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Most currently used conventional influenza vaccines are based on 1940s technology.
Advances in vaccine immunogen design and delivery emerging over the last decade
promise new options for improving influenza vaccines. In addition, new technologies for
immune profiling provide better-defined immune correlates of protection and precise surro-
gate biomarkers for vaccine evaluations. Major technological advances include single-cell
analysis, high-throughput antibody discovery, next-generation sequencing of antibody gene
transcripts, antibody ontogeny, structure-guided immunogen design, nanoparticle display,
delivery and formulation options, and better adjuvants. In this review, we provide our pro-
spective outlook for improved influenza vaccines in the foreseeable future.

PAST, PRESENT, AND FUTURE INFLUENZA
VACCINES

The discovery of the causative agent of swine
influenza was reported in 1931 by Shope

(Shope 1931) and was quickly followed by the
identification of human influenza virus by Smith
et al. in 1933 (Smith et al. 1933). Woodruff and
Goodpasture made another major virology
breakthrough in 1931 when they documented
a virus cultivation method utilizing fertilized
chick embryos (Goodpasture et al. 1931). In
1936, Smorodintseff developed the first attenu-
ated influenza virus vaccine using embryonated
eggs, and soon after, this approach was further
refined by Francis and Salk (Francis and Salk
1942). Notably, Salk’s development of an effec-
tive polio vaccine in 1952was possible because of
his experience with influenza vaccine research.
The first egg-based influenza vaccine was li-
censed in 1945, and it astonishingly remains as

the basis for the majority of influenza vaccines
produced today. In 2007, the European Medi-
cines Agency (EMA) approved the first non-
egg-derived influenza vaccine for human use,
made in the Madin–Darby canine kidney
(MDCK) cells (Optaflu), and 5 years later the
same vaccine (renamed Flucelvax) was approved
by the Food and Drug Administration (FDA) in
theUnited States. Although the initialmethod of
virus production differs, these cell culture–
derived vaccines are ultimately processed in
the same way as egg-based vaccines (i.e., both
yield split-virus vaccines). In 2013, the FDA ap-
proved another new vaccine that is conceptually
different from the conventional split-virus (or
whole-virion) vaccines. This vaccine (Flublok)
was based on recombinant hemagglutinin (HA)
proteins produced in insect cells. Its effective-
ness in humans is similar (if not superior) to
egg-based conventional vaccines and is not af-
fected by the egg-adapted HA mutations that

Editors: Gabriele Neumann and Yoshihiro Kawaoka
Additional Perspectives on Influenza: The Cutting Edge available at www.perspectivesinmedicine.org

Copyright © 2021 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a038448
Cite this article as Cold Spring Harb Perspect Med 2021;11:a038448

1

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

http://perspectivesinmedicine.cshlp.org/cgi/collection/influenza_the_cutting_edge
http://perspectivesinmedicine.cshlp.org/cgi/collection/influenza_the_cutting_edge
http://perspectivesinmedicine.cshlp.org/cgi/collection/influenza_the_cutting_edge
http://perspectivesinmedicine.cshlp.org/cgi/collection/influenza_the_cutting_edge
http://perspectivesinmedicine.cshlp.org/cgi/collection/influenza_the_cutting_edge
mailto:bgraham@nih.gov
mailto:bgraham@nih.gov
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org/site/misc/terms.xhtml


might be acquired during productive virus rep-
lication in eggs, which may alter immunogenic-
ity and vaccine efficacy. This licensure of an HA
subunit protein-based influenza vaccine was
groundbreaking and paved the way for other
recombinant protein-based vaccine approaches.

Immunization practices vary widely world-
wide, but annual influenza vaccination is rou-
tinely recommended for everyone older than 6
mo living in the United States, especially for the
elderly, pregnant women, young children, and
health-care providers (https://www.cdc.gov/flu/
prevent/vaccinations.htm). This is an elaborate
system that has become a $4 billion per year
global market and involves biannual influenza
strain selection recommendations by the World
Health Organization (WHO) advisory group
based on the data from the WHO Global Influ-
enza Surveillance and Response System (www
.who.int/influenza/vaccines/virus/recommenda
tions/en). Influenza virus strains anticipated to
be prevalent in the upcoming season are selected
for inclusion in the next version of influenza
vaccines to be manufactured for the commercial
use. This typically includes the selection of four
viruses (H1N1 and H3N2 subtype influenza A,
and two lineages of influenza B). There are sev-
eral competing manufacturers with licensed
productswho race to produce the expected num-
ber of needed doses between February and Sep-
tember for the Northern hemisphere (offset 6
mo for the Southern hemisphere) either by
growing viruses in eggs or in cell lines or pro-
ducing recombinant proteins from insect
cells infected by engineered baculovirus-encod-
ing respective HAs. The vaccine products
include live-attenuated vaccines, inactivated
virus–based vaccines (split vaccine), or hemag-
glutinin protein containing vaccines that are
monodispersed or aggregated as rosettes. A pri-
mary problem with current approaches is that
the efficacy against medically attended influenza
illness is only ∼60% in years when selected
strains are matched to epidemic strains, and
only ∼10% in years when there is significant
antigenic drift in circulating strains (www.cdc
.gov/flu/vaccines-work/past-seasons-estimates
.html) (Lloyd et al. 1986; Belongia et al. 2009,
2011, 2016; Griffin et al. 2011; Treanor et al.

2012; Ohmit et al. 2014; McLean et al. 2015;
Ferdinands et al. 2019). Moreover, the time re-
quired to make new vaccines based on novel
strains is often too long to adequately respond
to influenza outbreaks caused by strains with
pandemic potential (Broadbent and Subbarao
2011). Given the current state of influenza vac-
cines and the existing technological opportuni-
ties for vaccine innovation, there is a large
ongoing effort to identify newapproaches for vac-
cine design that could achieve broadly protective,
longer lasting immunity against influenza.

The concept of a universal influenza vaccine
is attractive and gaining attention, but what this
means in practice has many different interpre-
tations. A vaccine given once in childhood that
would provide lifelong protection to all current
and future strains of influenza is highly unlikely
to be achievable. However, there are different
degrees of universality that could extend immu-
nity either across strains within a subtype, across
subtypes within influenza Avirus groups (either
group 1 or 2 defined by HA subtype), across
both influenza A virus groups, and/or across
all influenza A and B viruses. Another compo-
nent desired for a universal influenza vaccine
is greater durability of protective immunity.
Achieving broad universal immunity for even
one year at a time by a single vaccine formula-
tion (reaching efficacy levels of >75% against all
circulating strains on a given year) would be a
huge advance and significantly reducemanufac-
turing costs. The ultimate goal, however, would
be to design a vaccine capable of inducing broad
immunity for several years at a time. Because
there are several recent comprehensive reviews
of universal vaccines in development, this re-
view will not list every feasible approach being
studied. Instead, their development will be ap-
proached from a conceptual viewpoint. From a
vaccine development perspective, it is useful to
define the intended purpose for a particular ap-
proach rather than categorize or list the immu-
nological goals for universality.We have divided
influenza vaccine product types into five major
categories with distinct practical purposes:
(1) high-performance seasonal vaccines would
compete with and upgrade existing conven-
tional vaccines; (2) supraseasonal vaccines are
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intended to substantially improve upon and re-
place current vaccines by providing consistent
year-to-year efficacy without annual reformula-
tion over two or more seasons; (3) vaccines for
pandemic preparedness implies there is a product
in a vial that can be deployed immediately in the
case of a future outbreak; (4) vaccines for pan-
demic response would be products that could be
rapidly produced in response to a specific threat;
and (5) an ultimate universal vaccinewould be an
advanced supraseasonal vaccine that could pro-
tect individuals from all existing and future
strains including noncirculating viruses at the
time of administration for at least 3–5 yr.

BIOLOGICAL CHALLENGES

The virology and immunology of influenza has
been described in other reviews (Fodor and te
Velthuis 2020; tenOever 2020; Topham et al.
2020; Wu and Wilson 2020), but some of the
features relevant to vaccine development will be
briefly reviewed. The goal of influenza immuni-
zation is to prevent disease caused by two genera
in theOrthomyxoviridae family, influenzaA and
B. Orthomyxoviruses have a segmented, nega-
tive-sense, single-stranded RNA genome, and
influenza A and B have eight gene segments
that encode at least 11 characterized proteins
(Bouvier and Palese 2008). Their tissue tropism
is largely based on α2,3-linked or α2,6-linked
sialoside receptor dependence for entry, and
species tropism is based on the distribution of
cells expressing those receptors and the ability to
escape intracellular restriction factors including
innate immune sensors (Rogers and Paulson
1983; Nicholls et al. 2008; de Graaf and Fouchier
2014; Villalón-Letelier et al. 2017; Long et al.
2019). Effective immunity would interfere with
either viral attachment and entry mediated by
the HA surface protein, virus shedding and
spread through interference with neurami-
nidase (NA) function, or rapid clearance of
virus-infected cells with minimal immunopa-
thology or dysfunction in airway physiology.
The major viral defense mechanism against
the host’s preexisting immunity appears to be
its genetic plasticity, which allows HA and NA
to remain functional despite extensive antigenic

variation (Kosik and Yewdell 2019). The anti-
genic variation arises from a diverse sequence
space generated by an error-prone viral poly-
merase, is multifactorial, and is primarily driven
by immunological pressure from antibodies
that select for escape mutations, mutations that
modulate receptor-binding kinetics, and/or ep-
istatic mutations that alter functional features of
HA and NA or interplay of the two proteins
(Yewdell 2011). The antigenic variation results
in antigenic drift, which occurs continuously in
circulating influenza subtypes, limited princi-
pally by virus replication fitness and transmissi-
bility. In addition, because of the segmented
genome and extensive zoonotic reservoir in na-
ture, influenza genomic segments can be reas-
sorted when cells are co-infected with two or
more viruses that might result in new influenza
strains with exotic HA and/or NA subtypes for
which little preexisting immunity is present in
the general population. This process is termed
antigenic shift and in humans is limited primar-
ily by viral fitness to replicate within the host or
spread within the population. This complex
multilevel capacity for antigenic diversity and
immune escape makes it challenging to design
vaccines that will be capable of inducing effec-
tive immunity against future unforeseen influ-
enza viruses (Taubenberger and Kash 2010).
Therefore, effective universal influenza immu-
nity has to target minimally variant sequences
and structures critical for virus propagation for
which alterations would result in a high cost of
virus fitness. In principle, these selected sites of
vulnerability should not be subject to the con-
tinuous antigenic drift and shift that occur in an
unpredictable manner.

Another major biological challenge for in-
fluenza immunization is that most people of >2
yr of age have some level of preexisting immu-
nity from prior exposure to influenza infection
and/or vaccination. They have been imprinted
through the establishment of memory B-cell
and T-cell repertoires that shape the landscape
of subsequent responses to similar antigens and
alter responses to new antigenic determinants
on new viruses (Francis 1960; Fonville et al.
2014; Monto et al. 2017; Guthmiller andWilson
2018). Therefore, improved influenza vaccines
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(especially those dependent on antibodies toHA
and NA) need to precisely maneuver responses
to intended target sites of vulnerability to avoid
the potentially negative impact of preexisting
immunity.

ANTIGEN TARGETS FOR INFLUENZA
VACCINES

HA and NA as described above are important
targets for neutralizing antibodies (nAbs). HA is
a trimeric class 1 fusion glycoprotein and has
been studied in great detail. It was the first viral
glycoprotein crystalized with a published struc-
ture (Wilson et al. 1981). It is critical for viral
attachment and entry into cells and is the pri-
mary target for vaccine-induced protective
immunity. HA engages sialosides on host glyco-
proteins and glycolipids through its receptor-
binding site located on the membrane distal,
globular head domain (Skehel and Wiley 2000;
de Graaf and Fouchier 2014). Antibodies to this
domain compete with receptor binding and
therefore block viral attachment and ability to
infect cells. This antibody-mediated inhibition
of receptor-binding is the basis of hemaggluti-
nation inhibition (HAI) assay, and the HAI titer
has been used as a surrogate for protective im-
munity and for licensure. There are well-char-
acterized antigenic sites on the globular head
domain for both H1 and H3 subtype HAs; how-
ever, they do not share the same nomenclature
in the respective subtypes (Gerhard et al. 1981;
Wiley et al. 1981; Wilson et al. 1981). Although
the head domain contains extremely neutraliza-
tion-sensitive epitopes, these epitopes are under
strong immune pressure and readily acquire
mutations that evade antibody recognition
without compromising receptor-binding prop-
erties (Wu and Wilson 2017). Indeed, influenza
virus occasionally acquires mutations in HA
during vaccine manufacturing using embryo-
nated eggs, leading to antigenic mismatch and
lower vaccine effectiveness (Raymond et al.
2016; Zost et al. 2017; Garretson et al. 2018).
The membrane proximal stem domain of HA
is much more conserved than the head domain
(Wu and Wilson 2017). The stem domain is
responsible for the membrane fusion process

and undergoes a dramatic conformational chan-
ge at low pH in the late endosomal environment
(Russell 2014). Antibodies directed toward this
domain inhibit the function of the viral fusion
machinery that is required for entry of the nu-
cleocapsid into the cytoplasm and infection of
the host cell (Corti et al. 2017). Because the stem
domain is largely conserved within given HA
subtypes and to a lesser extent across subtypes,
antibodies to this domain, particularly those tar-
geting the hydrophobic groove surrounding the
Trp21HA2 residue, exhibit neutralizing breadth
against multiple subtype viruses within influen-
za A group 1 subtypes (Okuno et al. 1993;
Throsby et al. 2008; Ekiert et al. 2009; Sui et al.
2009), group 2 subtypes (Ekiert et al. 2011; Frie-
sen et al. 2014), or across both group 1 and group
2 subtypes (Corti et al. 2011; Nakamura et al.
2013; Joyce et al. 2016; Kallewaard et al. 2016;
Lang et al. 2017). Although the stem domain
appears to be an appealing vaccine target, elic-
iting antibody response with such broad neu-
tralizing activity has been challenging (Nabel
and Fauci 2010). First, the stem domain is im-
munologically subdominant. In the presence of
the head domain, immune responses directed to
the stem are outcompeted by the head-directed
response (Ellebedy et al. 2014; Andrews et al.
2015; Tan et al. 2019). Second, the native stem
domain by itself is not suitable as a vaccine im-
munogen because the stem is metastable in the
absence of the head domain (Lu et al. 2014;
Impagliazzo et al. 2015; Yassine et al. 2015).
The latter issue has been solved by structure-
guided protein engineering approaches (Impa-
gliazzo et al. 2015; Yassine et al. 2015; Corbett
et al. 2019). The resulting stabilized stem-based
immunogens are further discussed in the Vac-
cines for Pandemic Preparedness section. Other
conserved HA regions of vulnerability are also
regarded as improved vaccine targets, inspired
by highly neutralizing human nAbs targeting
the receptor-binding site (Whittle et al. 2011;
Ekiert et al. 2012; Lee et al. 2014; Schmidt
et al. 2015; Shen et al. 2017) and the lateral patch
or the vestigial esterase domain of the head
(Dreyfus et al. 2012; Iba et al. 2014; Chai et al.
2017; Raymond et al. 2018; Kanekiyo et al.
2019b). Although the precise mechanism of ac-
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tion remains uncertain, broadly cross-reactive
yet nonneutralizing antibodies targeting the tri-
mer interface of the head are also highly protec-
tive in a mouse model (Lee et al. 2016; Bangaru
et al. 2019; Watanabe et al. 2019).

NA is a type II membrane protein and forms
homotetramers on the virus surface (Air 2012).
It is the secondmost abundant viral surface pro-
tein and is found as unevenly distributed clusters
surrounded by HA trimers on the virion (Murti
and Webster 1986; Harris et al. 2006). Each NA
protomer consists of a membrane-anchored
amino-terminal stalk domain and the globular
domain containing the catalytic site that recog-
nizes and cleaves sialic acids from glycans (Air
and Laver 1989). The nameNA implies this pro-
tein has neuraminidase activity and has been
shown to facilitate egress of virions from infect-
ed cells (Air 2012; de Vries et al. 2020). Inhibi-
tion of this process either by small molecules or
antibodies results in virus sequestration on the
host cell membrane, leading to inefficient viral
spread. NA also has sialic acid–binding proper-
ties (Laver et al. 1984; Mögling et al. 2017) and,
in principle, can rescue the host cell attachment
function of HA if needed for initial binding.
Analogous to HA, NA has also been under im-
mune pressure and undergone evolution over
time (Kosik and Yewdell 2019). Although NA
has been largely overlooked as a potential im-
munogen to elicit protective influenza immuni-
ty until recently (Wohlbold and Krammer 2014;
Krammer et al. 2018; Eichelberger and Monto
2019), there is growing evidence to support the
idea that antibody-mediated immunity to NA
could confer broad protection or positively
modulate disease progression/severity (Schul-
man et al. 1968; Murphy et al. 1972; Monto
and Kendal 1973; Gilbert et al. 2019; Ng et al.
2019;Weiss et al. 2019). Furthermore, antibody-
mediated inhibition of its role in facilitating
virus release and shedding could reduce trans-
mission and spread within the population. In
particular, the discovery of broadly cross-reac-
tive protective human monoclonal antibodies
(mAbs) against NA has revitalized the NA-
based universal influenza vaccine efforts (Chen
et al. 2018; Stadlbauer et al. 2019). One such
antibody isolated from an individual infected

with H3N2 recognizes all influenza A virus NA
subtypes as well as influenza B NAs by precisely
mimicking the atomic interactions made by the
sialic acid ligand and, hence, inhibiting the cat-
alytic activity of NA (Stadlbauer et al. 2019). The
identification of this antibody has served as
a proof of principle that NA could contribute
to universal influenza immunity and should
be considered for inclusion in future vaccine
approaches. Although the current influenza
vaccine products, except the recombinant
HA-based products, contain NA, the quantity
and quality of NA in the vaccines are not actively
monitored, regulated, and standardized. Over
the last several decades, significant progress
has been made in defining the structures of all
known NA subtypes from both human influen-
za A and B viruses (Laver and Valentine 1969;
Colman et al. 1983; Varghese et al. 1983; Colman
andWard 1985; Burmeister et al. 1992;McAuley
et al. 2019). However, producing antigenically
genuine and structurally stable NA protein has
not been extensively explored, and delivery of an
effective immunogen will likely require addi-
tional structural manipulation, protein engi-
neering, and establishment of potency assays
for quality assurance.

M2 is a tetrameric type III membrane pro-
tein and functions as an ion channel represented
on the viral membrane although in low abun-
dance. It is analogous to the small hydrophobic
protein (SH) of respiratory syncytial virus. Vac-
cine prototypes based on the highly conserved
ectodomain have been evaluated for both virus-
es and have advanced into clinical evaluation
(Langley et al. 2018; Saelens 2019), but to date
have not progressed beyond phase 2 trials
(Kolpe et al. 2017; Mezhenskaya et al. 2019).
Antibodies to M2 ectodomain (M2e) mediate
protection through Fc functions and do not
have in vitro neutralizing activity (Neirynck
et al. 1999; Grandea et al. 2010; El Bakkouri
et al. 2011). Whether delivery of a M2e-based
vaccine constructs will be sufficiently immuno-
genic to establish broad immunity that is more
effective than that induced by natural infection
remains to be proven in humans. One of the
challenges with this type of vaccine is shared
by products based on HA stem immunogens,
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because conventional HAI activity cannot be
measured and used as a test of potency or as a
benchmark for licensure. Therefore, clinical de-
velopment will likely require large field trials
and will need to demonstrate added value to
conventional vaccine approaches.

Nucleoprotein (NP) and other internal viral
proteins could also be included in vaccines to
promote T-cell responses. Townsend et al.
(Townsend and Skehel 1982, 1984; Townsend
et al. 1986) first described the importance of
CD8+ T-cell epitopes from internal viral pro-
teins for broad recognition of virus-infected
cells using influenza NP. Internal proteins tend
to bemore conserved thanHA andNA and have
been proposed as the basis for influenza vaccine
candidates based on CD8+ T-cell-mediated im-
munity (Rimmelzwaan et al. 2007). Although
there is indirect evidence that CD8+ T cells
directed to conserved epitopes confer some
protection in humans (McMichael et al. 1983;
Sridhar et al. 2013;Wang et al. 2015) and there is
ample evidence for protection in animalmodels,
significant efficacy against influenza diseasemay
depend on the localization of effector cells.
Achieving robust tissue resident memory
CD8+ T cells (Trm) and/or CD4+ Teffector cells
in the airways will require delivery of vaccine
antigens into lung tissue which may pose tech-
nical challenges and alter the safety profile of the
prototype vaccine.

TARGET PRODUCT PROFILES FOR
NEXT-GENERATION INFLUENZAVACCINES

There is a growing consensus that the time is
right for identifying disruptive approaches that
will significantly improve influenza vaccine effi-
cacy and there is a need to develop vaccine ap-
proaches that would be accessible to a larger
fraction of the world’s population. A practical
and critical step in development involves defin-
ing the purpose and the desired properties of the
vaccine product. Articulating the clinical and
public health needs for a vaccine is the first
step in this process. Based on desirable target
product profiles, we propose five classifications
for next-generation influenza vaccines below
(Fig. 1).

High-Performance Seasonal Vaccines

Several approaches have been attempted or
suggested in order to improve the current con-
ventional vaccines. Increasing the vaccine dose,
especially for elderly subjects, has been shown to
improve effectiveness (DiazGranados et al. 2014;
Wilkinson et al. 2017; Lee et al. 2018). In addi-
tion, adding adjuvants improves efficacy (Frey
et al. 2003, 2014; Domnich et al. 2017; Wilkins
et al. 2017) but may also increase the risk of
adverse events, which has been controversial in
some cases (Ahmed et al. 2014). Mutations as-
sociated with adaptation to growth in eggs have
been shown to diminish immunogenicity
against circulating strains (Raymond et al.
2016; Zost et al. 2017; Garretson et al. 2018);
moving toward vaccines derived from recombi-
nant methods or from virus grown in mamma-
lian cells would avoid this problem. Another
approach would be to measure and standardize
the amount of NA in current vaccines. The pres-
ence of NA-specific antibodies has been associ-
ated with reduced illness in humans (Gilbert
et al. 2019; Ng et al. 2019; Weiss et al. 2019),
has the capacity to limit viral propagation
(Chen et al. 2018; Stadlbauer et al. 2019), and
may also play a role in reducing transmission by
reducing the viral shedding from infected cells
(Schulman 1969). Real-time sequence analysis
(www.nextstrain.org/flu) and increasing bioin-
formatic capability would contribute to more
accurate predictions of upcoming circulating
strains. It would also improve vaccine efficacy
by reducing the chance of antigenic mismatch
of strains selected for vaccines with circulating
strains and, thus, remediate the seasons with
extremely low vaccine efficacy. There is a lower
bar for the technological advances and regulato-
ry requirements needed for these types of im-
provements, so the investment needed would be
smaller compared to most of the approaches
listed below. However, potential gains would
also be limited (Fig. 2).

Supraseasonal Vaccines

The concept of a supraseasonal vaccine is that
efficacy could bemaintained from season to sea-
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son without the need for annual reformulation
and perhaps immunization. This type of vaccine
would be expected to have superior breadth of
coverage and efficacy compared to currently
available vaccines and would eventually replace
current vaccines (Fig. 2). It would have robust
efficacy against drifted strains but not necessar-
ily against pandemic strains (i.e., antigenically
shifted viruses). Even if it required annual ad-
ministration, it would not require annual refor-
mulation and manufacturing. Such a vaccine
would likely need to induce immune responses
to invariant sites of vulnerability of the virus.
This could occur by amplifying the response to
selected epitopes known to be conserved like the
sites on the HA stem or head including the re-
ceptor-binding site, the lateral patch, the vesti-

gial esterase site, and the trimer interface (Wu
and Wilson 2020), the NA catalytic site (Stadl-
bauer et al. 2019), and the M2e (Grandea et al.
2010) or by inducing effector T cells, especially if
they are tissue residentmemory cells localized in
the lower airway and lung (Van Braeckel-Budi-
mir and Harty 2017). Another approach would
be to prevent induction of antibodies to sites that
have narrower specificity. Immunodominance
of responses that have limited breadth occurs
for multiple reasons. Greater physical access
of B cells to the membrane distal head domain
of HA compared to the stem results in one
plausible reason for immunodominance of the
variable HA head. Another cause of immuno-
dominance could be differences in lymphocyte
precursor frequencies either inherent or estab-
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Figure 1.Visualized summary of target product profile of current and improved influenza vaccines. Conventional
vaccines (current influenza vaccines) confer protection against antigenically matched seasonal influenza viruses.
Vaccine efficacy varies year by year. An example of high-performance seasonal vaccines would be one that offers
better protective immunity to antigenically matched seasonal influenza viruses, even though they may not
provide durable multiyear protection nor protection against mismatched or pandemic viruses. An example of
a supraseasonal vaccine would be one that provides consistent protection against antigenically drifted (mis-
matched) viruses and offers multiyear protection beyond a single influenza season, but may have limited efficacy
against pandemic strains. Prepandemic stockpile vaccines (conventional) would work only if the pandemic virus
is closely related to the stockpile vaccine strain. An example of a vaccine for pandemic preparedness would be one
that provides broad protection against both seasonal and pandemic viruses, although the protective efficacy may
not be as high as with strain-matched vaccines. This would allow options for immediate deployment during
outbreak with a partially effective intervention. Vaccines for pandemic response would offer potent protection
against pandemic viruses as these vaccines would be produced by platform manufacturing technologies using
specific sequences from the emerging virus. Universal vaccines are expected to provide robust protection against
both seasonal and pandemic viruses over multiple years.
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lished during early life infection or vaccination.
Immunological imprinting has been shown to
affect subsequent immunity to heterosubtypic
influenza viruses on a HA group-specific bias
(Gostic et al. 2016). For example, if early im-
printing with H1N1 (or other group 1 viruses)
expanded predominantly VH1-69 lineages in
the B-cell response to the HA stem epitope, later
exposure to anH3N2 or other group 2 virusmay
have lower capacity to drive evolution of B-cell
lineages known to gain cross-neutralizing activ-
ity against both group 1 and group 2 viruses,
such as VH6-1 and VH1-18 lineages. One ap-
proach for avoiding immunodominance is to
design vaccine antigens that facilitate expansion
of B cells that recognize subdominant yet vul-
nerable sites with the potential for greater

breadth. An alternative approach is to co-display
heterotypic antigens on a single continuous sur-
face such as nanoparticles. This reduces the fre-
quency of responses intolerant to variability and
increases the chances for amplifying B cells that
tolerate antigenic variation and, hence, subvert
the immunodominance (Kanekiyo et al. 2019b).
It may also be possible to accumulate greater
breadth of antibody-mediated protection by us-
ing cocktails of immunogens or serial immuni-
zation with multiple specificities in an attempt
to generate a greater diversity of memory pre-
cursors. However, serial exposure of patients to
different viral strains during natural infection
and repeated vaccination has not resulted in
broad immunity and has in fact sometimes
been associated with reduced immunity to di-
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Figure 2. Expected vaccine efficacy profile of improved seasonal influenza vaccines. Comparison of theoretical
vaccine efficacy between the current vaccine and an example of high-performance seasonal vaccine (top).
Although average vaccine efficacy over time (XV̄E) is higher for high-performance seasonal vaccines compared
to conventional vaccines, the difference in vaccine efficacy (ΔVE) between vaccine modalities for each year is
consistent and, hence, vaccine efficacy will fluctuate depending on accuracy of antigenic match between vaccine
and circulating strains. Theoretical vaccine efficacyof supraseasonal vaccines (bottom). Unlike high-performance
seasonal and conventional vaccines, supraseasonal vaccines would provide consistent vaccine efficacy year to year
so XV̄E would remain high with no fluctuation. Supraseasonal vaccines would not be significantly affected by
antigenic mismatch between vaccine and circulating strains, and, therefore, they may not need annual updates of
vaccine components and reformulation.
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vergent strains (McLean et al. 2014; Belongia
et al. 2017).

Vaccines for Pandemic Preparedness

The concept of pandemic preparedness encom-
passes many facets of surveillance and medical
care systems. There is a consensus among re-
searchers, medical professionals, and public
health officials that we are not adequately pre-
pared for a pandemic catastrophe like the
one that occurred in 1918–1919 (Taubenberger
et al. 2019). Even for industrialized countries
preparedness would at the very least require
improved surveillance and response systems in-
cluding a more robust distribution infrastruc-
ture for preexisting vaccines and therapeutics
than currently exists. Prepandemic vaccine sup-
plies would need to be stockpiled and accessible
for immediate deployment to effectively inter-
rupt transmission cycles. Modeling has shown
that early deployment of a partially effective vac-
cine is more effective than delayed deployment
of a more efficacious vaccine (Feng et al. 2011;
Larson and Teytelman 2012). The emergence of
avian H5N1 and H7N9 influenza viruses that
could infect humans led to the manufacturing
ofU.S. prepandemic stockpiles of pandemic vac-
cines produced with conventional technology.
These stockpiled doses were ready for rapid de-
ployment in case of a pandemic caused by these
subtypes. However, the number of doses was
limited and after a few years, the antigenicity
of prevalent avian strains evolved away from
the available vaccine, making it a less depend-
able prepandemic countermeasure. Therefore,
vaccines for pandemic preparedness that could
be immediately available for a pandemic event
would need to be periodically replaced (an ex-
pensive proposition) or designed with a long
shelf life and able to elicit broad immunity while
not being affected by antigenic drift and shift.
Candidate vaccines that best fit this product pro-
file are those that target conserved epitopes like
the HA stem, the NA catalytic domain, or M2e
antigens that would induce antibody-based
protection or proteins that would induce cross-
reactive T-cell responses. None of these ap-
proaches have yet been shown to be efficacious

in controlled field trials, but are in early phase
development and should continue to advance to
answer questions about the degree of cross-pro-
tection achieved. For example, if HA stem-based
vaccines using either chimeric molecules with
exotic HA head domains (Krammer et al.
2013; Bernstein et al. 2020), headless HA stem
trimers delivered as soluble proteins (Impa-
gliazzo et al. 2015), or displayed on nanoparti-
cles (Yassine et al. 2015; Corbett et al. 2019) were
shown to be efficacious, then these products
could be produced and stockpiled and be avail-
able for deployment against any emerging influ-
enza A virus threat. This may also provide time
to produce a strain-matched vaccine that would
be expected to have higher efficacy (Fig. 3). In-
herent to this concept is the idea that effective
immunity would be achieved rapidly from a sin-
gle vaccine administration.

Vaccines for Pandemic Response

Platform technologies for antigen design and
manufacturing would be needed to achieve
large-scale production of a vaccine after the pan-
demic strain emerges, in the shortest time frame.
This type of response is not easily achieved using
conventional vaccine approaches as demon-
strated by the 2009 H1N1 pandemic. Even
though the manufacturing process was initiated
during early spring when the dominant strain
emerged, the product was not available until
after the peak of the epidemic in early fall
(Broadbent and Subbarao 2011; Skowronski
et al. 2011). Had there been a partially effective
vaccine targeting conserved epitopes as de-
scribed above for immediate use, it could have
been followed by rapid manufacturing of vac-
cine constructs specific for the pandemic strain
(Fig. 3). This could potentially be achieved using
egg-grown virus, but the supply of eggs may be
limiting in this setting. Recombinant HA and/or
NA proteins derived from pandemic strain se-
quences could also be produced in insect or
mammalian cells either as soluble proteins or
displayed on nanoparticles (Kanekiyo et al.
2013; Georgiev et al. 2018; Marcandalli et al.
2019). The advantage of nanoparticles is that
the orderly array of antigens can effectively clus-
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ter B-cell receptors and activate B cells to prolif-
erate and mature (Bachmann et al. 1993). This
would reduce the need to formulate the protein-
based vaccine with an adjuvant. In a pandemic
setting, simplifying the supply chain and using
the minimal components is more likely to be
scalable and less likely to encounter bottlenecks.
Genetic delivery of the vaccine antigen is an
attractive platform manufacturing technology
for a pandemic response. RNA-based delivery,
in particular, looks promising because it typical-
ly requires a lower dose than DNA-based deliv-
ery and can potentially be rapidlymanufactured.
A major advantage of genetic delivery is the
ability to use the same platform and manufac-

turing protocol for multiple vaccine variants,
and the regulatory requirements would be
reduced compared to recombinant vector or re-
combinant protein approaches. RNA-delivered
immunogens would also have the capacity for
inducing more robust CD8+ T-cell responses
than protein-based vaccines in addition to the
capacity to induce antibody responses.

Universal Influenza Vaccines

As noted before, there are many degrees of uni-
versality. For the purpose of this review, the def-
inition of a universal influenza vaccine is one
that can induce protective immunity against all
influenza A and B viruses. The efficacy would be
consistent from year to year, ideally for more
than 3 years, with an at least 75% reduction in
medically attended lower respiratory tract dis-
ease or hospitalization. This means the vaccine
would not need annual reformulation and
would maintain immunity against drifted sea-
sonal and pandemic viruses. It would be distin-
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Figure 3. Potential scenario of an influenza pandemic
with different countermeasure options. In the case of
an influenza pandemic caused by a new virus with no
antigenically matched stockpile vaccines, vaccines for
pandemic preparedness and for pandemic response
or a combination of the two vaccines could make a
substantial impact on the epidemic curve and reduce
the cumulative health burden. Vaccines for pandemic
preparedness could be deployed as soon as the out-
break spreads locally and is recognized to be caused
by a pandemic strain, somedical providers and at-risk
population can be immunized before the pandemic
peaks (top). Although vaccine efficacy for this type of
vaccine may not be optimal, it will provide time for
mass production of strain-matched vaccines (pan-
demic response). Relying on deployment of strain-
matched vaccines alone as a pandemic response
may not be sufficient as it may not be feasible to
produce enough doses in time to substantially impact
the epidemic (middle). This situation will be mitigat-
ed as newer technologies for rapid vaccine production
such as mRNA-based modalities become available.
Sequential deployment of vaccines for pandemic pre-
paredness and pandemic response would be ideal to
contain pandemic with minimum burden taking into
account the importance of both speed and specificity
(bottom).
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guished from a supraseasonal vaccine by induc-
ing greater coverage of pandemic subtypes and
protective immunity from a single injection last-
ing more than 1 year. Therefore, a universal in-
fluenza vaccine would have better efficacy than
currently available vaccines when matched with
prevalent strains, which implies a greater po-
tency or more favorable anatomic location for
induction of protective antibody and T-cell re-
sponses. It would also need to have greater
breadth of immunity to be effective in subse-
quent years without reformulation. Ideally, this
could be accomplished with a single immuniza-
tion every 3–5 yr or longer, but even if the vac-
cine required annual administration, it would
represent a major advance. The types of prod-
ucts and technologies on the near horizon may
need to be combined to achieve anything close
to the aforementioned universal protection cri-
teria, but there are currentlymany opportunities
to make incremental and potentially break-
through advances.

CONCLUDING REMARKS: TECHNOLOGY-
DRIVEN OPPORTUNITIES AND
REMAINING CHALLENGES

A confluence of technological advances over the
last decade has given rise to new vaccine design
options. These technologies have all contributed
to an era of precision vaccinology in which it is
possible to conceive influenza immunogens in
different ways. In particular, the ability to define
andmanipulate atomic level details of HA struc-
ture and topology including antibody-liganded
dynamic conformations has allowed the exact
mapping of antigenic supersites and identifica-
tion of new conserved targets for future vaccines
(for review, seeWu andWilson 2020). The abil-
ity to structurally define new sites of vulnerabil-
ity has been amplified by the ability to rapidly
isolate and characterize numerous humanmAbs
(for review, see Crowe 2018). Sequence analysis
of individual B cells sorted by their ability to
recognize conserved antigenic supersites com-
bined with bioinformatic tools has identified
several convergent multidonor B-cell lineages
with desirable functional antibody properties
that could serve as molecular end points for vac-

cine evaluation (Joyce et al. 2016; Andrews et al.
2017; Andrews and McDermott 2018; Crowe
2018). Advances in computational biology and
protein engineering have enabled the generation
of self-assembling nanoparticles that can display
geometrically defined arrays of homotypic or
heterotypic antigens have provided new options
for organizing, delivering, and presenting im-
munogens to the immune system (for review,
see Kanekiyo et al. 2019a). Particularly, com-
bining structure-based antigen design with cus-
tomized nanoparticle display has opened new
possibilities for inducing supranormal levels of
vaccine-elicited immunity (Marcandalli et al.
2019). New capabilities for platform manu-
facturing have provided potential avenues for
rapidly converting to vaccines for pandemic re-
sponse and reduce uncertainties related to the
development process and safety of new products
(Graham et al. 2018). New insights into lymph
node and B-cell biology and better understand-
ing of adjuvants as Toll-like receptor (TLR) ag-
onists are also contributing to more potent and
durable vaccine-induced immunity (Mesin et al.
2016; Andrews and McDermott 2018; Del Giu-
dice et al. 2018). These advances have ushered in
a new era of precision vaccinology and have
made it technically possible to substantially im-
prove influenza vaccines. They have also intro-
duced new challenges for clinical development
and regulatory pathways. There will be complex
business and public health decisions about how
to replace existing products with new products
without having gaps in availability. Importantly,
there are still a number of biological questions to
solve that not only apply to influenza but to
other respiratory diseases. The recent break-
throughs in structural biology, protein engineer-
ing, antibody ontogeny, and B-cell biology have
been opportunistically applied to achieve sys-
temic antibody-mediated protection from lower
airway infection. Although there have been
recent advances in our understanding of Fc-me-
diated functions with capacity for clearing virus-
infected cells (Bournazos and Ravetch 2017;
Boudreau and Alter 2019), our ability to control
events if viruses evade antibody neutralization
and infect substantial numbers of airway cells is
limited. There is still a lot to be learned regard-
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ing the pathogenesis of airway damage and re-
modeling, T-cell-mediated viral clearance, and
direct induction of secretory IgA and other fac-
tors unique to mucosal immunity. Achieving
optimal protection of the airways from the path-
ophysiological consequences of respiratory viral
infections may require new methods for target-
ed delivery of immunogens to specific tissues
and induction of local B-cell and T-cell effector
functions.

Influenza is a persistent threat to human
health and can potentially cause devastating
pandemics that can compromise societal in-
frastructure and stability. Therefore, it is in-
cumbent on politicians, scientists, public health
officials, and industry to use the tools of preci-
sion vaccinology to develop fit-for-purpose
products that can induce protective immunity
from seasonal, drifted, and pandemic strains
whileworking toward a truly universal influenza
vaccine.We have outlined several specific unmet
needs requiring innovation and application of
new approaches and trust that the technologies
described will provide solutions for preventing
influenza disease.
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