Atlas 

(TCGA) Research Network have identified distinct molecular subtypes within MIBC and a 

recent study described them in non-MIBC sepcimens6–9. While different studies report 

varying MIBC subtypes such as the TCGA clusters, Lund Taxonomy, mRNA expression-

based molecular subtypes (TCGA-2017), and the consensus subtypes produced by the 

Bladder Cancer Molecular Taxonomy Group (Consensus), at the highest level, tumors can 

be divided into two major subtypes - “basal” (BL) and “luminal” (LU)6–8,10–14. The BL-

subtype shares an expression profile with the basal cells of the urothelium and usually 

associates with a poor prognosis. The LU-subtype shares molecular profiles with 

differentiated urothelial cells and possibly predicts a better prognosis4,7,8,11,12. In the 

original Lund-Taxonomy classification from 2012, the best cancer-specific survival (CSS) 

was associated with “UroA” subtype (now “Urothelial-like”), which represented low-grade 

non-MIBC with a signature similar to the LU subtype15. Intra-tumor and intra-patient co-

existence of basal and luminal tumor regions has been reported in MIBC patients, and many 
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non-MIBC tumors also exhibit MIBC subtypes16,17. Tumor heterogeneity may also be 

enhanced following neoadjuvant and adjuvant treatment18. Such inter- and intra-tumoral 

heterogeneity could influence the clinical potential of grouping MIBC into subtypes17.

The primary focus of this study was to develop and validate a subtyping methodology that 

could be readily applied to any BC cohort for predicting clinical outcome. We initially 

subtyped our institutional MIBC cohort using a panel of transcripts that are common among 

published studies4,5,7,8,10,12,15,19–21. We validated the results in an Oncomine-dataset (151 

MIBC specimens) and in the commonly used TCGA-dataset (402 MIBC 

specimens)5,6,10,12,19,20,22. Additionally, we further confirmed the results by analyzing the 

TCGA-dataset using the subtype identifiers for the specimens according to Lund-Taxonomy, 

TCGA-2017, and Consensus classifications. In all cohorts and classifications, the subtypes 

showed strong association with tumor grade, had suboptimal efficacy to predict clinical 

outcome, and clinical parameters consistently outperformed the subtypes in predicting 

prognosis.

Materials and methods

Data Acquisition.

All three cohorts are described in Supplementary Table 1. Cohort-1: Our institutional cohort 

included 52 BC specimens; 39 MIBC. Oncomine-dataset and TCGA-dataset: RNA-Seq data 

on 151 high-grade MIBC specimens was accessed through Oncomine™23–25 and data on 

402 MIBC specimens from the TCGA was accessed through UCSC-Xena Browser26.

Molecular subtyping:

Transcripts included in the subtyping panels (MCG-1, MCG-Ext) are commonly used in 

subtyping studies4,5,7,8,10,12,15,19–21 (Supplementary Table 2). In cohort-1, transcripts’ 

expression was measured by reverse transcription quantitative PCR (RT-qPCR) and 

normalized to β-Actin27. Cohort-1 (transcript levels) and Oncomine-dataset (RNA-Seq) 

were subtyped by MCG-1. The TCGA-dataset (RNA-Seq) was subtyped by MCG-1, MCG-

Ext. Supplementary methods detail the subtyping methodology for MCG-1 and MCG-Ext. 

The subtype identifiers for specimens in the TCGA-dataset by the Lund-Taxonomy and the 

Consensus13,14 were kindly provided by Dr. Gottfrid Sjödahl from the Division of 

Urological Research, Department of Translational Medicine at Lund University. The mRNA 

subtype (TCGA-2017) identifiers were obtained from a published study12.

Immunohistochemistry (IHC):

IHC was performed on representative patient tissues from cohort-1 to validate RT-qPCR 

findings (detailed methodology in supplementary materials).

Statistical analysis.

Statistical analyses were performed using SAS9.4, JMP14.0 and GraphPad Prism software 

(Supplementary Materials). Subtypes’ association with clinical outcome was analyzed by 

univariate (single parameter logistic regression) analysis. ROC curves were used to compute 

sensitivity and specificity. Mean, median, and 95% CI of sensitivity and specificity were 
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calculated by Bootstrap modeling with 1000 iterations. Subtypes’ association with time to 

metastasis, RFS, CSS or OS was determined while adjusting for demographic and clinical 

covariates described in Supplementary Table 1 using Cox proportional hazard model with 

stepwise selection procedure. Kaplan-Meier plots with log-rank statistics determined if 

subtypes classified MIBC patients into risk categories for outcome.

Results

Molecular subtyping revealed intra-tumor heterogeneity in MIBC specimens

Molecular subtyping studies have used transcriptome data to group MIBC specimens into 

distinct subtypes6–8,12. To molecularly subtype MIBC specimens in our institutional cohort 

(cohort-1), we used a subtyping panel, MCG-1, that consisted of only those transcripts that 

are common in most subtyping studies (Supplementary Table 2)5,7,8,10,12,15,19–22. Since RT-

qPCR is a standard technique used to validate transcriptome-based findings, we used RT-

qPCR to measure the levels of transcripts in MCG-1 panel. Additionally, if molecular 

subtypes are to be reduced to clinical practice, RT-qPCR would be a technically easy and 

relatively inexpensive tool for subtyping patients’ tumors in real-time. In cohort-1 there were 

39 high-grade MIBC specimens (Supplementary Table 1). Based on MCG-1, the majority of 

the specimens in cohort-1 had characteristics of both BL and LU subtypes. Therefore, the 

subtype scores grouped the specimens into four molecular subtypes: BL, LU, BL-like and 

LU-like (Figure 1A; Supplementary Methods). BL-like and LU-like subtypes had 

characteristics of both BL and LU phenotypes, and were the dominant subtypes, suggesting 

substantial intra-tumor heterogeneity. Based on RT-qPCR data, tissues expressing high- and 

low-levels of individual BL (KRT5/6, KRT14) and LU (KRT20, UPK2/3, FOXA1) markers 

were evaluated by IHC. IHC confirmed the expression of markers at the protein level, which 

also showed intra-tumor heterogeneity in markers’ expression within a single high-power 

field (Figure 1B).

We next evaluated the association of subtype scores generated by MCG-1 to clinical 

parameters. Unexpectedly, subtype scores did not associate with any clinical or prognostic 

parameters; although most females had BL-subtype tumors (Figure 1C; Supplementary 

Figure 1A). Published studies have also reported that bladder tumors from females tend to 

be of the BL-subtype8. In univariate and multivariate analyses, subtypes by MCG-1 did not 

significantly predict metastasis, CSS or OS (Tables 1 and 2). Subtypes had 80%−83% 

sensitivity but 31%−36% specificity for both metastasis and CSS (Table 3). Furthermore, the 

subtypes did not risk-stratify patients for metastasis, CSS or OS (Figure 1 D-F).

Oncomine-dataset validated intra-tumor heterogeneity and subtypes’ inability to predict 
outcome.

Since cohort-1 has a relatively small sample size and RT-qPCR was used for subtyping as 

opposed to RNA-Seq, we accessed three independent transcriptome datasets through 

Oncomine™ (Oncomine-dataset; Supplementary Table 1)23–25. Hierarchical cluster analysis 

of the high-grade MIBC specimens by MCG-1 showed some grouping of MIBC specimens, 

but the groups were heterogeneous among datasets (Figure 2A). MCG-1 again grouped the 

151 specimens into four subtypes (Figure 2B). Among all clinical parameters, subtype 
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scores significantly associated only with sex; females mostly had basal tumors (BL+BL-like; 

Supplementary Figure 1A; Figure 2C). In univariate analysis, TNM-staging, but not subtype 

scores, significantly associated with CSS or OS (Table 1). In multivariate analysis, age and 

TNM-staging significantly predicted CSS or OS (Table 2). Subtypes failed to risk stratify 

patients by Kaplan-Meier plots and had 52%−55% sensitivity and 56%−58% specificity to 

predict CSS and OS (Figure 2D, E; Table 3).

Molecular subtypes associated with OS in the TCGA-dataset.

Since results of the Oncomine-dataset and cohort-1 were in agreement, the inability of the 

subtypes to associate with clinical outcome was likely not due to sample size or 

methodology. Many groups have reported an association of the molecular subtypes to OS 

using the TCGA-dataset5,10,12,19. Therefore, we sought to reproduce the published results by 

MCG-1 subtyping on all 402 MIBC specimens in the TCGA-dataset (Supplementary Table 

1).

Although in the TCGA-dataset hierarchical clustering showed an overall grouping of 

specimens, based on the subtype scores, the majority were BL-like and LU-like (Figure 3A). 

Contrary to our findings in cohort-1 and the Oncomine-dataset, but consistent with 

published studies5,10,12,19, subtype scores associated with OS in the TCGA-dataset (Figure 

3B). In univariate analysis, subtypes by MCG-1, along with all clinical parameters except 

sex, significantly predicted OS; the subtypes did not predict RFS (Table 1). Kaplan-Meier 

plots showed that subtypes significantly stratified patients for risk of death (OS; Figure 3C; 

P = 0.034). However, the subtypes could not stratify patients regarding risk of RFS (Figure 

3D). In multivariate analysis LVI and N-stage were significant for predicting OS and RFS, 

respectively (Table 4). Subtypes had 55.7% sensitivity and 59.5% specificity for OS, and 

54% sensitivity and 57% specificity for RFS (Table 5).

In the TCGA-dataset Prognostic capability of subtypes depended on low-grade MIBC 
specimens.

Analysis of the clinical data in all three cohorts revealed that while neither cohort-1 nor the 

Oncomine-dataset included low-grade MIBC specimens, in the TCGA-dataset 5.2% 

(21/402) of the specimens were low-grade MIBC (Supplementary Table 1). Nineteen of 

these 21 specimens (90.5%) were either the LU or LU-like subtype and subtypes associated 

with tumor grade (P=0.005; Figure 3B, E). Molecular subtyping studies that used the 

TCGA-dataset and reported prognostic significance included these low-grade specimens in 

their analyses5,10,12,19. However, low-grade MIBC is a rare occurrence; only 0.988% 

(55/5,564) MIBC cases in the SEER database are low-grade. When we re-performed MCG-1 

subtype analyses of the TCGA-dataset using only the high-grade MIBC specimens, the 

subtypes neither associated with OS in univariate analysis, nor could they stratify patients 

for OS (Table 6, Figure 3F). In multivariate analysis, LVI and N-stage were still the only 

significant parameters for OS and RFS, respectively (Table 4). In efficacy analysis of only 

the high-grade specimens, subtypes by MCG-1 had suboptimal sensitivity and specificity for 

OS and RFS (Table 5).
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MCG-Ext subtypes validates results of MCG-1 subtypes in the TCGA-dataset.

To validate results from MCG-1, we expanded the panel by including additional genes 

reported in at least two subtyping studies (MCG-Ext; Supplementary Table 2)7,8,10,12,19–22. 

Hierarchical clustering by MCG-Ext showed more obvious heterogeneity than MCG-1. 

Nevertheless, subtype scores grouped the majority of specimens into BL-like and LU-like 

subtypes (Figure 4A). Out of 21 low-grade tumors, MCG-Ext classified 20 (95.2%) as LU or 

LU-like and in univariate analysis, subtypes showed strong association with tumor-grade 

(P=0.0004). In univariate analysis, subtypes by MCG-Ext, significantly associated with OS, 

but not RFS (Table 1). Kaplan-Meier plots showed that subtypes significantly stratified 

patients for OS, but not RFS (Figure P=0.049; Figure 4B, C). In multivariate analysis LVI 

and N-stage were significant for predicting OS and RFS, respectively (Table 4). Consistent 

with MCG-1 panel, the subtypes did not stratify patients for OS when only high-grade 

specimens were analyzed (Figure 4D).

Subtypes predicted clinical outcome in cohort-1 with inclusion of low-grade specimens

We also evaluated whether addition of low-grade specimens in cohort-1 would enable the 

subtypes to predict clinical outcome. Therefore, we re-analyzed cohort-1 including low-

grade specimens (all non-MIBC). Similar to the TCGA-dataset, all seven low-grade 

specimens were the LU or LU-like subtype (Figure 3E). Kaplan-Meier plots showed that the 

subtypes could now significantly risk-stratify patients for metastasis and CSS (Fig 4E, F); 

similar results were obtained for OS (P = 0.023). Univariate analysis confirmed these results 

(Table 6). In multivariate analysis, subtypes, along with N-stage and T-stage were significant 

predictors of metastasis and CSS (Table 2). Analysis using high-grade non-MIBC and MIBC 

specimens showed roughly equal distribution of the subtypes between these groups 

(Supplementary Figure 1B). Among this high-grade subgroup (MIBC and non-MIBC), 

subtypes did not stratify patients for risk of metastasis, CSS, or OS (Supplementary Figure 1 

C-E).

Subtypes do not predict response to cisplatin-based chemotherapy

In the TCGA-dataset there are 10 specimens from patients who underwent neoadjuvant 

chemotherapy. Although the response data are not provided, all 10 patients had high-grade 

MIBC (pathologic stage: II: n=3; ≥ III: n=7), suggesting that they did not respond to NAC. 

Five specimens were the BL/BL-like subtype, and five were the LU/LU-like subtype. In the 

Oncomine-dataset, 43 patients received adjuvant cisplatin-based chemotherapy and had 

follow-up data (Supplementary Table 1)23,25. Subtypes by MCG-1 could not risk-stratify 

these patients with respect to response, i.e. OS, and in multivariate analysis only M-stage 

was an independent predictor of OS (Supplementary Figure 1F, Table 2).

Three published subtype classifications validate results of MCG-1 and MCG-Ext in the 
TCGA-dataset

We also analyzed the TCGA-dataset using three established subtyping classifications: Lund-

Taxonomy, TCGA-2017, and Consensus12–14. Although each classification system divides 

the TCGA-dataset into five or six subtypes, the majority (66%–75%) of specimens belong to 

two subtypes, while the remaining subtypes are underrepresented (Figure 4G). In each 
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classification the NE-like/Neuronal subtype accounts for only six (1.5%) to 19 (4.7%) 

specimens in the dataset (Figure 4G). In univariate analysis, subtypes by these classifications 

associated with OS, and only Consensus subtypes modestly associated with RFS (Table 1). 

Of the 21 low-grade tumors, 20 (95.2%) were Luminal Papillary according to the 

TCGA-2017 and Consensus classifications, and all 21 were Urothelial-like according to 

Lund-Taxonomy. Furthermore, as observed for MCG-1 and MCG-Ext, tumor grade 

significantly associated with subtypes in these classifications (P<0.0001), univariately. In 

multivariate analysis, the TCGA-2017 subtypes predicted OS (P=0.045); however, subtypes 

by neither the Lund-Taxonomy nor Consensus were able to predict OS; no classification 

predicted RFS (Table 4). In each classification, LVI and N-stage significantly predicted OS 

and RFS, respectively (Table 4). Subtypes by these classifications had 59.1%−68.2% 

sensitivity and 53.2%−59.9% specificity for OS and 40.2%−60.9% sensitivity and 48.4%

−66.4% specificity for RFS (Table 5).

It is noteworthy that despite association of subtypes to tumor grade, in multivariate analyses, 

subtypes by Consensus, TCGA-2017, and Lund-Taxonomy did not reach significance 

whether low-grade tumors were included or not. In the high-grade only subgroup, efficacy 

values were similar - OS: sensitivity, 59.8%−68.4%; specificity, 48.8%−56.2%; RFS: 

sensitivity, 40%−49.4%; specificity: 62.3%−63.2% (Table 5).

Discussion

Historically, molecular classification of bladder tumors has identified two divergent 

pathways with distinct genetic hallmarks characterizing low-grade and high-grade tumors2,3. 

Recent studies, including those by the TCGA Research Network, identified molecular 

subtypes that could potentially predict outcome and individualize care of MIBC 

patients4–8,10,19,20. The salient findings of our study are: 1. Development of a RT-qPCR 

based simplified MIBC subtyping methodology that can be applied to any cohort. Prognostic 

predictions by this methodology are consistent with those obtained using established 

classification systems. 2. MCG-1, MCG-Ext, Lund-Taxonomy, Consensus and TCGA-2017 

classifications consistently showed an association of subtypes with tumor grade. 4. 

Regardless of sample size, cohort/dataset, or subtyping classification, the subtypes were 

consistently outperformed by clinical parameters (mainly N-Stage and LVI) for predicting 

BC-specific outcomes and OS. 5. Subtypes could not predict response to cisplatin-based 

adjuvant chemotherapy.

Molecular subtyping classifications have provided insight into the biology of bladder 

tumors. For example, the existence of multiple subtypes demonstrates heterogeneity among 

tumors. Our study reveals that both BL and LU markers exist within one tumor, reflecting 

intra-tumor heterogeneity. Furthermore, different cells within a tumor express different 

levels of a single marker. Such heterogeneity has also been previously reported within a 

bladder tumor and among clonally related bladder tumors in a single patient16. These 

observations indicate two possibilities; first, tumor cells may express BL or LU markers 

relative to their temporal and spatial positioning, and this expression may be altered by the 

tumor microenvironment, disease progression and/or treatment. Second, tumors contain 

tumor cell clones representing either “BL” or “LU” phenotype arising from different cells of 
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origin. Our IHC data support both possibilities and are consistent with the reported 

differences in genetic landscapes between primary tumor biopsies and multiple metastatic 

sites18. Tumor sampling technique could also have an impact on subtyping. A single tumor 

could plausibly be classified as different subtypes depending on location and/or size of the 

sample. Therefore, intra-tumor heterogeneity associated with molecular subtypes could be a 

reflection of differences in etiology, cell of origin, tumor sampling, tumor microenvironment 

and/or therapeutic response.

It was reported that MIBC subtypes may predict patient response to chemotherapy and could 

be used to develop targeted therapies5,10,12,19,20. In the Oncomine-dataset, subtypes could 

not stratify patients regarding response to cisplatin-based adjuvant chemotherapy. Together 

with the heterogeneity introduced by sampling and tumor microenvironment is the 

complexity that marker profiles are a reflection of gene expression. Since gene expression 

patterns change, subtype drifting or switching due to tumor evolution and reaction to therapy 

are reported. Therefore, there is a need for systematic biological studies to better stratify BC 

based on genetic drivers of treatment response rather than subtyping based on expression 

profiling7,28.

The LU subtype is reported to predict a better prognosis4,7,8,11,12,20. In the TCGA-dataset 

and cohort-1, 91% and 100% of the low-grade tumors were LU phenotype (LU/LU-like) by 

MCG-1, respectively. Using the established classifications (Consensus, TCGA-2017, and 

Lund-Taxonomy), 95.2%−100% of low-grade tumors were LU-related subtypes. In all 

cohorts, subtypes by all classifications associated with tumor grade. The predictive ability of 

MCG-1 and MCG-Ext subtypes for OS was lost when low-grade specimens were excluded. 

In agreement, the subtypes’ gained predictive ability when low-grade specimens were 

included in analysis of cohort-1. A recent meta-cohort study describing six molecular 

subtypes showed that subtypes did not associate with OS in the TCGA-dataset of 383 

specimens (P=0.077)9. This sample size is only plausible if all or most of the 21 low-grade 

specimens were excluded. The study also analyzed 418 specimens from the “UROMOL” 

non-MIBC cohort (n=476; Array Express for UROMOL E-MATB-4321). In this cohort, 

>50% of specimens are low-grade and subtypes were reported as predicting disease-free 

survival9. Another group applied their own subtyping classification to the UROMOL-cohort 

and reported subtypes’ predicted progression-free survival29. However, the UROMOL-

cohort has only 31 patients progressing to MIBC, and 22 had high-grade tumors. This made 

grade a better predictor for progression (log-rank: P<0.0001) than the subtypes reported in 

both studies9,29.

Our study demonstrates that subtyping by a simplified RT-qPCR-based method yields results 

comparable to established RNA-Seq based classification systems. This is demonstrated by 

subtypes by any classification system correlating with histopathologic grade, and low-grade 

tumors being of luminal lineage. Furthermore, regardless of subtyping classification, only 

clinical parameters such as N-stage and LVI were independent predictors of prognosis in 

multivariate analyses. In any cohort, subtypes by any classification had suboptimal efficacy 

to predict clinical outcome.
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Conclusions

Molecular subtyping classifications have provided insight into the biology of bladder 

tumors, especially regarding tumor heterogeneity. However, results from multiple cohorts 

and classification systems reveal that subtypes strongly associate with histopathologic grade 

and are consistently outperformed by clinical parameters to predict BC patient outcome. 

Further investigation is needed into the clinical applicability of molecular subtypes before 

their incorporation into the personalized care of MIBC patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CSS cancer-specific survival

KRT Cytokeratin(s)

LN lymph node

LU luminal

LVI lymphovascular invasion

MIBC muscle invasive bladder cancer

OS overall survival
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Figure 1: Association of subtypes to clinical outcome in cohort-1.
A. The distribution of LU, LU-like, BL and BL-like subtypes among specimens in cohort-1. 

B. IHC of representative clinical specimens. C. Comparison of specimen subtype scores by 

individual clinical parameters. Each symbol represents an individual specimen/patient in the 

cohort, categorized with respect to a clinical parameter as shown in the figure. P-values 

generated by Mann-Whitney U test are two-tailed. D-F. Kaplan-Meier plots for metastasis 

(D), CSS (E) and OS (F); data stratified by MCG-1 subtypes.
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Figure 2: Association of subtypes to clinical outcome in the Oncomine-dataset.
A. Hierarchical clustering of high-grade MIBC specimens in Als (a), Lee (b) and Sanchez-

Carbayo 2 (c) datasets deposited in Oncomine™. Note: data on UPK3B was not available 

and hence could not be included. B. The distribution of LU, LU-like, BL and BL-like 

subtypes among specimens in the Oncomine-dataset of 151 high-grade MIBC specimens. C. 

Comparison of specimen subtype scores by clinical parameters. Each symbol represents an 

individual specimen/patient, categorized with respect to a clinical parameter as shown in the 

figure. P-values generated by Mann-Whitney U tests are two-tailed. D, E. Kaplan-Meier 
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plots for CSS (D) and (OS) stratified by MCG-1 subtypes using the specimens on which 

follow-up data were available.
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Figure 3: Association of subtypes to clinical parameters, OS and RFS in the TCGA-dataset and 
the influence of grade.
A. Hierarchical clustering of 402 MIBC specimens in the TCGA-dataset and the distribution 

of LU, LU-like, BL and BL-like subtypes. B. Comparison of specimen subtype scores by 

clinical parameters. Each symbol represents an individual specimen. P-values generated by 

Mann-Whitney U test are two-tailed. C and D. Kaplan-Meier plots for OS (C) and RFS (D) 

of MIBC specimens in the TCGA-dataset stratified by MCG-1 subtypes. E. Distribution of 

the molecular subtypes between low- and high-grade tumors in the TCGA and cohort-1 

datasets. Note: There were only high-grade MIBC specimens in the Oncomine-dataset. F. 
Kaplan-Meier plot for OS including only high-grade MIBC specimens in the TCGA-dataset.
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Figure 4: Analysis of MCG-Ext subtypes and distribution of subtypes among established 
classifications in the TCGA-dataset.
A. Hierarchical clustering of 402 MIBC specimens in the TCGA dataset and the distribution 

of LU, LU-like, BL and BL-like subtypes according to MCG-Ext. B, C. Kaplan-Meier plots 

including all MIBC specimens in the TCGA-dataset for OS (B) and RFS (C) based on 

MCG-Ext. D. Kaplan-Meier plot for OS including only HG MIBC specimens in the TCGA-

dataset based on MCG-Ext. E, F. Kaplan-Meier plots including LG specimens (all non-

MIBC) in cohort-1 for metastasis (E) and CSS (F) based on MCG-1. G. Distribution of 

subtypes in each established classification in the TCGA-dataset.

Abbreviations: BC: bladder cancer; BL: basal; CSS: cancer-specific survival; KRT: 

Cytokeratin(s); LN: lymph node; LU: luminal; LVI: lymphovascular invasion; MIBC: 

muscle invasive bladder cancer; OS: overall survival; RFS: recurrence-free survival; TCGA: 

The Caner Genome Atlas; TNM: Tumor-stage, lymph node, metastasis; UPK: Uroplakin(s)
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Table 1:
Relationship of outcome to clinical parameters and molecular subtypes in cohort-1, the 
Oncomine-dataset, and TCGA.

Univariate analysis (single parameter logistic regression) was performed to evaluate the ability of clinical 

parameters and molecular subtypes to associate with metastasis, CSS, OS and RFS. Units odds ratio (OR) and 

95% CI (CI) are shown for significant parameters.

Cohort-1

Metastasis CSS Indicator

Parameter χ2 P value OR; 95% CI χ2 P value OR; 95% CI

Age 0.02 0.885 0.49 0.484

Sex 0.54 0.462 0.29 0.590

T-Stage 7.17 0.007 1.2; 1.1 – 1.4 6.76 0.009 1.2; 1.04 – 1.3

N-stage 5.15 0.023 7.5; 1.3 – 42.8 6.33 0.012 9.4; 1.6 – 53.6

CIS 0 0.995 0 0.994

MCG-1 0.23 0.629 0.86 0.354

Oncomine-dataset

CSS Indicator OS Indicator

Parameter χ2 P value OR; 95% CI χ2 P value OR; 95% CI

Age 3.06 0.080 1.07 0.301

Sex 0.02 0.894 0.06 0.806

T-stage 11.43 0.0007 1.1; 1.04 – 1.2 9.2 0.002 1.1; 1.04 – 1.2

N-stage 8.84 0.003 3.4; 1.5 – 7.5 1.55 0.213

M-stage 0 0.998 5.38 0.020 11.9; 1.5 – 96.1

MCG-1 0.06 0.808 0.98 0.323

TCGA-dataset

RFS Indicator OS Indicator

Parameter χ2 P value OR; 95% CI χ2 P value OR; 95% CI

Age 0.17 0.682 15.5 < 0.0001 1.04; 1.02 – 1.06

Sex 0 0.945 0.67 0.414

Grade 3.67 0.056 7.44 0.006 7.8; 1.8 – 34.1

T-stage 4.23 0.04 1.04; 1.0 – 1.1 18.8 < 0.0001 1.08; 1.04 – 1.1

N-stage 13.95 0.0002 2.8; 1.6 – 4.9 31.1 < 0.0001 3.6; 2.3 – 5.7

LVI 3.16 0.076 11.8 0.0006 2.4; 1.5 – 3.9

M-stage 0.98 0.323 4.44 0.035 4.3; 1.1 – 16.8

MCG-1 2.28 0.131 5.5 0.019 1.3; 1.04 – 1.5

MCG-Ext 0.68 0.410 8.36 0.004 1.3; 1.1 – 1.6

Consensus 4.78 0.029 1.2; 1.02 – 1.4 23.26 < 0.0001 1.3; 1.2 – 1.5

TCGA-2017 0.98 0.323 10.65 0.001 1.4; 1.1 – 1.6

Lund-Taxonomy 1.1 0.294 8.05 0.005 1.3; 1.1 – 1.5
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Table 2:
Relationship of outcome to clinical parameters and molecular subtypes in multivariate 
analysis in cohort-1 and the Oncomine-dataset.

Cox Proportional Hazards Model with stepwise selection procedure to determine the final model that 

accurately describes the outcome. In cohort-1, the model included age, sex, T-stage, N-stage, CIS and MCG-1 

Subtypes. In the Oncomine-dataset, analyses included age, sex, T-stage, N-stage, M-stage and MCG-1 

subtypes. Data are shown only for those parameters that reached significance.

Cohort 1 Metastasis

MCG-1 MCG-1 (with LG)

Parameter P value HR; 95% CI P value HR; 95% CI

N-stage 0.007 3.4; 1.4 – 8.3 <0.0001 9; 3.3 – 24.4

MCG-1 0.006 2.9; 2.4 – 32.3

Cohort 1 CSS Indicator

MCG-1 MCG-1 (with LG)

Parameter P value HR; 95% CI P value HR; 95% CI

T-stage 0.027 3.9; 1.2 – 12.6 0.003 5.5; 1.8 – 16.7

N-stage 0.0004 7.4; 2.5 – 22.2

MCG-1 0.0192 2.3; 0.6 – 9.3

Cohort 1 OS Indicator

MCG-1 MCG-1 (with LG)

Parameter P value HR; 95% CI P value HR; 95% CI

T-stage 0.039 3.3; 1.1 – 9.8

Oncomine CSS Indicator

MCG-1

Parameter P value HR; 95% CI

Age 0.01 1.1; 1.0 – 1.1

N-stage 0.006 3.4; 1.4 – 8.2

Oncomine OS Indicator

MCG-1 MCG-1 (chemo subgroup)

Parameter P value HR; 95% CI P value HR; 95% CI

T-stage 0.005 37.5; 3.4 – 437

M-stage ≤0.0001 7.7; 3.2 – 18.6 0.007 3.7; 1.4 – 9.8
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Table 3:
Efficacy analysis of MCG-1 subtypes in cohort-1 and the Oncomine-dataset.

Efficacy was calculated using cut-off limits (Youden’s index) from the ROC curves to calculate metastasis, 

CSS, and OS. For bootstrap modeling, data were generated using 1000 iterations.

Cohort-1

Metastasis CSS Indicator (+ = Death due to BC )

Efficacy analysis Efficacy analysis

AUC % Sensitivity % Specificity AUC % Sensitivity % Specificity

0.545 80.0 30.8 0.586 83.3 35.7

Bootstrap modeling Bootstrap modeling

Mean 63.9 57.7 Mean 69.5 54.7

Median 68.0 56.3 Median 78.9 50

95% CI 17.9 – 95.8 23.1 – 100 95% CI 18.2 – 98.3 20.0 – 100

Oncomine-dataset

CSS Indicator OS Indicator (+ = Death)

Efficacy analysis Efficacy analysis

AUC % Sensitivity % Specificity AUC % Sensitivity % Specificity

0.516 52.2 56.4 0.571 55.3 58.3

Bootstrap modeling Bootstrap modeling

Mean 67.8 46.4 Mean 60.2 57.3

Median 66.7 49.0 Median 58.7 60.7

95% CI 25.0 – 90.1 21.3 – 85.9 95% CI 13.4 – 96.0 14.9 – 99.3
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Table 4:
Multivariate analysis to determine relationship of outcome to clinical parameters and 
molecular subtype classifications in the TCGA-dataset.

In all analyses we performed Cox Proportional Hazards Model with stepwise selection procedure to determine 

the final model that accurately describes the outcome. The parameters included in each analysis were: Age, 

sex, T-stage, N-stage, M-stage, LVI, and subtype classification. Only significant parameters based on Wald’s 

test with overall hazard ratio (HR) and 95% CI are shown.

TCGA dataset OS Indicator

MCG-1 Consensus TCGA-2017 Lund-Taxonomy

Parameter P value HR; 95% CI P value HR; 95% CI P value HR; 95% CI P value HR; 95% CI

LVI 0.003 2.7; 1.4 – 5.3 0.003 2.7; 1.4 – 5.3 0.016 2.3; 1.2 – 4.7 0.003 2.7; 1.4 – 5.3

Subtype 
Classification

0.045 4.4; 1.1 – 
16.5

TCGA dataset RFS Indicator

MCG-1 Consensus TCGA-2017 Lund-Taxonomy

Parameter P value HR; 95% CI P value HR; 95% CI P value HR; 95% CI P value HR; 95% CI

N-stage 0.039 2.1; 1.04 – 
4.2

0.039 2.1; 1.04 – 4.2 0.039 2.1; 1.04 – 
4.2

0.039 2.1; 1.04 – 4.2

Note: Analysis of only HG specimens yields the same values.
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Table 5:
Efficacy analysis of molecular subtypes in the TCGA-dataset.

Efficacy of the subtypes was calculated using cut-off limits (Youden’s index) from the ROC curves to calculate 

OS and RFS. For bootstrap modeling, data were generated using 1000 iterations.

TCGA dataset OS Indicator

MCG-1 Consensus TCGA 2017 Lund-Taxonomy

Efficacy Analysis Efficacy Analysis Efficacy Analysis Efficacy Analysis

AUC % Sens. % Spec. AUC % Sens. % Spec. AUC % Sens. % Spec. AUC % Sens. % Spec.

0.568 55.7 59.5 0.636 63.1 59.9 0.593 68.2 53.2 0.578 59.1 56.3

Bootstrap Modeling Bootstrap Modeling Bootstrap Modeling Bootstrap Modeling

% Sens. % Spec. % Sens. % Spec. % Sens. % Spec. % Sens. % Spec.

Mean 55.7 59.6 Mean 72.3 52.0 Mean 67.7 53.5 Mean 57.4 58.0

Med. 55.9 59.6 Med. 70.6 54.9 Med. 67.9 53.1 Med. 58.7 56.8

95% CI 46.7 -
63.5

52.5 – 
67.3

95% CI 56.5 – 
86.1

36.4 – 
67.6

95% CI 59.7 – 
74.6

46.5 – 
61.0

95% CI 40.3 – 
66.2

49.2 – 
73.4

MCG-1 (HG only) Consensus (HG only) TCGA 2017 (HG only) Lund-Taxonomy (HG only)

Efficacy Analysis Efficacy Analysis Efficacy Analysis Efficacy Analysis

AUC % Sens. % Spec. AUC % Sens. % Spec. AUC % Sens. % Spec. ROC 
AUC

% Sens. % Spec.

0.548 55.2 55.2 0.611 63.2 56.2 0.574 68.4 48.8 0.564 59.8 52.7

Bootstrap Modeling Bootstrap Modeling Bootstrap Modeling Bootstrap Modeling

% Sens. % Spec. % Sens. % Spec. % Sens. % Spec. % Sens. % Spec.

Mean 56.6 54.3 Mean 70.3 50.0 Mean 66.6 50.6 Mean 55.7 57.0

Med. 56.0 55.8 Med. 66.7 53.8 Med. 68.2 49.2 Med. 59.2 54.1

95% CI 25.7 – 
86.3

21.2 – 
81.3

95% CI 51.8 – 
86.5

32.2 – 
67.0

95% CI 42.3 – 
75.7

42.2 – 
74.7

95% CI 8.0 – 
67.4

46.8 – 
98.0

TCGA dataset RFS Indicator

MCG-1 Consensus TCGA 2017 Lund-Taxonomy

Efficacy Analysis Efficacy Analysis Efficacy Analysis Efficacy Analysis

AUC % Sens. % Spec. AUC % Sens. % Spec. AUC % Sens. % Spec. AUC % Sens. % Spec.

0.554 54.0 57.0 0.578 48.3 65.2 0.536 60.9 48.4 0.535 40.2 66.4

Bootstrap Modeling Bootstrap Modeling Bootstrap Modeling Bootstrap Modeling

% Sens. % Spec. % Sens. % Spec. % Sens. % Spec. % Sens. % Spec.

Mean 56.0 55.8 Mean 57.4 57.9 Mean 51.2 60.4 Mean 51.2 58.0

Med. 55.6 57.4 Med. 55.6 60.8 Med. 56.6 53.9 Med. 51.0 59.9

95% CI 24.7 – 
88.0

20.8 – 
81.7

95% CI 41.2 – 
79.2

34.2 – 
71.2

95% CI 14.3 – 
71.4

42.7 – 
92.9

95% CI 7.4 – 
94.5

11.0 – 
97.6

MCG-1 (HG only) Consensus (HG only) TCGA 2017 (HG only) Lund-Taxonomy (HG only)

Efficacy Analysis Efficacy Analysis Efficacy Analysis Efficacy Analysis

AUC % Sens. % Spec. AUC % Sens. % Spec. AUC % Sens. % Spec. AUC % Sens. % Spec.

0.538 54.1 53.4 0.559 49.4 62.3 0.522 43.5 62.8 0.512 40.0 63.2

Bootstrap Modeling Bootstrap Modeling Bootstrap Modeling Bootstrap Modeling

J Urol. Author manuscript; available in PMC 2021 August 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Morera et al. Page 22

TCGA dataset OS Indicator

MCG-1 Consensus TCGA 2017 Lund-Taxonomy

Efficacy Analysis Efficacy Analysis Efficacy Analysis Efficacy Analysis

% Sens. % Spec. % Sens. % Spec. % Sens. % Spec. % Sens. % Spec.

Mean 58.3 51.0 Mean 47.3 62.3 Mean 47.3 62.3 Mean 53.8 53.7

Med. 56.8 53.6 Med. 48.2 62.7 Med. 48.2 62.7 Med. 52.5 54.6

95% CI 23.7 – 
89.5

18.9 – 
81.7

95% CI 12.8 – 
93.7

10.9 – 
93.5

95% CI 12.8 – 
93.7

10.9 – 
93.5

95% CI 6.3 – 
95.1

10.3 – 
98.2
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Table 6:
Influence of grade on subtypes’ association to clinical outcome.

Univariate analysis for evaluating subtype scores’ association with clinical outcome when 7 low-grade 

specimens were added in cohort-1 and 21 low-grade specimens were removed from the TCGA-dataset.

TCGA (HG only)

RFS Indicator OS Indicator

Parameter χ2 P value OR; 95% CI χ2 P value OR; 95% CI

MCG-1 1.09 0.296 2.61 0.11

Cohort-1 (HG + LG specimens)

Metastasis CSS Indicator OS Indicator

Parameter χ2 P value OR; 95% CI χ2 P value OR; 95% CI χ2 P value OR; 95% CI

MCG-1 4.28 0.039 1.91; 1.9 – 3.5 4.65 0.031 2; 1.1 – 3.7 3.88 0.049 1.9; 1.0 – 3.7
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