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Abstract

Aims/hypothesis—This study aimed to: (1) identify metabolite patterns during late childhood 

that differ with respect to exposure to maternal gestational diabetes mellitus (GDM); (2) examine 

the persistence of GDM/metabolite associations 5 years later, during adolescence; and (3) 

investigate the associations of metabolite patterns with adiposity and metabolic biomarkers from 

childhood through adolescence.

Methods—This study included 592 mother–child pairs with information on GDM exposure (n = 

92 exposed), untargeted metabolomics data at age 6–14 years (T1) and at 12–19 years (T2), and 

information on adiposity and metabolic risk biomarkers at T1 and T2. We first consolidated 767 
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metabolites at T1 into factors (metabolite patterns) via principal component analysis (PCA) and 

used multivariable regression to identify factors that differed by GDM exposure, at α = 0.05. We 

then examined associations of GDM with individual metabolites within factors of interest at T1 

and T2, and investigated associations of GDM-related factors at T1 with adiposity and metabolic 

risk throughout T1 and T2 using mixed-effects linear regression models.

Results—Of the six factors retained from PCA, GDM exposure was associated with greater odds 

of being in quartile (Q)4 (vs Q1–3) of ‘Factor 4’ at T1 after accounting for age, sex, race/ethnicity, 

maternal smoking habits during pregnancy, Tanner stage, physical activity and total energy intake, 

at α = 0.05 (OR 1.78 [95% CI 1.04, 3.04]; p = 0.04). This metabolite pattern comprised 

phosphatidylcholines, diacylglycerols and phosphatidylethanolamines. GDM was consistently 

associated with elevations in a subset of individual compounds within this pattern at T1 and T2. 

While this metabolite pattern was not related to the health outcomes in boys, it corresponded with 

greater adiposity and a worse metabolic profile among girls throughout the follow-up period. Each 

1-unit increment in Factor 4 corresponded with 0.17 (0.08, 0.25) units higher BMI z score, 8.83 

(5.07, 12.59) pmol/l higher fasting insulin, 0.28 (0.13, 0.43) units higher HOMA-IR, and 4.73 

(2.15, 7.31) nmol/l higher leptin.

Conclusions/interpretation—Exposure to maternal GDM was nominally associated with a 

metabolite pattern characterised by elevated serum phospholipids in late childhood and 

adolescence at α = 0.05. This metabolite pattern was associated with greater adiposity and 

metabolic risk among female offspring throughout the late childhood-to-adolescence transition. 

Future studies are warranted to confirm our findings.
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Introduction

In utero exposure to gestational diabetes mellitus (GDM) is a key risk factor of obesity at 

birth and beyond [1, 2]. In addition to its detrimental effects on offspring adiposity, maternal 

GDM is also associated with poor metabolic health in offspring later in life, including 

greater insulin resistance, impaired glucose tolerance or type 2 diabetes, low insulin 

secretion and alterations in adipokines [3–6]. The effects of maternal GDM on biomarkers of 

metabolic risk in offspring have been detected as early as 3 years of age [7] and many 

studies have been able to establish associations of GDM exposure with metabolic 

biomarkers independent of the child’s body composition [6–8], suggesting a unique effect of 

maternal GDM on in utero ‘programming’ of the fetus’ future metabolic health.

Metabolomics, the systematic and comprehensive study of low-molecular-weight 

compounds in biological tissues and fluids, has emerged as a powerful tool to shed light on 

pathways that link exposures to health outcomes [9]. The majority of published studies on 

metabolomics in relation to GDM have focused on identifying compounds in maternal fluids 

(plasma, serum, amniotic fluid, urine) that are associated with and/or predictive of GDM 

[10–17]. When reviewing the literature, we also identified two studies that compared cord 
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blood metabolite profiles of infants exposed vs those not exposed to GDM [18, 19]. Both 

studies leveraged metabolomics data assayed on targeted platforms, which provide 

information on absolute concentrations of metabolites belonging to a specific but limited set 

of biochemical pathways hypothesised to be relevant to the research question based on a 

priori knowledge. Given the scanty knowledge on metabolite profiles associated with GDM 

exposure in offspring, metabolomics studies employing untargeted, data-driven approaches 

are needed to comprehensively assess GDM-related metabolic alterations in offspring. 

Moreover, beyond evaluating associations of GDM with the offspring metabolome during 

infancy, understanding the influence of maternal GDM on metabolite profiles during 

childhood and adolescence is important, given that these are vulnerable life stages for the 

development of excess adiposity [20] and metabolic disease risk [21]. A better 

understanding of the mechanisms and pathways that link early-life exposures to adverse 

health outcomes during these time frames will aid in identifying modifiable determinants of 

these pathways.

In this prospective analysis of over 500 multi-ethnic mother–child dyads, we extend current 

knowledge surrounding the pathways associated with and consequences of in utero exposure 

to GDM via three research objectives. First, we sought to identify fasting serum metabolite 

profiles during late childhood (age 6–14 years) that differ with respect to in utero exposure 

to maternal GDM. Next, we assessed the extent to which the relationship between maternal 

GDM and the metabolites of interest persisted over 5 years of follow-up, into adolescence 

(age 12–19 years). Finally, in light of evidence in adults that certain metabolite patterns 

precede worsening of conventional metabolic-disease risk factors [22], we investigated the 

associations of GDM-associated metabolites with adiposity and conventional biomarkers of 

metabolic risk from late childhood through adolescence, a vulnerable life stage for the 

development of excess adiposity [20] and metabolic disease risk [21]. The conceptual model 

for our research study is depicted in Fig. 1.

Methods

Study population

Study participants were from the Exploring Perinatal Outcomes among Children (EPOCH) 

study, a historical prospective cohort of youth with the original aim of characterising long-

term consequences of in utero exposure to maternal diabetes. Details on eligibility and 

recruitment have been previously published [23]. Between 2006 and 2009 (‘T1’), we 

recruited 604 participants whose mothers were members of the Kaiser Permanente of 

Colorado (KPCO) health plan. Of them, we excluded children of seven women who had 

type 1 diabetes, followed by five without sufficient blood volume for untargeted 

metabolomics profiling for the present study. The analytic sample comprised 592 youth, 

aged 6–14 years (mean ± SD age, 10.4 ± 1.5 years; interquartile range [IQR], 9.4–11.5 

years), with metabolomics data. Of the 592 participants at T1, 403 returned for a follow-up 

visit approximately 6 years later, from 2012 to 2015 (‘T2’), when participants were 12–19 

years of age (mean ± SD age, 16.7 ± 1.2 years; IQR, 15.9–17.6 years) and had adequate 

blood volume for metabolomics assays. Figure 2 shows the study population flow. This 
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study was approved by the Colorado Multiple Institutional Review Board (protocol no. 05–

0623). All participants provided informed consent.

In utero exposure to maternal GDM

Exposure to maternal GDM (yes vs no) was defined as a physician’s diagnosis of gestational 

diabetes during the index pregnancy. Diabetes status was ascertained from the KPCO 

perinatal database, an electronic database that links prenatal and neonatal medical records. 

All pregnant women who are members of the KPCO Health plan are routinely screened for 

GDM at 24–28 weeks of gestation using the standard two-step protocol [24]. As previously 

described [25, 26], GDM was diagnosed when two or more glucose values during the 

diagnostic 3 h 100 g OGTT met or exceeded the criteria for a positive test [24].

Offspring blood collection

At T1 T2, trained research assistants collected an 8 h fasting blood sample from the 

antecubital vein. All samples were refrigerated immediately, processed within 24 h and 

stored at −80°C until the time of analysis. These samples were used for untargeted 

metabolomics profiling and metabolic biomarker assays.

Untargeted metabolomics profiling

Metabolon (Morrisville, NC, USA) carried out untargeted metabolomics profiling in fasting 

plasma collected at T1 and T2 via a multi-platform mass spectroscopy (MS)-based 

technique. The procedure identified 1193 unique features at both time points. A key strength 

of this study is that we sent samples from two research visits for metabolomics profiling at 

the same time so that technicians were able to balance batches by research visit, thereby 

enabling comparability of relative metabolite concentrations across the two time points. The 

electronic supplementary materials (ESM) Methods provides information on sample 

preparation and laboratory procedures.

We sent participants’ serum for metabolomics profiling in two separate batches: the first 

batch comprised a pilot sample of 100 participants to assess feasibility and the second batch 

comprised the remaining participants who were not included in the pilot. Prior to formal 

statistical analysis, we removed metabolites with ≥20% missing values [27] separately for 

each batch (as is the current recommendation [28]), then imputed the rest of the missing 

values using the k-nearest neighbour algorithm (k = 10 neighbours used for imputation) 

[29]. The first batch of participants had 913 metabolites after removing those with high 

missingness, and the second batch had 898 metabolites. We then merged the two batches for 

subsequent data processing. Following the merge, we retained metabolites that were present 

in both batches (767 compounds) and performed log10-transformation, followed by 

metabolite normalisation and correction for batch effects (as well as other biological and 

technical variability) using the ‘remove unwanted variation’ (RUV) method (the number of 

factors of unwanted variation estimated from the data [k] = 2), which has proven utility for 

high-dimensional biological data [30]. All metabolite processing was performed using R 

(Version 3.5.3; Vienna, Austria).
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Conventional biomarkers of metabolic risk

Using fasting blood collected at T1 and T2, we assayed fasting glucose enzymatically, and 

fasting insulin leptin, and adiponectin via radioimmunoassays (Millipore, Darmstadt, 

Germany). We calculated the HOMA-IR [31]. Fasting insulin, glucose, and estimated insulin 

resistance are indicators of glycaemic homeostasis in children [31–33] and are associated 

with future cardiovascular risk [34]. Leptin and adiponectin are adipocyte-derived peptide 

hormones that regulate weight and metabolism through complementary actions [35]. 

Increasing evidence suggests that altered adipocytokine levels, specifically elevated leptin, 

may actually predict subsequent weight gain [36].

Anthropometric and body composition assessment

At T1 and T2, trained research staff measured height (m) and weight (kg) of participants in 

light clothing and without shoes. We used these values to calculate BMI (kg/m2) and 

evaluated this variable in native units, as well as standardised as an age- and sex-specific z 
score using the WHO growth reference for children aged 5–19 years [37]. As previously 

described [26], research staff also measured waist circumference (cm) (a correlate of central 

visceral adiposity [38, 39]) according to the National Health and Nutrition Examination 

Survey (NHANES) protocol [40]. They also measured subscapular, tricep and suprailiac 

skinfold thicknesses using Holtain callipers (mm; Crymych, UK) the sum of which 

(‘skinfold sum’) was used in the analysis as a proxy for subcutaneous adiposity [39].

A trained technician performed magnetic resonance imaging (MRI) of the abdominal region 

with a 3 T HDx Imager (General Electric, Waukesha, WI, USA) with the participant in the 

supine position. A series of spin-lattice relaxation time coronal images were taken to locate 

the L4/L5 plane. One axial, 10 mm, spin-lattice relaxation time image at the umbilicus or 

L4/L5 vertebrae was analysed per participant to determine visceral adipose tissue (VAT) and 

subcutaneous adipose tissue (SAT).

Covariates

We calculated maternal pre-pregnancy BMI (kg/m2) using clinically recorded pre-pregnancy 

weight from KPCO-derived medical records and measured height at the T1 visit. At T1, the 

women filled out a questionnaire regarding treatment received for GDM. Treatment was 

categorised as diet and/or exercise only (n= 61), diet and/or exercise with insulin (n= 20), 

and insulin only (n= 5). Due to the small sample size for insulin only treatment, we 

combined this category with diet and/or exercise when using this variable as a covariate in 

the analysis. At T1, the women also reported on their education level and smoking habits 

during pregnancy (smoked while pregnant with index child, yes vs no) via a self-

administered questionnaire. In the analysis, we categorised maternal education as a three-

level variable: less than high school, high school diploma or equivalent, and higher than high 

school.

We calculated participants’ age at T1 and T2 as the difference between date of each research 

visit and delivery date. Participants self-reported on their race/ethnicity at T1 as non-

Hispanic white, non-Hispanic black, Hispanic and non-Hispanic other. At both research 

visits, participants reported their pubertal development based on pictorial diagrams of the 
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Tanner stages [41], which had been validated against physician-assessed Tanner staging and 

puberty-related hormones [42]. We based pubertal status on pubic hair development in boys 

and breast development in girls. For bivariate analysis, we categorised a child as prepubertal 

(Tanner stage = 1), pubertal (Tanner stage = 2 or 3), and late/postpubertal (Tanner stage = 4 

or 5). In multivariable models, we entered this variable ordinally. We obtained information 

on the participants’ physical activity levels at T1 and T2 using the 3-Day Physical Activity 

Recall (3DPAR) Questionnaire, which captures habitual physical activity based on a 3-day 

reference period [43]. Using 3DPAR, we derived mean energy expenditure (mean metabolic 

equivalents [METs]/day over a 3-day period). At both visits, participants completed the 

Block Kid’s Food Frequency Questionnaire (FFQ) [44]. We used these data in conjunction 

with the United States Department of Agriculture (USDA) Food Composition Database to 

estimate total energy intake (kJ/day).

Data analysis

Prior to formal analysis, we examined bivariate associations of in utero GDM exposure with 

maternal, perinatal and child characteristics to identify potential confounders. This step, in 

conjunction with our a priori knowledge of determinants of metabolic health in youth [45, 

46], informed the selection of confounders (variables associated with the exposure and a 

potential determinant of the outcome) and precision covariates (physiological or lifestyle 

factors that may account for variability in the outcomes of interest) for multivariable 

analysis. We then carried out the main analysis in three steps, conforming to our study aims.

Step 1: identification of metabolites during late childhood (T1) that differ by 
GDM exposure—To reduce dimensionality of the metabolomics data, we used principal 

components analysis (PCA) to consolidate the 767 metabolites into latent variables, known 

as factors, that may be interpreted as metabolite patterns. The procedure generates as many 

factors as there are original metabolites, so we used visual inspection of the Scree plot for a 

‘break’ (ESM Fig. 1), and standard criterion of eigenvalues >1 to determine the number of 

factors to retain (see ESM Methods for details on PCA).

Next, we examined associations of GDM exposure with the retained factor scores at T1, 

which were operationalised two ways: (1) as continuous outcomes (via linear regression); 

and (2) as a dichotomous outcome (via logistic regression), categorised as quartile (Q)4 vs 

Q1–3 of the factor score, to allow for potential threshold effects commonly observed in the 

analyses of potential biological pathways in relation to exposures and health outcomes (e.g., 

DNA methylation in relation to adiposity [47]). Given the relatively small number of factor 

scores retained from the PCA, we considered GDM to be associated with a factor score if its 

β value or OR coefficient was significant (p < 0.05). In addition, we valued consistency in 

estimates across multivariable adjustment as this suggests a true relationship between GDM 

and the factors, as opposed to a spurious association arising from inappropriate covariate 

adjustment.

We then explored these associations using a series of multivariable models. Figure 3 shows a 

directed acyclic graph (DAG) of our modelling strategy. Model 1 accounted for key 

sociodemographic confounders: age, sex, and race/ethnicity. Using this model, we tested for 
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effect modification by sex, for which we observed no evidence (p-interaction > 0.30 for all), so 

we included both boys and girls in subsequent models. In Model 2, we accounted for 

covariates in Model 1 plus mother’s smoking habits during pregnancy, an important variable 

to consider when assessing the impact of the gestational environment on health outcomes in 

paediatric and adolescent populations [48]. Model 3 further included variables that could 

affect metabolite composition and thus could account for variability in metabolites 

(precision covariates): pubertal status, physical activity levels and total energy intake. In 

Model 4, we further adjusted for GDM treatment. Finally, in Model 5, we included Model 2 

covariates plus pre-pregnancy BMI, which is partly a confounder to the relationship of 

interest but likely also an overlapping exposure due to the shared intrauterine milieu between 

maternal overweight/obesity and GDM [49].

Step 2: investigation of whether associations of GDM with metabolites 
measured during childhood (T1) persists into adolescence—(T2) Based on the 

findings from ‘Step 1’, we examined the associations of GDM with key metabolites (i.e., 

those with factor loading >|0.50|) within factors of interest at T1. We also examined 

associations of GDM with the same metabolites, but measured in plasma collected at T2. 

The rationale behind this step was to assess for consistency of associations of GDM with 

individual metabolites within a given factor, and to assess whether associations of GDM 

with metabolites is similar across T1 and T2. For this step, we used multivariable linear 

regression models that accounted for maternal smoking habits during pregnancy, and child’s 

age, sex and race/ethnicity. We noted all associations with p < 0.05, but further focused on 

those that were statistically significant after Bonferroni correction. Findings from this step 

provided information on inter-individual consistency in associations of GDM exposure with 

metabolite profiles over time. We also calculated the intra-class correlation (ICC), which 

assesses intra-individual stability of metabolite concentrations over time.

Step 3: examination of associations of T1 metabolite patterns with adiposity 
and metabolic biomarkers throughout T1 and T2—Finally, we examined 

relationships between the GDM-related metabolite patterns derived at T1 with adiposity and 

metabolic biomarkers from T1 to T2 via mixed-effects linear regression models. The 

outcomes were the repeated measurements of each adiposity indicator or metabolic 

biomarker across the two research visits (up to two measurements per outcome per child). 

The explanatory variables included the metabolite factor score of interest at T1, longitudinal 

assessments of age, a random effect for the individual study identifier and an unstructured 

covariance matrix. We chose this approach over evaluating associations of factor scores with 

health outcomes at T1 and T2 separately, or with change in associations between T1 and T2, 

for model efficiency (i.e., if a participant only had outcome data at T1, their information still 

contributed to estimation of standard errors in the model).

Thus, all 592 participants were included in this analysis. Using this model, we tested for an 

interaction with between-factor scores and age and sex and noted several significant p-

interaction values with respect to sex, even after Bonferroni correction (ESM Table 1), so we 

ran subsequent multivariable models separately for boys and girls.
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In multivariable analysis, we accounted for confounders followed by precision covariates 

(Fig. 4). Model 1 included child’s age, sex and race/ethnicity, Model 2 further accounted for 

pubertal status and Model 3 included Model 2 covariates plus physical activity and energy 

intake. When assessing results, we considered all associations that were statistically 

significant, at α = 0.05, but also noted significance after Bonferroni correction to account for 

the number of outcomes assessed by each set of multivariable models; these analyses were 

carried out separately for boys and girls. In sensitivity analyses, we also evaluated the impact 

of adjustment for GDM treatment. Doing so did not change the results (data not shown), 

thus we did not include this variable in the final models.

We carried out all analyses using Statistical Analyses System software (version 9.3; SAS 

Institute, Cary, NC, USA), unless otherwise stated.

Results

The mean (± SD) age of participants at T1 was 10.4 ± 1.5 years (range, 6.0–13.9 years), and 

at T2, it was 16.3 ± 1.2 years (range, 12.6–19.6 years). Half of the participants were female, 

and 48.5% (n= 287) were non-Hispanic white. Approximately 16% (n= 92) of participants 

were exposed to maternal GDM. Table 1 shows the characteristics of mother–child dyads 

stratified by GDM exposure status. The GDM-exposed group contained a higher proportion 

of smokers and non-Hispanic white women vs the unexposed group. With respect to child 

characteristics, we noted lower fasting glucose (p = 0.006), insulin (p = 0.05) and HOMA-IR 

(p = 0.02) among GDM-exposed vs unexposed participants at T1. The opposite (albeit, non-

significant) trends were observed at T2.

We retained six factors (metabolite patterns) that accounted for 50% of variance in the 

original metabolomics data at T1 (Fig. 5), which is similar to other studies of untargeted 

metabolomics data that used PCA for dimension reduction [50]. When we examined the 

associations of maternal GDM with continuous factor scores using multivariable linear 

regression, we did not detect any significant associations at α = 0.05 (i.e., no p values were 

<0.05). However, when we assessed relationships between GDM and odds of being in Q4 vs 

Q1–3 of each factor score, we noted a consistent positive association with ‘Factor 4’. In 

comparison with unexposed participants, GDM-exposed youth had 1.64 (95% CI 0.98, 2.76; 

p = 0.06) greater odds of being in Q4 vs Q1–3 for Factor 4 after adjusting for age, sex and 

race/ethnicity (Model 1; Table 2 and Fig. 5). Adjustment for maternal smoking (Model 2) 

did not materially change this estimate. Further adjustment for pubertal status, physical 

activity, and total energy intake (Model 3) slightly strengthened this association, such that it 

was statistically significant at α = 0.05 (OR 1.78 [95% CI 1.04, 3.04]; p = 0.04). As 

expected, this estimate was attenuated to non-significance after accounting for maternal pre-

pregnancy BMI (Model 5) (see Fig. 5 and Table 2), suggesting that a large portion of the 

relationship between maternal GDM and Factor 4 is accounted for by variability in maternal 

weight status prior to pregnancy. For the above results, none of the estimates were 

significant after Bonferroni correction.

The metabolite composition of Factor 4 is shown in Table 3; this comprised 

phosphatidylcholines, lysophospholipids, diacylglycerols and phosphatidylethanolamines. 
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All top-loading metabolites within Factor 4 were positive, indicating that a higher score 

corresponds with higher serum concentrations of the component metabolites.

Table 4 shows the relationship of maternal GDM with key metabolites within Factor 4 at T1 

(i.e., those with factor loading values >|0.50| in the PCA conducted at T1), as well as 

associations of GDM with the same metabolites at T2. The β coefficients for GDM in 

relation to individual metabolites were similar to the association of GDM with the T1 factor 

score with respect to the direction of effects. Additionally, GDM was related to the majority 

of metabolites across T1 and T2 in a consistent manner with respect to direction and 

magnitude of associations. Of the 21 GDM–metabolite associations considered at each time-

point, several were significantly different with respect to GDM exposure at both time points 

using α = 0.05, but only the estimate for palmitoyl-arachidonoyl-glycerol (16:0/20:4) 

reached statistical significance after Bonferroni correction (0.09 [95% CI 0.03, 0.15]; p = 

0.002). We noted that, although the direction and magnitude of GDM–metabolite 

associations exhibited preservation of inter-individual rank across the two time points, the 

ICCs were low-to-modest, with a median (range) of 0.21 (0.08–0.38).

The associations between Factor 4 at T1 and health outcomes across T1 and T2 within strata 

of sex are shown in Table 5. In boys, Factor 4 was not associated with adiposity or metabolic 

risk. In girls, a higher Factor 4 score corresponded with significantly higher adiposity at α = 

0.05 according to all six adiposity indicators (BMI, BMI z score, waist circumference, 

skinfold sum, SAT fat area and VAT fat area) as well as with higher fasting insulin (β [95% 

CI] per 1-unit factor score: 8.75 [4.97, 12.53] pmol/l; p < 0.0001), higher HOMA-IR (0.27 

[0.13, 0.40] units; p = 0.0002) and altered adipokines, as indicated by higher leptin (4.54 

[1.96, 7.11] nmol/l; p = 0.0006) and lower adiponectin (−4.00 [−6.76, −1.23] μmol/l; p = 

0.005) (Table 5, Model 1). Further adjustment for pubertal status and lifestyle characteristics 

in Models 2 and 3 did not greatly change these findings. All abovementioned estimates 

remained statistically significant after Bonferroni correction (α < 0.05/20 = 0.003) except 

for adiponectin.

Discussion

Statement of principal findings

In this study of 592 mother–child dyads, associations of in utero exposure to maternal GDM 

with offspring metabolite profiles derived from PCA were largely null after correcting for 

multiple comparisons and following adjustment for maternal pre-pregnancy BMI. However, 

across several multivariable models that accounted for key perinatal, sociodemographic, 

biological and lifestyle covariates, we noted that GDM exposure was consistently associated 

with a fasting serum phospholipid metabolite pattern during late childhood. This metabolite 

pattern was, in turn, associated with higher adiposity and a worse metabolic risk profile from 

late childhood through adolescence. We discuss these findings, below.

Associations of maternal GDM with offspring metabolite profiles at age 6–14 
years—When assessing offspring metabolite profiles during late childhood, we observed a 

consistently positive relationship between maternal GDM and a phospholipid metabolite 

pattern (‘Factor 4’) that persisted after accounting for maternal smoking habits during 
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pregnancy, and offspring pubertal status, physical activity and energy intake. However, none 

of the estimates qualified as statistically significant after correcting for multiple testing, and 

the specific relationship between GDM and Factor 4 was attenuated to non-significance after 

accounting for maternal pre-pregnancy BMI. While it is difficult to derive a concrete reason 

for the former other than limited statistical power, the latter is likely due to the existence of 

overlapping biological pathways linking maternal overweight/obesity and GDM to offspring 

metabolism [51] given that maternal glucose is elevated among overweight/obese women, 

even if they do not qualify as having overt diabetes [49]. Thus, such adjustment is likely to 

obscure, rather than isolate, the association of maternal glucose levels with offspring 

outcomes. Additional mechanistic work is required to untangle the unique influence of 

maternal blood glucose levels on offspring health outcomes, independent of weight status 

entering pregnancy.

The top metabolites in Factor 4 included phospholipids of the palmitoleic acid moiety, 

including 1-palmitoyl-2-palmitoleoyl-glycero-phosphocholine (GPC) (16:0/16:1), palmitoyl-

arachidonoyl-glycerol (16:0/20:4), 1-myristoyl-2-arachidonoyl-GPC (14:0/20:4), 1-

palmitoyl-2-arachidonoyl-glycosylphosphatidylinositol (GPI) (16:0/20:4), 1-palmitoyl-2-

oleoyl- glycerophosphoethanolamine (GPE) (16:0/18:1) and 1-palmitoyl-GPE (16:0). This 

pattern also captured some diacylglycerides, including palmitoyl-linoleoyl-glycerol 

(16:1/18:2), which is a common emulsifier used in bakery products, shortening, whipped 

toppings and other confections [52]. Endogenously, alterations in phospholipid composition 

could be indicative of either lipolytic or lipogenic activity, both of which have implications 

for metabolic health, but we are not able to make this distinction in this study. However, we 

note that palmitate enrichment of fatty acids in this metabolite pattern may be driven by 

stearoyl-CoA desaturase (SCD), an endoplasmic reticulum enzyme that catalyses the rate-

limiting step in monounsaturated fatty acid formation, including palmitoleate from stearoyl-

CoA and palmitoyl-CoA [53]. Given that insulin resistance is related to disruptions to the 

SCD pathway [54, 55], it makes sense that this metabolite pattern differed with respect to 

status of in utero exposure to GDM.

In a recently-published meta-analysis of four cohorts of diverse ancestry, Lowe et al [18] 

analysed targeted metabolomics data from cord blood of 1600 mother–infant pairs in 

relation to maternal fasting glucose, glucose at 1-h and 2-h post OGTT, and insulin 

sensitivity. Key findings included associations of higher 1-h post-OGTT glucose with higher 

cord blood levels of the ketone body 3-hydroxybutyrate and its carnitine ester, as well as 

glycerol and 3-hydroxy-decanoyl carnitine, even after adjustment for maternal BMI at the 

time of OGTT. Additionally, lower maternal insulin sensitivity was differentially associated 

with cord blood levels of branched chain amino acids and acylcarnitines. In another study of 

mother–infant pairs (n= 119 from the PREOBE cohort in Spain), Shokry et al [19] leveraged 

targeted metabolomics data and identified associations of maternal GDM with elevated 

levels of cord blood hexoses, and lower levels of free carnitines, acylcarnitines, long-chain 

non-esterified fatty acids, phospholipids, Kreb’s cycle metabolites and β-oxidation markers. 

While the metabolites in Factor 4 do not markedly overlap with those identified in either of 

the above-mentioned studies (with the exception of the relevance of compounds on 

phospholipid pathways to GDM in Shokry et al [19]), it is difficult to reconcile findings 

from untargeted platforms, which capture relative concentrations of all detectable 
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metabolites in a given biotissue or fluid, with those of targeted platforms selected based on 

an investigator’s a priori hypothesis of specific biological pathways. Further, it may not be 

appropriate to compare metabolites in fasting serum of youth with that of metabolites in 

cord blood, the latter of which are affected by a multitude of factors surrounding 

circumstances of delivery, and variability in metabolite concentrations across the maternal/

fetal unit.

Associations of GDM with metabolites throughout late childhood and 
adolescence—GDM exposure was associated with key metabolites within Factor 4 at a 

similar direction, magnitude, and precision of estimates at T1 and T2, indicating a persistent 

and consistent inter-individual effect of GDM on metabolite profiles from late childhood 

through adolescence. On the other hand, within-individual stability of the metabolites across 

T1 and T2 was modest at best, as indicated by relatively low ICCs. Our results suggest that, 

while the metabolites we examined may be informative for the study of disease aetiology 

given that the inter-individual rank of exposure/metabolite associations was preserved over 

time, concentrations of the specific metabolites are not likely to be reliable biomarkers of 

disease risk in youth within the age range of this study population due to high intra-

individual variability.

Associations of metabolite patterns with adiposity and conventional 
metabolic risk biomarkers—We found that a higher score for Factor 4 corresponded 

with greater adiposity, reduced insulin sensitivity, higher leptin and marginally lower 

adiponectin from late childhood through adolescence among girls. Furthermore, all 

associations except for that of GDM with adiponectin passed Bonferroni correction.

In a recent study in non-human primates, Polewski et al identified differences in plasma 

phospholipid composition, most notably perturbations in diacylglycerols that are 

desaturation products of palmitic acid, as markers of worsening insulin resistance and onset 

of the metabolic syndrome [56]. While the specific metabolites identified differed from 

those of the present study, phospholipids are integral components of the cell membrane and 

plasma and their metabolism influences numerous biochemical pathways, including those 

involved in glycaemic regulation [57]. The compounds of particular interest in Factor 4 

include diacylglycerol derivatives of palmitoleic acid (e.g., palmitoleoyl-linoleoyl-glycerol 

[16:1/18:2]), an unsaturated monounsaturated fatty acid that has been found to exhibit 

similar detrimental effects to palmitic acid on cardiovascular traits in adult men [58]. 

Although, this lipokine has also been linked to beneficial effects on other aspects of 

metabolism (e.g., amelioration or prevention of insulin resistance and diabetes) [59].

Given the established literature on the puberty-related increase in adiposity [60] and insulin 

resistance [61], the female-specific nature of our findings is likely to be related to an 

association of maternal GDM with earlier adrenarche and pubarche in daughters. Recent 

cohort studies, including one in EPOCH [62], demonstrated that in utero exposure to GDM 

was associated with earlier puberty onset, with stronger [62] or sole effects among female 

offspring [63–66]. This phenomenon may operate through a programming effect of maternal 

hyperglycaemia on offspring adrenal hormone production [67]. Future studies with longer 

term follow-up are necessary to establish whether the relationships of GDM exposure with 
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adiposity and metabolic risk in the offspring persists beyond puberty. Additionally, studies 

should further investigate potential sex-specific programming effects of in utero GDM 

exposure on offspring adiposity and metabolic health.

Strengths and weaknesses

Our study has several strengths. First, we were able to examine long-term effects of 

intrauterine exposure to maternal GDM on fasting serum metabolites at, not just one, but 

two time points, from late childhood through adolescence. Our repeated metabolomics 

measurements enabled us to assess both inter-individual preservation of the effect of GDM 

exposure over time, as well as intra-individual variability of metabolites, of which the 

former is informative for understanding disease aetiology, while the latter has important 

implications for use of metabolites as prognostic biomarkers [9]. Second, we had a large 

sample size, especially in comparison with other studies of metabolomics in youth, where N 
is less than 300 [50, 68–72]. Third, we were able to use rich data on sociodemographic and 

lifestyle characteristics to account for variables that may confound associations of interest. 

Finally, we had a diverse study sample, with ~50% of participants of racial or ethnic 

minorities.

This study also has several limitations. First, we are not able to make inference on metabolic 

flux given that the repeated metabolic assessments were separated by a 5-year period. 

Second, the metabolite factor scores were based on metabolites assayed at the same time as 

the first measurement of adiposity and metabolic biomarkers and, thus, estimates could be 

driven by cross-sectional relationships rather than being true prospective associations. Third, 

missing values and recall errors in self-reported covariates can introduce bias into estimates 

of association. Fourth, removal of metabolites with high missingness (≥20%) from our 

dataset resulted in retention of ~64% of the original features detected by the untargeted 

platform. Since unsupervised dimension reduction techniques, like PCA, rely on the 

intercorrelations among variables in the dataset, removal of features is likely to have had an 

impact on the composition of the factor scores in ways that we are not able to directly assess 

given that many of these procedures (including PCA) also require that there are no missing 

values in the input dataset. Fifth, GDM status was based on a clinical diagnosis of GDM 

following an OGTT, for which we do not have access to actual blood glucose concentrations. 

Thus, clinical misdiagnoses of GDM status could introduce non-differential bias into 

estimates of association pertaining to the relationship between maternal GDM and the 

metabolite factor scores. Sixth, while EPOCH participants were asked to arrive for the 

research visit having fasted for at least 8 h, we do not know for certain how long they had 

truly been fasting; this is another source of non-differential bias, but this time with respect to 

the associations of factor scores with adiposity and metabolic risk from childhood through 

adolescence. Seventh, we cannot discount the possibility of false-positive findings given the 

large number of models tested, especially given that our initial assessment of the relationship 

between GDM exposure and offspring metabolite patterns was largely null (with the 

exception of the association of GDM with Factor 4 when dichotomised as Q4 vs Q1–3 using 

a nominal α = 0.05). However, we put forth precautionary measures to prevent type 1 error, 

including: (1) use of PCA as a data reduction method to identify metabolite factors in 

offspring that differed with respect to maternal GDM using a nominal p value cut-off before 
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assessing associations of GDM with individual metabolites; and (2) employment of more 

stringent p value cut-offs in analyses of associations between GDM and metabolites, and 

between the metabolite pattern factor score and health outcomes. Finally, as with all cohort 

studies that span a long period of time between assessment of the exposure and 

measurement of the health outcome, there is potential for residual confounding due to 

unmeasured lifestyle characteristics (e.g., nutritional factors, more nuanced assessments of 

physical activity and energy expenditure), and shared behavioural and environmental 

characteristics between the mother and child.

Conclusions and future directions

In the EPOCH cohort, we identified a phospholipid metabolite pattern following intrauterine 

exposure to maternal GDM that was detectable from late childhood through adolescence. 

This metabolite pattern was associated with higher adiposity, worse insulin sensitivity and 

altered adipocytokines across the adolescent transition among girls exposed to in utero GDM 

vs those unexposed. Future research is required to evaluate the extent to which these 

metabolite patterns are clinically relevant and meaningfully associated with health outcomes 

beyond the adolescent transition.
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Q Quartile

SAT Subcutaneous adipose tissue

SCD Stearoyl- CoA desaturase

T1 2006–2009 study period

T2 2012–2015 study period (follow-up)

VAT Visceral adipose tissue
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Research in context

What is already known about this subject?

• Gestational diabetes mellitus (GDM) is associated with adverse metabolic 

health in offspring, but little is known of the specific mechanisms and 

pathways associated with this

• Metabolomics profiling can provide objective information on metabolic 

pathways linking exposures to health outcomes

• Existing studies of metabolomics of GDM have used maternal serum 

collected during pregnancy to identify metabolite patterns associated with, or 

predictive of, development of GDM. They have also investigated metabolite 

composition in cord blood in cord blood of offspring exposed to GDM

What is the key question?

• What are the metabolomics profiles associated with in utero exposure to 

maternal GDM during childhood and adolescence and how do these correlate 

with conventional biomarkers of metabolic risk?

What are the new findings?

• Exposure to maternal GDM is associated with higher circulating 

phospholipids during childhood (6–14 years of age) and adolescence (12–19 

years of age)

• Associations of maternal GDM with metabolites are consistent across 5 years 

of follow-up, spanning childhood and adolescence

• The phospholipid metabolite pattern is prospectively associated with higher 

adiposity and worse metabolic profile among girls only

How might this impact on clinical practice in the foreseeable future?

• A more nuanced understanding of biological pathways linking in utero 

exposures, like GDM, to adverse health outcomes later in life will inform us 

of future targets for prevention
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Fig. 1. 
Conceptual diagram of associations among exposure to maternal GDM, fasting metabolite 

patterns and health outcomes (adiposity and metabolic biomarkers) throughout childhood 

and adolescence
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Fig. 2. 
Study participant flow diagram. T1D, type 1 diabetes
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Fig. 3. 
Directed acyclic graph (DAG) of confounders and precision covariates in relation to Step 1 

of the analysis, which involved investigating the associations of exposure to maternal GDM 

with metabolite patterns at T1 (age 6–14 years)
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Fig. 4. 
Directed acyclic graph (DAG) of confounders and precision covariates in relation to Step 3 

of the analysis, which involved investigating the associations of metabolite factors at T1 (age 

6–14 years) with health outcomes from T1 (age 6–14 years) to T2 (age 12–19 years)
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Fig. 5. 
PCA was used to consolidate 767 metabolites into latent variables (‘factors’) that may be 

interpreted as metabolite patterns. Factor scores were selected based on visual inspection of 

the Scree plot and eigenvalues >1. Six factors were retained for use in analysis. Associations 

of in utero GDM exposure (yes [n = 92] vs no [n = 500]) with odds (OR) of being in Q4 vs 

Q1–3 of each factor score at T1 (age 6–14 years) among the 592 EPOCH participants are 

shown. The variance accounted for by each factor is indicated on the graph. Model 1: 

adjusted for child’s sex, age and race/ethnicity; Model 2: Model 1 + maternal smoking 

habits during pregnancy (smoking, yes vs no); Model 3: Model 2 + pubertal status (Tanner 

stage), physical activity (mean METs/day over a 3-day period) and total energy intake (kJ/

day); Model 4: Model 3 + GDM treatment (diet and/or exercise only, diet and/or exercise 

with insulin or insulin alone, or no treatment); Model 5: Model 2 + maternal pre-pregnancy 

BMI (kg/m2). The estimates are plotted on a loge scale and the horizontal line represents the 

null (OR 1.00). *Significant at α = 0.05
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Table 2

Associations of in utero GDM exposure (yes [n = 92] vs no [n = 500]) with metabolite factors at T1 (age 6–14 

years) among 592 EPOCH participants

Factor Associations of GDM exposure with metabolite factors Variance 

(%)
c

Model 1 (n 
= 592)

p Model 2 (n 
= 592)

p Model 3 (n 

= 577)
a

p Model 4 (n 

= 577)
a

p Model 5 (n 

= 433)
b

p

β (95% CI)

 Factor 1
1.16 (−0.92, 
3.24) 0.28

1.00 (−1.09, 
3.09) 0.35

1.01 (−1.14, 
3.17) 0.36

1.56 (−2.54, 
5.66) 0.46

1.26 (−1.13, 
3.65) 0.30 14.8

 Factor 2 −0.43 
(−1.26, 
0.41)

0.31 −0.36 
(−1.20, 
0.47)

0.40 −0.36 
(−1.23, 
0.50)

0.41 −0.49 
(−2.13, 
1.16)

0.56 −0.31 
(−1.24, 
0.63)

0.52 11.3

 Factor 3 −0.53 
(−1.46, 
0.41)

0.27 −0.43 
(−1.37, 
0.50)

0.37 −0.41 
(−1.37, 
0.55)

0.40 −0.93 
(−2.76, 
0.91)

0.32 −0.62 
(−1.70, 
0.46)

0.26 8.9

 Factor 4 0.20 (−0.12, 
0.52)

0.22 0.20 (−0.12, 
0.53)

0.22 0.28 (−0.06, 
0.61)

0.11 0.40 (−0.24, 
1.03)

0.22 0.23 (−0.15, 
0.60)

0.23 6.1

 Factor 5 −0.74 
(−2.32, 
0.83)

0.35 −0.63 
(−2.21, 
0.95)

0.30 −0.63 
(−2.25, 
1.00)

0.45 −1.23 
(−4.33, 
1.87)

0.44 −0.96 
(−2.79, 
0.87)

0.30 4.8

 Factor 6 −1.37 
(−4.14, 
1.40)

0.33 −1.14 (3.92, 
1.64)

0.42 −1.16 
(−4.03, 
1.70)

0.43 −2.20 
(−7.66, 
3.25)

0.43 −1.38 
(−4.58, 
1.82)

0.40 4.1

OR (95% CI)

 Factor 1 1.36 (0.81, 
2.29) 0.24

1.35 (0.80, 
2.27) 0.26

1.41 (0.82, 
2.40) 0.21

1.59 (0.55, 
4.61) 0.39

1.32 (0.71, 
2.48) 0.38 14.8

 Factor 2 0.71 (0.40, 
1.25)

0.23 0.72 (0.40, 
1.28)

0.26 0.78 (0.43, 
1.40)

0.40 1.12 (0.37, 
3.44)

0.84 0.79 (0.41, 
1.50)

0.47 11.3

 Factor 3 0.69 (0.39, 
1.23)

0.21 0.72 (0.40, 
1.29)

0.27 0.78 (0.43, 
1.41)

0.40 0.55 (0.19, 
1.60)

0.27 0.57 (0.28, 
1.14)

0.11 8.9

 Factor 4 1.64 (0.98, 
2.76)

0.06 1.63 (0.97, 
2.74)

0.06 1.78 (1.04, 
3.04)

0.04* 2.15 (0.73, 
6.35)

0.16 1.46 (0.80, 
2.68)

0.22 6.1

 Factor 5 0.77 (0.43, 
1.35)

0.35 0.78 (0.44, 
1.38)

0.39 0.82 (0.46, 
1.47)

0.51 1.13 (0.37, 
3.42)

0.83 0.80 (0.42, 
1.54)

0.51 4.8

 Factor 6 0.74 (0.42, 
1.31)

0.30 0.76 (0.43, 
1.35)

0.35 0.81 (0.45, 
1.47)

0.49 0.92 (0.30, 
2.78)

0.88 0.84 (0.44, 
1.62)

0.60 4.1

β (95% CI) values are given in relation to each continuous factor score; ORs (95% CI) of being in Q4 vs Q1–3 for each factor are shown

a
n = 15 participants excluded from the analyses due to missing values for covariates

b
n = 159 participants excluded from the analyses due to missing values for covariates

c
Percent variance accounted for by each factor with respect to the original metabolite dataset

Model 1: Adjusted for child’s age, sex and race/ethnicity

Model 2: Model 1 + mother’s smoking habits during pregnancy

Model 3: Model 2 + Tanner stage (based on pubic hair development in boys and breast development in girls), physical activity levels (mean 
METs/day over a 3-day period), and total energy intake (kJ/day)

Model 4: Model 3 + GDM treatment (diet and/or exercise only, diet and/or exercise with insulin or insulin only, or no treatment)

Model 5: Model 2 + pre-pregnancy BMI (kg/m2)
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*
Significant at α = 0.05
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Table 3

Metabolite composition of the GDM-related metabolite pattern (‘Factor 4’) identified at T1

Metabolite Superpathway Subpathway Factor loading

Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [tier 2]
a Lipid Diacylglycerol 0.64

1-Stearoyl-GPE (18:0) Lipid Lysophospholipid 0.64

1-Palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)
a Lipid Phosphatidylcholine 0.63

1-Myristoyl-2-arachidonoyl-GPC (14:0/20:4)
a Lipid Phosphatidylcholine 0.62

Palmitoleoyl-arachidonoyl-glycerol (16:1/20:4) [tier 2]
a Lipid Diacylglycerol 0.62

1-Palmitoyl-2-arachidonoyl-GPI (16:0/20:4)
a Lipid Phosphatidylinositol 0.62

1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine 0.60

1-Palmitoyl-GPE (16:0) Lipid Lysophospholipid 0.60

Oleoyl-arachidonoyl-glycerol (18:1/20:4) [tier 1]
a Lipid Diacylglycerol 0.60

Oleoyl-arachidonoyl-glycerol (18:1/20:4) [tier 2]
a Lipid Diacylglycerol 0.59

Palmitoyl-oleoyl-glycerol (16:0/18:1) [tier 2]
a Lipid Diacylglycerol 0.59

Palmitoleoyl-linoleoyl-glycerol (16:1/18:2) [tier 1]
a Lipid Diacylglycerol 0.59

Diacylglycerol (16:1/18:2 [tier 2], 16:0/18:3 [tier 1])
a Lipid Diacylglycerol 0.58

1-Myristoyl-2-palmitoyl-GPC (14:0/16:0) Lipid Phosphatidylcholine 0.57

Palmitoyl-oleoyl-glycerol (16:0/18:1) [tier 1]
a Lipid Diacylglycerol 0.56

1-Palmitoleoyl-GPC (16:1)
a Lipid Lysophospholipid 0.54

1-Palmitoyl-GPC (16:0) Lipid Lysophospholipid 0.53

1-Stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phosphatidylcholine 0.53

1-Stearoyl-2-oleoyl-GPE (18:0/18:1) Lipid Phosphatidylethanolamine 0.53

1-Linolenoyl-GPC (18:3)
a Lipid Lysophospholipid 0.52

1-Palmitoyl-GPG (16:0)
a Lipid Lysophospholipid 0.51

a
Tier 2 identification in which no commercially available authentic standards could be found, but annotated based on accurate mass, spectral and 

chromatographic similarity to tier 1-identified compounds

GPG, glycerophosphoglycerol; GPI, glycosylphosphatidylinositol
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Table 4

Associations of in utero GDM exposure with Factor 4 metabolites at T1 (n = 592) and T2 (n = 403)

Factor 4 metabolites ICC
a Associations of GDM exposure with Factor 4 metabolites

T1 T2

β (95% CI) p β (95% CI) p

Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [tier 2]
a 0.23 0.09 (0.03, 0.15)

0.002*† 0.07 (0.01, 0.14) 0.03*

1-Stearoyl-GPE (18:0) 0.38 0.02 (−0.01, 0.05) 0.16 0.01 (−0.02, 0.04) 0.63

1-Palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)
a 0.21 0.00 (−0.04, 0.04) 0.98 0.03 (−0.02, 0.08) 0.32

1-Myristoyl-2-arachidonoyl-GPC (14:0/20:4)
a 0.16 0.04 (−0.01, 0.09) 0.11 0.04 (−0.02, 0.10) 0.17

Palmitoleoyl-arachidonoyl-glycerol (16:1/20:4) [tier2]
a 0.31 0.08 (0.02, 0.15) 0.02* 0.04 (−0.04, 0.11) 0.32

1-Palmitoyl-2-arachidonoyl-GPI (16:0/20:4)
a 0.22 0.05 (0.00, 0.09) 0.04* 0.04 (−0.02, 0.09) 0.17

1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) 0.20 0.03 (−0.02, 0.08) 0.24 0.03 (−0.03,0.10) 0.31

1-Palmitoyl-GPE (16:0) 0.38 0.00 (−0.03, 0.04) 0.90 0.00 (−0.04, 0.04) 0.86

Oleoyl-arachidonoyl-glycerol (18:1/20:4) [tier 1]
a 0.33 0.05 (0.01, 0.09) 0.02* 0.06(0.02, 0.11) 0.009*

Oleoyl-arachidonoyl-glycerol (18:1/20:4) [tier 2]
a 0.35 0.04 (0.00, 0.09) 0.07 0.05 (0.00, 0.10) 0.05*

Palmitoyl-oleoyl-glycerol (16:0/18:1) [tier2]
a 0.17 0.07 (0.02, 0.12) 0.01* 0.10 (0.03, 0.17) 0.005*

Palmitoleoyl-linoleoyl-glycerol (16:1/18:2) [tier 1]
a 0.28 0.08 (0.03, 0.14) 0.003* 0.07 (0.00, 0.14) 0.04*

Diacylglycerol (16:1/18:2 [tier 2], 16:0/18:3 [tier 1])
a 0.29 0.07 (0.01, 0.12) 0.03* 0.04 (−0.03, 0.11) 0.24

1-Myristoyl-2-palmitoyl-GPC (14:0/16:0) 0.18 −0.02 (−0.07, 0.03) 0.38 0.02 (−0.05, 0.08) 0.59

Palmitoyl-oleoyl-glycerol (16:0/18:1) [tier 1]
a 0.16 0.07 (0.02, 0.13) 0.01* 0.09 (0.02, 0.16) 0.008*

1-Palmitoleoyl-GPC (16:1)
a 0.21 0.01 (−0.02, 0.04) 0.58 0.02 (−0.01, 0.05) 0.17

1-Palmitoyl-GPC (16:0) 0.08 0.01 (−0.01,0.02) 0.32 0.00 (−0.01, 0.02) 0.73

1-Stearoyl-2-oleoyl-GPC (18:0/18:1) 0.21 0.00 (−0.03, 0.02) 0.95 0.00 (−0.03, 0.03) 0.85

1-Stearoyl-2-oleoyl-GPE (18:0/18:1) 0.18 0.04 (−0.01, 0.09) 0.15 0.03 (−0.03,0.10) 0.28

1-Linolenoyl-GPC (18:3)
a 0.09 0.00 (−0.04, 0.04) 0.90 0.01 (−0.04, 0.05) 0.73

1-Palmitoyl-GPG (16:0)
b 0.15 0.03 (−0.01,0.07) 0.16 0.00 (−0.04, 0.05) 0.87

Metabolite concentrations were log10-transformed prior to use in the regression models that generated the estimates displayed in the table. β 
estimates are adjusted for maternal smoking habits during pregnancy, and child’s age at research visit, sex and race/ethnicity

a
ICC for each metabolite across T1 and T2

b
Tier 2 identification (denoted by [2]) in which no commercially available authentic standards could be found, but annotated based on accurate 

mass, spectral and chromatographic similarity to tier 1-identified compounds (denoted by [1])

*
Significant at α = 0.05;

†
Significant after Bonferroni correction (α < 0.05/21 = 0.002 at each time point)

GPG, glycerophosphoglycerol; GPI, glycosylphosphatidylinositol
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Table 5

Associations of Factor 4 with adiposity and metabolic risk biomarkers from T1 (age 6–14 years) through T2 

(age 12–19 years) among EPOCH participants

Variable Model 1 Model 2 Model 3

β (95% Cl) P β (95% Cl) P β (95% Cl) P

Boys (n = 295)

 Adiposity

  BMI (kg/m2) 0.22 (−0.18, 0.62) 0.29 0.23 (−0.17, 0.62) 0.27 0.21 (−0.19, 0.62)  0.30

  BMI z score
a 0.09 (−0.01, 0.18) 0.07 0.09 (0.00, 0.18) 0.06 0.09 (−0.01, 0.18)  0.08

  Waist circumference 
(cm)

0.42 (−0.61, 1.44) 0.42 0.43 (−0.60, 1.46) 0.41 0.41 (−0.64, 1.45)  0.45

  Skinfold sum (mm)
b 1.21 (−0.85,3.27) 0.25 1.22 (−0.84, 3.29) 0.24 1.03 (−1.08,3.13)  0.34

  SAT fat area (mm2) 4.21 (−6.81, 15.22) 0.45 4.56 (−6.38, 15.50) 0.41 4.28 (−6.90, 15.45)  0.45

  VAT fat area (mm2) 0.87 (−0.82, 2.57) 0.31 0.84 (−0.87, 2.55) 0.34 0.74 (−1.01, 2.49)  0.40

 Metabolic biomarkers

  Fasting glucose 
(mmol/l)

−0.03 (−0.06, 0.01) 0.11 −0.02 (−0.06, 0.01) 0.13 −0.03 (−0.06, 0.00)  0.09

  Fasting insulin (pmol/l) 2.13 (−2.19, 6.44) 0.33 2.26 (−2.00, 6.52) 0.30 2.09 (−2.29, 6.46)  0.35

  HOMA-IR 0.03 (−0.12, 0.18) 0.71 0.03 (−0.11,0.18) 0.65 0.03 (−0.12, 0.18)  0.73

  Leptin (nmol/l) 1.22 (−0.85,3.28) 0.25 1.21 (−0.85, 3.27) 0.25 1.06 (−1.06,3.19)  0.32

  Adiponectin (^.mol/l) −1.03 (−3.79, 1.72) 0.46 −1.03 (−3.79, 1.74) 0.46 −1.23 (−4.06, 1.60)  0.39

Girls (n = 297)

 Adiposity

  BMI (kg/m2) 0.65 (0.31,0.99)
0.0002*† 0.65 (0.32, 0.99)

0.0002*† 0.64 (0.31,0.98)
 0.0002*†

  BMI z score
a 0.17 (0.08, 0.26)

0.0001*† 0.17 (0.09, 0.25)
<0.0001*† 0.17 (0.08, 0.25)

 0.0001*†

  Waist circumference 
(cm)

1.66 (0.86, 2.45)
<0.0001*† 1.67 (0.88, 2.45)

<0.0001*† 1.63 (0.85, 2.41)
 <0.0001*†

  Skinfold sum (mm)
b 4.02 (2.33, 5.70)

<0.0001*† 4.02 (2.34, 5.70)
<0.0001*† 4.06 (2.38, 5.75)

 <0.0001*†

  SAT fat area (mm2) 16.22 (8.00, 24.44)
0.0001*† 16.23 (8.03, 24.44)

0.0001*† 16.27 (8.21, 24.74)
 0.0001*†

  VAT fat area (mm2) 2.22 (0.85, 3.58)
0.002*† 2.21 (0.84, 3.58)

0.002*† 2.17 (0.78, 3.56)
 0.002*†

 Metabolic biomarkers

  Fasting glucose 
(mmol/l)

0.00 (−0.04, 0.04) 0.99 0.00 (−0.04, 0.04) 0.99 0.01 (−0.04, 0.06)  0.80

  Fasting insulin (pmol/l) 8.75 (4.97, 12.53)
<0.0001*† 8.83 (5.17, 12.49)

<0.0001*† 8.83 (5.07, 12.59)
 <0.0001*†

  HOMA-IR 0.27 (0.13, 0.41)
0.0002*† 0.27 (0.13, 0.41)

0.0002*† 0.28 (0.13, 0.43)
 0.0003*†

  Leptin (nmol/l) 4.54 (1.96, 7.11)
0.0006*† 4.57 (2.02, 7.11)

0.0005*† 4.73 (2.15, 7.31)
 0.0004*†

  Adiponectin (^.mol/l) −4.00 (−6.76, -1.23) 0.005* −4.03 (−6.80, -1.26) 0.005* −3.80 (−6.64, -0.96)  0.009*

Data are shown as β (95% CI) for Factor 4 at T1 with health outcomes from T1 to T2

Model 1: adjusted for age and race/ethnicity

Model 2: Model 1 + pubertal status (based on pubic hair development in boys and breast development in girls)
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Model 3: Model 2 + physical activity (mean METs/day over a 3-day period) + total energy intake (kJ/day)

a
Age- and sex-specific z score according to the WHO Growth Reference for children aged 5–19 years [37]

b
Sum of the subscapular, suprailiac and tricep skinfold thicknesses

*
Significant at α = 0.05;

†
Significant after Bonferroni correction (boys and girls were analysed separately within each model;

α < 0.05/20 = 0.003)
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