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ABSTRACT 37 

Accurate tracing of epidemic spread over space enables effective control measures. We 38 

examined three metrics of infection and disease in a pediatric cohort (N≈3,000) over two 39 

chikungunya and one Zika epidemic, and in a household cohort (N=1,793) over one COVID-19 40 

epidemic in Managua, Nicaragua. We compared spatial incidence rates (cases/total population), 41 

infection risks (infections/total population), and disease risks (cases/infected population). We 42 

used generalized additive and mixed-effects models, Kulldorf’s spatial scan statistic, and 43 

intracluster correlation coefficients. Across different analyses and all epidemics, incidence rates 44 

considerably underestimated infection and disease risks, producing large and spatially non-45 

uniform biases distinct from biases due to incomplete case ascertainment. Infection and disease 46 

risks exhibited distinct spatial patterns, and incidence clusters inconsistently identified areas of 47 

either risk. While incidence rates are commonly used to infer infection and disease risk in a 48 

population, we find that this can induce substantial biases and adversely impact policies to 49 

control epidemics.  50 
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INTRODUCTION 51 

Controlling epidemic spread requires accurate data on the movement of pathogens 52 

through populations. Standard spatial studies of infectious diseases use passively collected, 53 

individual-level data for cases (symptomatic infections) from health facilities after cases present 54 

for medical treatment (1–5). Then, by using census data to obtain the total population in an area, 55 

these studies estimate incidence rates (attack rates, incidence proportions) as the ratio of cases to 56 

the total population. However, because this approach does not capture subclinical (clinically 57 

inapparent) infections, this incidence approach may not recapitulate the spatial contour of 58 

infections, which may have a distinct pattern and magnitude. These issues may be compounded 59 

when the incidence rate, estimated from passively collected and hence incomplete case data, is 60 

used to infer infection risk (1–3) or disease risk (4,5) in policy decision-making on epidemic 61 

control.   62 

Epidemiological risk is the probability of a susceptible individual experiencing an 63 

outcome. For an immunologically naïve population, all persons are at risk for an initial infection. 64 

However, only infected individuals are at risk for experiencing illness, as only infected persons 65 

are susceptible to disease. Consequently, measuring infection status is necessary to estimate the 66 

numerator of infection risk (infections/total population) and the denominator of disease risk 67 

(cases/infected population). These metrics are related to the incidence rate through an application 68 

of conditional probability, expressed in multiple ways below:  69 

             Epidemiological:                            Infection risk × Disease risk = Incidence rate (Eq. 1) 70 

               Algebraic:                                      
Infections

Total population
 × 

Cases

Infections
 = 

Cases

Total population
         71 

             Statistical:                             P(Infection) × P(Disease | Infection) = P(Disease and Infection) 72 
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Eq. 1, applicable to infectious disease epidemics in an initially naïve population, demonstrates 73 

that incidence is the product of two underlying probabilities of interest. Thus, the incidence rate 74 

is explained by, and can be decoupled into, infection and disease risks. 75 

We spatially analyzed four explosive epidemics in two longitudinal Nicaraguan cohorts. 76 

Our analysis covers the 2014 and 2015 chikungunya epidemics caused by chikungunya virus 77 

(CHIKV) (6,7), the 2016 Zika epidemic caused by Zika virus (ZIKV) (8,9), and the first wave of 78 

the COVID-19 epidemic in 2020 caused by severe acute respiratory syndrome coronavirus 2 79 

(SARS-CoV-2) (10). While Aedes mosquitoes transmit CHIKV and ZIKV (11), SARS-CoV-2 80 

primarily spreads by respiratory droplets (12). We analyzed the epidemics in parallel to identify 81 

commonalities across epidemics of different pathogens and transmission routes. We 82 

demonstrated differences in the fine-scale spatial characterization of epidemics by standard 83 

incidence-based measures versus a more comprehensive approach that included infection and 84 

disease risks. Finally, we quantified and mapped the separate biases induced by using passive 85 

versus active surveillance. 86 

 87 

METHODS 88 

Ethics statement 89 

The Pediatric Dengue Cohort Study (PDCS) was approved by Institutional Review 90 

Boards (IRBs) of the University of California, Berkeley; the University of Michigan, Ann Arbor; 91 

and the Nicaraguan Ministry of Health. The Household Influenza Cohort Study (HICS) was 92 

approved by the University of Michigan, Ann Arbor, and the Nicaraguan Ministry of Health 93 

IRBs. Participants’ parents or legal guardians provided written informed consent. Subjects six 94 

years and older provided verbal assent. 95 
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Study design and eligibility criteria 96 

The PDCS (13) is an open, population-based, prospective cohort of children initiated in 97 

2004 to study dengue virus and later expanded to include CHIKV and ZIKV. We assessed 98 

~3,000 PDCS participants 2-14 years old who experienced two chikungunya epidemics and one 99 

Zika epidemic (6–9). The HICS is an open, population-based, prospective cohort of households 100 

that has studied influenza virus and coronaviruses since 2017. We evaluated 1,793 HICS 101 

participants 0-87 years old who experienced the first COVID-19 epidemic (10). The age 102 

structure of the HICS is representative of Managua’s general population.  103 

Both cohort studies share the same study site (Fig. 1) in Managua, Nicaragua’s capital. 104 

During the studies’ annual sampling (serosurvey) in March/April, participants provide blood 105 

samples to ascertain infection status during the prior year. A mid-year sampling was instituted in 106 

the HICS in October/November 2020 to measure SARS-CoV-2 infections after the first COVID-107 

19 wave but before the second. Both studies provide participants with primary care; participants 108 

agree to visit the study health center at the first indication of any illness.  109 

Analysis of each epidemic was restricted to participants who lived within the health 110 

center’s catchment area and were immunologically naïve. By further restricting to participants 111 

who were enrolled before each epidemic, we analyzed a closed cohort of initially uninfected 112 

participants who subsequently experienced an epidemic. The Appendix (pages 1-3) contains 113 

additional study design information. 114 

Laboratory methods 115 

Upon collection, annual blood samples were immediately transported to the Nicaraguan 116 

National Virology Laboratory for processing and storage at -80°C. Paired annual samples (2014-117 

2015 and 2015-2016) demonstrating seroconversion by CHIKV Inhibition ELISA (14) indicated 118 
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CHIKV infection. ZIKV infection status was confirmed by the 2017 result of the ZIKV NS1 119 

blockade-of-binding assay (15) on paired 2017-2018 annual samples. SARS-CoV-2 infection 120 

status was confirmed by the “Mount Sinai ELISA” protocol (16), primarily on 2020 midyear 121 

samples. Participants with laboratory-confirmed infections who did not seek medical care were 122 

categorized as experiencing subclinical infections. Acute and convalescent samples from 123 

participants suspected of chikungunya, Zika, or COVID-19 were tested using molecular, 124 

virological, and serological assays (7,8,13). The Appendix (pages 3-4) contains detailed 125 

laboratory methods. 126 

Statistical analyses 127 

We measured the incidence rate, infection risk, and disease risk of each epidemic. Overall 128 

values of these metrics were estimated using intercept-only logistic models. The metrics’ values 129 

across the study area were estimated with generalized additive models (17) using two-130 

dimensional splines on households’ longitude and latitude, where participants were geolocated. 131 

To quantify bias arising from incomplete case ascertainment, Zika case data was disaggregated 132 

by whether they were obtainable through active or passive surveillance, the only epidemic where 133 

this was possible. The intracluster correlation coefficient was used to measure the intra-134 

household correlation of infection and disease outcomes. We used SaTScan v9.4.4 and 135 

Kulldorf’s spatial scan statistic to identify hierarchical and Gini clusters of case incidence, 136 

infection risk, and disease risk (18,19). Geostatistical mixed models (20) were used to describe 137 

the association of risk factors with infection and disease outcomes. Infection dynamics were 138 

estimated by treating cases as a spatiotemporal Poisson point process arising from the total 139 

population and then accounting for the spatial distribution of disease risk, assumed to be time-140 

invariant. Initially uninfected participants were considered at risk for infection; infected 141 
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participants were considered at risk for disease. Analyses used the EPSG:4326 coordinate 142 

reference system and were performed in R v3.6.2. The Appendix (pages 5-15) contains detailed 143 

statistical methods. 144 

 145 

RESULTS 146 

Participant characteristics 147 

We refer to the first chikungunya epidemic as ChikE1, the second as ChikE2, the Zika 148 

epidemic as ZikaE, and the COVID-19 epidemic as CovidE. Our study assessed infection and 149 

disease outcomes for 4,884 distinct individuals, including 3,693 unique PDCS participants across 150 

ChikE1, ChikE2, and ZikaE. Of the 1,793 HICS participants, 602 children were also enrolled in 151 

the PDCS, and 1,192 mostly adult participants were only enrolled in the HICS. Approximately 152 

3,000 PDCS participants were analyzed in ChikE1, ChikE2, and ZikaE (Table 1). These three 153 

epidemics occurred in 2014-2016 throughout Managua’s rainy period of June-November (Fig. 154 

2), during which an abundance of mosquitoes is observed in the study area. In contrast, CovidE 155 

peaked during May-July of 2020.   156 

In the PDCS, the distribution of age and sex was constant across ChikE1, ChikE2, and 157 

ZikaE (Table S1, Fig. S1), with approximately 50% of PDCS participants being female. In the 158 

HICS, there was an over-enrollment of adult females relative to adult males. 159 

Summary measures of infection, disease, and case-based incidence 160 

We first examined summary statistics of the four epidemics. ChikE1 exhibited the lowest 161 

incidence at 2.9 cases per 100 population (2.9%) but featured higher infection (6.4%) and disease 162 

risks (45.6%) (Table 1). ChikE2, ZikaE, and CovidE exhibited similar incidence rates between 163 

14.5-17.1%, but these incidence rates differed substantially from infection and disease risks. 164 
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ChikE2 had a medium level of infection risk (24.8%) and a high disease risk (58.7%), an 165 

inverted pattern from what was observed during CovidE, with high infection risk (57.5%) and 166 

medium disease risk (28.9%) (Table 1). In contrast, ZikeE displayed intermediate levels of 167 

infection (47.1%) and disease (35.4%) risk. Across epidemics, the case-based incidence rate thus 168 

recapitulated neither risk-based metric and often underestimated them considerably (Table 1). 169 

We then assessed summary statistics by sex and age. Sex-based differences for incidence 170 

and risk-based measures, even when statistically significant, tended to be small, as when females 171 

had an infection risk 6% higher than males during ZikaE (Fig. S2). Similarly, accounting for the 172 

over-enrollment of adult females in the HICS had little effect (~1%) on overall estimates (Fig. 173 

S3-S4). In contrast, we observed age-based incidence patterns for all epidemics (Fig S5), which 174 

were explained by the underlying and more striking age trends observed for infection and/or 175 

disease risks (Fig S6-8). For example, COVID-19 incidence was low across age, particularly 176 

during childhood (Fig. S5). However, SARS-CoV-2 infection risk was high across all ages, 177 

increasing modestly from ~48% in infants to ~62% at age 24 and thereafter plateauing. Despite 178 

the relative stability of infection risk by age, disease risk during CovidE increased dramatically 179 

from ~11% in infants to ~50% at age 70. Thus, the low COVID-19 incidence neither 180 

recapitulated age-based risk dynamics nor reflected the greater age-based changes in disease risk 181 

as compared to infection risk.  182 

Mapping infection, disease, and incidence  183 

Next, we mapped the infection risk, disease risk, and case-only incidence rate across our 184 

study area. For all epidemics, infection risk varied at small spatial scales (Fig. 3A-D), suggesting 185 

that the local environment was an important determinant of infection risk. During ChikE1, 186 

ChikE2, and ZikaE, infection risk was elevated in western neighborhoods adjacent to a large 187 
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cemetery that is heavily infested with Aedes mosquitoes during the rainy season (data not 188 

shown). Only adjusting Fig. 3A-D for distance to the cemetery appreciably changed the spatial 189 

patterns of infection risk, whereas adjusting for age, sex, and household water availability did not 190 

(Figs. S9-S14). Conversely, SARS-CoV-2 infection risk was high in eastern neighborhoods that 191 

contain large public spaces and commercial attractions (Figs. 3D, S15-S16). Together, these 192 

observations imply that infection risk across epidemics was spatially mediated by distinct 193 

transmission routes.  194 

Across all epidemics, disease risk also varied at small spatial scales (Fig. 3E-H). After 195 

adjusting for age and sex (Figs S17-24), spatial patterns of disease risk remained non-uniform 196 

and distinct from spatial patterns of infection risk. This demonstrates that disease risk can vary 197 

spatially and that areas of high infection risk may not have commensurate levels of disease risk.  198 

As the case-based incidence rate is the product of two risks (Eq. 1) with different spatial 199 

patterns (Fig. 3A-H), maps of the incidence rate (Fig. 3I-L) underestimated infection and disease 200 

risk-based maps and did not recapitulate spatial patterns of either risk. We quantified the bias 201 

resulting from treating the incidence rate as infection and disease risk by subtracting incidence 202 

maps from risk-based maps (Fig. 3M-T). The average spatial bias for the disease risk was -40.1 203 

and -41.2 percentage points for ChikE1 and ChikE2, respectively; the average spatial bias for the 204 

infection risk was -34.9 and -40.3 percentage points for ZikaE and CovidE, respectively. The 205 

incidence rate underestimates risk-based metrics, inducing negative biases. Additionally, bias 206 

varied substantially across neighborhoods. For example, the range of bias for ChikE2 and 207 

CovidE infection risks was 31.2 and 19.2 percentage points across the study area. Thus, the 208 

inferential bias induced by treating the incidence rate as a risk-based metric was high and 209 

spatially heterogeneous across epidemics.  210 
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Cluster detection  211 

We then identified hierarchical and Gini clusters of infection risk, disease risk, and 212 

incidence (Fig. 4, Table S2). Each epidemic had >1 significant infection or disease cluster. 213 

Clusters of elevated infection risk for the larger mosquito-borne epidemics, ChikE2 and ZikaE, 214 

encompassed the cemetery and study neighborhoods adjacent to it. Large clusters of diminished 215 

infection risk in ChikE1, ChikE2, and ZikaE highlighted areas with excess uninfected persons 216 

who remained susceptible to future infection. Such clusters are only identifiable after 217 

ascertaining the infection status of a population, regardless of disease presentation. In contrast to 218 

the mosquito-borne epidemics, CovidE exhibited small clusters of elevated and diminished 219 

infection risk. In general, clusters of infection risk were in different locations and of different 220 

sizes than clusters of disease risk, demonstrating that infection and disease risk cluster differently 221 

in space. Indeed, we detected no disease risk clusters during both chikungunya epidemics despite 222 

finding large clusters of infection risk.  223 

Standard incidence clusters, which identify areas of elevated or diminished case counts 224 

among the total population, sometimes missed large risk-based clusters (Fig. 4). More 225 

surprisingly, incidence clusters resembled infection risk clusters only for ChikE2 and CovidE, 226 

whereas they resembled disease risk clusters for ChikE1 and ZikaE. Thus, incidence clusters 227 

failed to display a reproducible pattern, inconsistently resembling either infection or disease risk 228 

clusters for a given epidemic.  229 

Geostatistical modeling  230 

We next conducted geostatistical multivariable modeling. We first describe model-based 231 

inferences for correlated outcomes within households and across space. Surprisingly, analyses 232 

that did and did not account for household-based correlation yielded very similar results for all 233 
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epidemics, suggesting that participants’ infection and disease outcomes were poorly correlated 234 

within homes (Tables S3-S4). This observation was directly confirmed by low values of the 235 

intracluster correlation coefficient (Tables 1, S5). We further observed that infection risk did not 236 

scale with household size (Fig. S25). Altogether, the data demonstrated that our participants’ 237 

infection and disease outcomes were weakly correlated within households across epidemics.  238 

Likewise, the similarity of estimates from models that did and did not account for spatial 239 

autocorrelation (Tables S3-S4) suggested that infection and disease outcomes were only spatially 240 

correlated across short distances. This observation was confirmed by estimated Matérn 241 

correlation functions (Fig. S26) that demonstrated that infection and disease outcomes were 242 

spatially correlated across short distances (<200m) for all epidemics, strengthening earlier 243 

findings (Fig. 3) regarding the importance of the local spatial environment. 244 

Indeed, we observed that distance to the cemetery was significantly associated with 245 

ZIKV infection, such that the odds of ZIKV infection among participants living 1 km from the 246 

cemetery were 0.63 (95% CI: 0.55, 0.73) times that of participants living next to the cemetery, 247 

conditional on age, sex, and indoor water availability; a similar 1-km odds ratio was observed 248 

during ChikE2 (Table S3). However, using geostatistical models, we did not identify variables 249 

that were consistently related to disease risk across epidemics (Table S4). Rather, model results 250 

were epidemic-specific.  251 

Spatiotemporal dynamics  252 

Spatiotemporal analyses depict epidemic progression across time and space. By 253 

harnessing Eq. 1, we estimated the spatiotemporal dynamics of infection risk (Fig. 5A-D), which 254 

were substantially underestimated by the less dynamic standard spatiotemporal patterns of case 255 

incidence (Fig. 5E-H). Each of the mosquito-borne epidemics featured elevated infection risk 256 
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around cemetery-adjacent neighborhoods for >2 months, with particularly high infection risk 257 

during ZikaE. In contrast, cemetery-adjacent neighborhoods were never the focal point of SARS-258 

CoV-2 infection risk. Because CovidE featured the lowest disease risk (Table 1), its 259 

spatiotemporal infection dynamics differed most from its incidence dynamics, underscoring the 260 

substantial differences of risk-based mapping compared to case-based mapping. 261 

Active versus passive surveillance 262 

We quantified case ascertainment bias spatially by complementing the ZikaE serosurvey 263 

with either all Zika cases or only cases captured by passive surveillance. Compared to our active 264 

surveillance, using passive surveillance altered the clinical profile of captured Zika cases (8) and 265 

decreased the case count, thereby increasing the number of subclinical ZIKV infections. The 266 

infection risk was unbiased under passive surveillance as its calculation only required serosurvey 267 

data; however, estimates of the disease risk and incidence rate were biased (Table 2). The bias 268 

from passive surveillance is conceptually and numerically distinct from that induced by treating 269 

the incidence rate as a risk. However, these two biases synergized when the incidence rate, 270 

estimated from passive surveillance data, was interpreted as a risk. For example, inferring the 271 

true disease risk from the incidence rate induced -4.9 percentage points of bias from incorrect 272 

inference and -26.1 percentage points of bias from incomplete case ascertainment (Table 2). 273 

Importantly, this compounded bias would be present irrespective of conducting a serosurvey 274 

(Table 2). Moreover, whether biases arose from misinterpretation, incomplete case data, or both, 275 

they tended to be high and spatially heterogenous (Figure 6). Thus, inferring risk from passive 276 

surveillance data was prone to multiple biases with different spatial patterns.   277 

 278 

 279 
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DISCUSSION 280 

Across multiple analyses and four epidemics of three viruses in two cohorts, we showed 281 

that the traditional case-based incidence rate considerably underestimated infection and disease 282 

risks, broadly impacting how epidemics were characterized. We further demonstrated that case-283 

based analyses did not recover either the magnitude or spatial pattern of infection risk, which 284 

critically conveys the landscape of natural immunity. In general, we observed that case-based 285 

incidence had more limitations than traditionally assumed. For example, although ChikE2, 286 

ZikaE, and CovidE had comparable incidence rates, their underlying infection and disease risks 287 

were very different. Similarly, case-based incidence clusters inconsistently captured different 288 

risks across epidemics, an observation not apparent without analyzing multiple epidemics in 289 

parallel. Together, our results demonstrate how complex, epidemic-specific spatial patterns of 290 

infection and disease risk, critical for the design of effective interventions, can be obscured and 291 

underestimated by relying solely on case-based analyses. Importantly, this underestimation was 292 

distinct from bias due to incomplete case ascertainment, suggesting that the inferential biases we 293 

quantify for the incidence rate are exacerbated in typical settings with limited active surveillance 294 

and laboratory testing capacity.     295 

Paradoxically, the limitations of the incidence rate are obvious yet underappreciated. It is 296 

well-known that incidence estimates based on incomplete case data are underestimated. Here, we 297 

showed that a separate bias, with its own spatial pattern, arises when the incidence rate is 298 

misinterpreted as conveying infection or disease risks, and we quantified the extent to which this 299 

biased estimate deviates from more accurate estimates of infection and disease risk. Correctly 300 

interpreting measures of epidemic impact is important for policy decisions. While interventions 301 

will vary depending on the pathogen and available countermeasures, areas prone to high 302 
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infection risk generally require interventions that limit transmission (e.g., mosquito control, 303 

masking, and social distancing), whereas areas prone to high disease risk require interventions 304 

that limit disease occurrence and boost access to care.  305 

Incidentally, if the disease risk were spatially uniform, as some studies have assumed 306 

(21), then the spatial pattern of incidence would equal that of the infection risk and the degree of 307 

underestimation (and hence bias) would be similar across a given area. However, disease risk 308 

was not spatially uniform across epidemics, and its bias also varied spatially. Thus, just as others 309 

have found that disease risk can vary across populations (6,22), we find that disease risk can vary 310 

within a single population.  311 

The case-based incidence rate is the disease risk when all individuals are susceptible to an 312 

outcome (e.g., cardiovascular disease, death). However, for pathogens that cause subclinical 313 

infections, incidence rate maps only convey where disease occurred, not the spatial risk of 314 

infection or disease. Many pathogens of global health importance give rise to substantial 315 

quantities of subclinical infections (including Plasmodium; Mycobacterium tuberculosis; and 316 

many pathogens transmitted by sex, air, vectors, and soil). Thus, our findings concerning the 317 

limitations of case-based spatial mapping likely generalize to many infectious diseases that 318 

disproportionately affect neglected populations. 319 

The pediatric nature of the PDCS precluded spatially analyzing adults in the catchment 320 

area of the study health center during ChikE1, ChikE2, and ZikaE. However, previous analyses 321 

compared ZIKV infection risk for children and adults in this area (9). The two groups’ spatial 322 

patterns were comparable, although ZIKV infection risk was higher among adults. Thus, 323 

analyses of the adult population during ChikE1, ChikE2, and ZikaE would likely reveal similar 324 

spatial trends as those in PDCS participants. 325 
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  We found little evidence that infections were clustered within households. Lacking 326 

entomological data, our analyses indirectly suggested that viral transmission infrequently 327 

occurred within study households. However, this suggestion is directly supported by a study of 328 

full-length sequencing of ZIKV genomes in our cohort (23), which found that many households 329 

had Zika cases whose most recently sampled viral ancestral strains derived from different 330 

households. Together, the evidence suggests that non-household transmission played an 331 

important role in the epidemics we assessed.  332 

 The geographic extent of our study is small. However, capturing all infections and cases, 333 

and hence accurately measuring bias, is only cost-feasible in constrained geographical areas. 334 

Spatial studies with incomplete infection and case data, whether small or large, may be subject to 335 

inferential and case ascertainment biases despite being unable to measure such biases. 336 

Ascertaining infection status and exhancing case surveillance, where possible, may help to 337 

mitigate and correct for such biases.     338 

Measuring a population’s infection status has many additional benefits, especially in 339 

directing infection control interventions to areas of high transmission. Conversely, knowledge of 340 

areas with a high proportion of uninfected individuals is also critical for advancing public health 341 

goals, such as prioritizing these areas for epidemic-preventive measures (e.g., vaccine rollout in 342 

areas with low SARS-CoV-2 transmission). Others have shown how combining regional 343 

serosurvey data with real-time hospitalization data can estimate infection risk in near real-time at 344 

larger spatial scales, thereby improving critical estimates for decision-makers (24). As epidemic 345 

management necessitates evaluating the risks of infection and disease across space, our data 346 

supports the expanded use of serosurveys to overcome the inherit limitations of case-based 347 

spatial measures.        348 
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TABLES 446 

Table 1. Summary and descriptive statistics of infection and disease outcomes across four 447 

epidemics in the PDCS and HICS in Managua, Nicaragua* 448 

 

First 

chikungunya 

epidemic (ChikE1) 

Second chikungunya 

epidemic (ChikE2) 

Zika 

epidemic 

(ZikaE) 

COVID-19 epidemic 

(CovidE) 

Cohort PDCS PDCS PDCS HICS 

Participant age range 2-14 2-14 2-14 0-87 

Epidemic period 9/2014 – 2/2015 7/2015 – 2/2016 1/2016 – 1/2017 3/2020 – 10/2020 

Primary transmission 

pathway 
Aedes mosquitoes Aedes mosquitoes Aedes mosquitoes Respiratory droplets 

Number at risk of infection  3,124 2,864 3,017 1,793 

Number of infections (Number 

at risk of being a case) 
199 710 1,416 1,039 

Number of cases 90 416 494 306 

Risk of infection  

(95% CI)† 

6.4% 

(5.5%, 7.4%) 

24.8% 

(23.2%, 26.6%) 

47.1% 

(45.1%, 49.1%) 

57.5% 

(54.1%, 60.9%) 

Risk of disease  

(95% CI)† 

45.6% 

(38.6%, 52.6%) 

58.7% 

(54.9%, 62.4%) 

35.4% 

(32.8%, 38.1%) 

28.9% 

(25.5%, 32.5%) 

Incidence rate  

(95% CI)† 

2.9% 

(2.3%, 3.6%) 

14.5% 

(13.2%, 16.0%) 

16.6% 

(15.2%, 18.1%) 

17.1% 

(14.8%, 19.6%) 

Bias due to treating the 

incidence rate as the infection 

risk (%)‡ 

2.9% – 6.4% 

= –3.5% 

14.5% – 24.8% 

= –10.3% 

16.6% – 47.1%  

= –30.5% 

17.1% – 57.5% 

= –40.4% 

Bias due to treating the 

incidence rate as the disease 

risk (%)‡ 

2.9% – 45.6% 

= –42.7% 

14.5% – 58.7% 

= –44.2% 

16.6% – 35.4%  

= –18.8% 

17.1% – 28.9% 

= –11.8% 
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 449 

*Abbreviations: ANOVA, analysis of variable; CI, confidence interval; GEE, generalized 450 

estimating equations; HICS, Household Influenza Cohort Study; ICC, intracluster correlation 451 

coefficient; PDCS, Pediatric Dengue Cohort Study 452 

†GEE model estimates are presented. 453 

‡Negative values indicate that the incidence rate underestimates the risk of infection and the risk 454 

of disease. 455 

§Table S5 contains additional information. 456 

  457 

ANOVA-based ICC for intra-

household correlation of 

infection risk (95% CI)§ 

0.22 

(0.17, 0.28) 

0.21 

(0.16, 0.27) 

0.22 

(0.17, 0.27) 

0.30 

(0.25, 0.35) 

ANOVA-based ICC for intra-

household correlation of 

disease risk (95% CI)§ 

0.14 

(0.00, 0.51) 

0.26 

(0.09, 0.42) 

0.28 

(0.18, 0.37) 

0.21 

(0.15, 0.28) 
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Table 2. Sample size, infection, disease, incidence, and bias metrics from a serosurvey 458 

augmented by cases identifiable by either active or passive surveillance for the 2016 Zika 459 

epidemic in the Pediatric Dengue Cohort Study*,† 460 

 461 

*Abbreviations: CI, confidence interval; GEE, generalized estimating equations; RT-PCR, 462 

reverse transcription polymerase chain reaction 463 

†Data in the bottom portion of this table represent the non-spatial version of Figure 6.  464 

 

Study design: Serosurvey 

and active case 

surveillance‡ 

Study design: Serosurvey 

and passive case 

surveillance§ 

Bias due to incomplete 

case ascertainment¶ 

Number at risk of infection  3,017 3,017  

Number of total infections 

(Number at risk of being a 

case) 

1,416 1,416  

Number of cases 

(symptomatic infections) 
494 133  

Number of subclinical 

infections 
992 1,283  

Risk of infection  

(95% CI)# 

47.1% 

(45.1%, 49.1%) 

47.1% 

(45.1%, 49.1%) 

47.1% – 47.1% 

= 0.0%** 

Risk of disease  

(95% CI)# 

35.4% 

(32.8%, 38.1%) 

9.3% 

(8.0%, 11.0%) 

9.3% – 35.4% 

= –26.1% 

Incidence rate  

(95% CI)# 

16.6% 

(15.2%, 18.1%) 

4.4%†† 

(3.7%, 5.2%) 

4.4% – 16.6% 

= –12.2% 

Bias due to treating the 

incidence rate as the 

infection risk (%)¶ 

16.6% – 47.1%  

= –30.5% 

4.4% – 47.1% 

= –42.7% 

–42.7% + 0.0% 

= –42.7%‡‡ 

(= 4.4% – 47.1%)  

Bias due to treating the 

incidence rate as the disease 

risk (%)¶ 

16.6% – 35.4%  

= –18.8% 

4.4% – 9.3% 

= –4.9% 

–4.9% + –26.1% 

= –31.0%§§ 

(= 4.4% – 35.4%) 
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‡The first column is the full data for the Zika epidemic obtained by a serosurvey (to capture all 465 

infections) and active case surveillance (to capture all cases). Our active surveillance approach 466 

captured Zika cases with clinical profiles outside of standard Zika case definitions (8) and 467 

augmented RT-PCR with a serological algorithm built from five separate serological assay 468 

results (25). See the Appendix for more details.   469 

§The second column includes the data collected by the serosurvey and Zika cases obtainable 470 

under passive surveillance (e.g., using only standard Zika case definitions and RT-PCR). If a 471 

serosurvey had not been conducted, only the sample size (3,017) and the number of cases (133) 472 

would be known. 473 

¶Negative values indicate that the incidence rate underestimates the risk of infection and the risk 474 

of disease, whether under active or passive case surveillance. 475 

#GEE model estimates are presented. 476 

**Results from a population-level serosurvey would not be impacted by active versus passive 477 

case surveillance at a health facility, so the risk of infection is the same under either active or 478 

passive case surveillance. 479 

††Using passive case surveillance, as is standard, would result in this estimate of the incidence 480 

rate. This is the only metric estimable in the absence of a serosurvey. 481 

‡‡The total bias due to treating the incidence rate, obtained using passively collected case data, as 482 

the true infection risk can be indirectly estimated by summing its constituent biases: the bias of 483 

treating the passive incidence rate as the passive infection risk (–42.7%) and the bias in the 484 

infection risk induced by incomplete case ascertainment (0.0%). A direct estimation of this 485 

compounded bias can also be achieved by subtracting the true infection risk (47.1%) from the 486 
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incidence rate based on passive surveillance data (4.4%). Without a serosurvey, it would not be 487 

possible to estimate the true infection risk and hence quantify the degree of bias. However, the 488 

lack of a serosurvey does not remove an existing bias. Thus, even without a serosurvey, –42.7% 489 

is the total bias that would result from inferring the true infection risk from an incidence rate 490 

based on passively collected case data.  491 

§§The total bias due to treating the incidence rate, obtained using passively collected case data, as 492 

the true disease risk can be indirectly estimated by summing its constituent biases: the bias of 493 

treating the passive incidence rate as the passive disease risk (–4.9%) and the bias in the disease 494 

risk induced by incomplete case ascertainment (–26.1%). A direct estimation of this compounded 495 

bias can also be achieved by subtracting the true infection risk (35.4%) from the incidence rate 496 

based on passive surveillance data (4.4%). Without a serosurvey and active case surveillance, it 497 

would not be possible to estimate the true disease risk and hence quantify the degree of bias. 498 

However, the lack of a serosurvey does not remove an existing bias. Thus, even without a 499 

serosurvey, –31.0% is the total bias that would result from inferring the true disease risk from an 500 

incidence rate based on passively collected case data. 501 

  502 
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FIGURE LEGENDS 503 

Figure 1. The neighborhoods of the study area in Managua, Nicaragua. The cemetery is 504 

shown in blue, and the study health center is indicated by a white triangle. 505 

 506 

Figure 2. Epidemic curves for four epidemics in Managua, Nicaragua, on a weekly basis. 507 

Data for epidemics in the PDCS (A) and HICS (B) are shown. The duration of the annual 508 

sampling periods for serosurveillance of infection history is shown in green. The additional 2020 509 

midyear sampling, instituted to capture the first COVID-19 wave, is shown in orange. The 510 

epidemic curves for the chikungunya and Zika epidemics reflect case counts that were confirmed 511 

by rRT-PCR and a serological algorithm, as detailed in the Appendix. Due to the retrospective 512 

collection of illness onset data from some HICS participants, the COVID-19 epidemic curve 513 

reflects 1) the date of acute sample collection from rRT-PCR-positive cases, 2) the date of illness 514 

onset as reported by ELISA-positive participants, or 3) a randomly selected date from the month 515 

in which ELISA-positive participants recalled experiencing illness consistent with COVID-19. 516 

The epidemic curves for the PDCS and HICS are purposefully shown in different panels as direct 517 

comparisons of case counts between cohorts of different sample sizes can result in misleading 518 

inferences. 519 

 520 

Figure 3. Maps of the infection risk, disease risk, case-based incidence rate, and bias. The 521 

infection risk (A-D), disease risk (E-H), and incidence rate (I-L) across four epidemics are shown 522 

in one color palette, with warmer colors indicating higher values of the appropriate metric, and 523 

are set against a white background. The difference between infection risk and the incidence rate 524 

(bias induced by treating the incidence rate as the infection risk) (M-P) and the corresponding 525 
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bias for the disease risk (Q-T) are shown in another color palette. Bias panels, as they have a 526 

different scale, are set against a gray background. Contour lines show changes in infection, 527 

disease, and bias metrics corresponding to the scale bar of percentages to the right of each plot. 528 

Maps were generated from generalized additive mixed models. A white triangle indicates the 529 

study health center. Neighborhoods are outlined in gray. Columns in the figure correspond to the 530 

chikungunya epidemics (2014, 2015), Zika epidemic (2016), and COVID-19 epidemic (2020) in 531 

Managua, Nicaragua (left to right).  532 

 533 

Figure 4. Cluster detection analyses of the infection risk, disease risk, and case-based 534 

incidence rate. Clusters of infection risk (A-D), disease risk (E-H), and the incidence rate (I-L) 535 

across four epidemics are shown. Panels depict the results of Kulldorf’s spatial scan statistic 536 

conducted in SaTScan. Hierarchical clusters are shown in dark colors; Gini clusters are shown in 537 

light colors. Hierarchical clusters identify the most statistically likely clusters; Gini clusters 538 

maximize outcome rates. Hotspots are shown in pink; coldspots are shown in blue.  Cluster 539 

centers are numerically labeled. Arrows show the kind of risk clusters that incidence clusters 540 

resemble. A white triangle indicates the study health center. Neighborhoods are outlined in gray. 541 

Columns in the figure correspond to the chikungunya epidemics (2014, 2015), Zika epidemic 542 

(2016), and COVID-19 epidemic (2020) in Managua, Nicaragua (left to right). Table S2 contains 543 

additional information for this analysis. 544 

 545 

Figure 5. Spatiotemporal dynamics across four epidemics in our study area. Model 546 

predictions of the infection risk (A-D, first column) and incidence rate (E-H, second column) are 547 

reported per-month and per-1,000 population. Due to space constraints, data for months with few 548 
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cases are not shown. The PDCS epidemics (ChikE1, ChikE2, and ZikaE) are shown in a different 549 

color palette than CovidE as the range of the infection dynamics for CovidE is so much higher 550 

than that of the PDCS epidemics. Contour lines show changes in infection and incidence metrics 551 

corresponding to the scale bar of percentages to the right of each plot. A white triangle indicates 552 

the study health center. Neighborhoods are outlined in gray. Rows in the figure correspond to the 553 

chikungunya epidemics (2014, 2015), Zika epidemic (2016), and COVID-19 epidemic (2020) in 554 

Managua, Nicaragua (top to bottom). 555 

 556 

Figure 6. Comparisons of infection, disease, incidence, and bias metrics for the 2016 Zika 557 

epidemic in the PDCS using passive and active case surveillance. Panels in this figure are 558 

displayed in the same sequence as, and represent the spatial version of, data in the bottom portion 559 

of Table 2. Columns in this figure correspond to a study design using a serosurvey and active 560 

case surveillance (column 1), a study design using a serosurvey and passive case surveillance 561 

(column 2), and the bias induced by passive versus active case surveillance (column 3). Column 562 

1 repeats the data shown in Figure 3, column 3 for the sake of comparing the full data to that 563 

obtained under passive case surveillance. Maps of the infection risk (A, F), disease risk (B, G), 564 

and the incidence rate (C, H) are shown under active and passive case surveillance in the first 565 

color palette and are distinguished by a white map background. The bias induced by active 566 

versus passive case surveillance for these three metrics (K-M) is shown in a second color palette 567 

distinguished by a green map background. The bias induced by treating the incidence rate as the 568 

infection risk (D, I) and the incidence rate as the disease risk (E, J) is shown in a third color 569 

palette distinguished by a grey map background. The total bias incurred from incomplete case 570 

ascertainment and inferring a risk from the incidence rate (N-O) is shown in a fourth color 571 
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palette distinguished by a pink map background. Contour lines show changes in infection, 572 

disease, incidence, and bias metrics corresponding to the scale bar of percentages to the right of 573 

each plot. Maps were generated from generalized additive mixed models. A white triangle 574 

indicates the study health center. Neighborhoods are outlined in gray.  575 

 576 
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