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Abstract

Type 2 diabetes (T2D) is highly prevalent and a strong contributor for cardiovascular disease 

(CVD). However, there is significant heterogeneity in disease pathogenesis and the risk of 

complications. Enormous progress has been made in our ability to catalog genetic variation 

associated with T2D-risk and variation in disease relevant quantitative traits. These discoveries 

hold the potential to shed light on tractable targets and pathways for safe and effective therapeutic 

development, but the promise of precision medicine has been slow to be realized. Recent studies 

have identified subgroups of individuals with differential risk for intermediate phenotypes (e.g., 

lipid levels, fasting insulin, BMI), which contribute to T2D risk, helping to account for the 

observed clinical heterogeneity. These “partitioned genetic risk scores” have not only the potential 

to identify patients at greatest risk of CVD and rapid disease progression, but could also aid 

patient stratification bridging the gap towards precision medicine for T2D.

Condensed abstract

Type 2 diabetes (T2D) has significant heterogeneity in its pathogenesis and disease course/

complications. Recent advances have identified subgroups within T2D, helping to account for the 

clinical heterogeneity observed. In particular, genetic approaches to clustering subgroups of T2D 

have the potential to identify patients at greater risk of downstream complications (e.g., heart 

disease) and disease progression (e.g., insulin requiring T2D). Genetic approaches have identified 
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and validated new drug targets for T2D and may also allow more targeted therapeutic approaches. 

Together, clustering methods have the potential to bring precision medicine into the clinic for T2D 

prevention and treatment.
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Introduction

Type 2 diabetes (T2D) is one of the most common and fastest growing diseases, with an 

estimated worldwide prevalence of nearly 700 million by 2045(1). Cardiovascular disease 

(CVD), including coronary artery disease and ischemic stroke, is the leading cause of 

mortality in T2D, while diabetic microvascular disease (chronic kidney disease, neuropathy 

and retinopathy) contributes significantly to morbidity(1). Despite its prevalence and high 

human cost, T2D is currently treated as a homogenous entity(2, 3) – diagnosed by an 

abnormally high blood glucose level and treated algorithmically(4) – without taking into 

account the varied mechanisms that can contribute to its pathogenesis. To address this, 

recent work from a number of groups has focused on identifying sub-groups within T2D 

through clustering analyses of either clinical/laboratory data(5–7) or through genetic data(8–

10). Both methods identify numerous, clinically distinct subgroups within the broader 

diagnostic umbrella of T2D, with variable disease progression (e.g., need for insulin) and 

risk of micro- and macrovascular complications(6, 8). This review will focus on genetic 

methods to cluster patients into pathologic subgroups, as genes are fixed with respect to time 

and do not vary by environmental exposure(11, 12). In particular, we will focus on the 

potential for precision medicine through implementation of genetic clustering and 

partitioned polygenic risk scores (pPRS(11)) to identify and potentially prevent or treat the 

primary pathologic mechanisms leading to T2D in an individual patient. We also highlight 

recent studies that have helped to unravel the molecular mechanisms through which effector 

genes at genome wide association study (GWAS) loci affect T2D risk. Finally, we highlight 

recent methodologic advances in genetics that allow for drug target discovery and validation.

Defining subtypes of T2D using clustering approaches

Clinicians have long appreciated the significant heterogeneity among their patient’s risk of 

developing T2D and T2D-related sequelae. For instance, many patients with traditional T2D 

risk factors (e.g., obesity) do not develop T2D(8). Disease progression is also variable, with 

some patients rapidly developing insulin requiring T2D, whilst others can be stably treated 

for decades with metformin alone(12). Complications related to T2D-mediated 

hyperglycemia are similarly heterogeneous, with randomization control trial data 

consistently showing intensive glycemic control reduces the risk of microvascular 

disease(13, 14). In comparison, while early trials showed that T2D-mediated hyperglycemia 

was not associated with CVD(15), newer evidence suggests a nuanced view, whereby there 

is longitudinally-reduced CVD risk during periods of time with intensive glycemic 

control(16). This is consistent with Mendelian randomization (see below) data, which 
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demonstrates a causal role for hyperglycemia and CVD risk(17). These data suggested that 

within the homogeneous diagnosis of T2D there are numerous subgroups of individuals who 

have a variable clinical course, prompting investigation into the identification of these 

patient clusters.

Clustering based on non-genetic, clinical data:

In 2015, Li et al performed one of the first, large attempts at clustering patients using 

clinical/laboratory data(18). Drawing on electronic medical records (EMRs) for 11,210 

multi-ethnic participants, they used machine learning methodology and identified three 

subtypes of T2D patients. Building upon this work, Ahlqvist et al leveraged Bayesian 

machine learning methods in a cohort of 8,980 Swedish patients newly diagnosed with 

T2D(6). These authors used six pre-selected variables in their clustering analyses: glutamate 

decarboxylase (GAD) antibodies, age at T2D diagnosis, body mass index (BMI), 

hemoglobin A1c (HbA1c), and the homeostatic model assessments of pancreatic beta cell 

function and insulin resistance (HOMA2- β and HOMA2-IR, respectively, (6)). They 

stratified their cohort into 5 clusters with differential disease progression and risk of 

complications (Table 1). This method of clustering T2D patients by carefully selected 

clinical characteristics set off a flurry of replication studies in different populations including 

European(7), American/Chinese cohorts(19), and randomization control trials(5), showing 

the generalizability of the clinical covariate clustering approach.

In the latest work in this space, Wagner et al applied clustering methods on a longitudinal 

cohort of non-diabetic patients with sophisticated clinical variables and identified 6 

clusters(20). Three of these clusters corresponded to very-low, low, and obese-but-low risk 

groups. The remaining three clusters were defined by beta-cell failure, insulin-resistance/

NAFLD, and visceral fat/nephropathy. The beta-cell and insulin-resistance/NAFLD groups 

were both at high-risk of imminent T2D, while the visceral fat/nephropathy cluster had 

moderate T2D risk but increased kidney disease and mortality risk(20). Interestingly, 

Wagner et al also applied the genetic risk score developed by Udler(8) and found that the 

two highest risk clusters (beta-cell and insulin-resistance/NAFLD) had concurrently 

increased genetic risk, highlighting the role of non-modifiable genetic risk in T2D 

development(20).

While powerful, there are caveats to using clustering approaches on clinical data. First, 

clinical data are not static and are strongly influenced by the environmental(21, 22): e.g., 

there will be patients who after being diagnosed with T2D will undergo diet and exercise 

changes to successfully lower their HbA1c(11, 12). However, these participants will be mis-

classified moving forward as “T2D patients” despite having successfully implemented 

lifestyle interventions to treat their T2D. As well, there is the issue of which clinical 

variables are included in the model for cluster building(6). As discussed below, the variables 

chosen for cluster analyses have a significant impact on what subgroups are identified.

In comparison to clinical methods of clustering, genetic methods have several advantages: 

first, the included variants have been vetted by GWAS and have a significant association 

with T2D(9, 10, 23–37). Second, germline genetic data does not vary with time or 

environmental changes(21, 22) and therefore can be used at any point in life to understand 
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underlying pathologic susceptibilities to a complex disease such as T2D(11, 12). As a result, 

genetic clustering of T2D patients has been an ongoing area of research for nearly a decade 

to help bring precision medicine into the clinical setting.

Historical approaches to genetic clustering analyses:

Hints at the varied genetic architecture of T2D first arose in 2010, when Voight et al found 

that variants associated with T2D-risk were more likely to be associated with measures of 

pancreatic beta cell function than of insulin sensitivity(27). In a separate study, Ingelsson et 
al performed a hypothesis-driven analyses and demonstrated that the GWAS loci for T2D 

identified at that time could broadly be categorized into those which influenced T2D-risk 

through defects in insulin processing/secretion or peripheral insulin sensitivity(38). These 

categories were later confirmed through the use of “hard” hierarchical clustering of T2D 

genes and clinical traits(39). Of note, with “hard” hierarchical clustering, each genetic 

variant can only belong to one clinical trait “cluster” or group.

Scott et al later performed an iteratively improved analysis with a larger sample size and the 

inclusion of BMI and lipid traits in their clustering analysis(32). Using hierarchical 

clustering methods, they identified three major pathologic groups for genes associated with 

T2D: insulin secretion/processing, disruption of insulin action, and a new cluster of 

dyslipidemia(32).Building upon the dyslipidemia genetic cluster(32) and the classical 

observation that lipodystrophy-related phenotypes were associated with insulin resistance 

and T2D in normal-to-underweight patients(40), Lotta et al created a genetic risk score that 

defined a lipodystrophy-like subset of T2D(41). They noted with increasing genetic risk, 

there was a concomitant decrease in body fat percentage and BMI, with a paradoxical 

increase in waist-to-hip ratio. To confirm their observations, they applied their genetic risk 

score to an independent cohort and confirmed that patients at the highest genetic risk had 

lower fat mass, but greater risk of incident T2D, suggesting that this lipodystrophy-like 

phenotype was itself predictive of T2D. These studies have stimulated follow-up work by 

several groups which has begun to tease out the underlying biology of the causal genes in 

these loci. For instance, we and others confirmed that FAM13A is the causal “lipodystrophy-

like” gene in one locus and perturbations of this gene affect adipose biology and fat 

distribution both in vitro and in vivo(42).

“Soft” hierarchical clustering approaches to genetic clustering:

To account for clinical heterogeneity in pathogenesis for complex diseases (e.g., that a given 

person may have variants that alter their risk of both obesity and insulin secretion, both of 

which contribute to T2D risk), Udler et al developed a “soft” hierarchical clustering 

method(8). In this method each genetic variant can belong to more than one cluster of 

clinical phenotypes, thereby allowing for modeling of the pleiotropic effects of genes/

loci(8).

Using 94 genetic variants and 47 T2D-related clinical traits, Udler et al identified and 

replicated 5 partially overlapping genetic clusters (Table 1 and Figure 1(8)). The first 2 

clusters were strongly associated with insulin processing/secretion with the genes all 

associated with deficiency in circulating insulin. The remaining 3 clusters were all related to 
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tissue-specific response to insulin. Cluster 3, the “obesity/adiposity” cluster, was defined by 

increased waist circumference, BMI, body fat, and fasting insulin, suggesting that this 

cluster represented classic obesity mediated T2D. Cluster 4, the “lipodystrophy” cluster, was 

characterized by increased insulin resistance, triglycerides, and waist-to-hip ratio (in women 

only), with an accompanying decrease in BMI, suggesting that this cluster represented the 

contribution of visceral fat to both insulin resistance and T2D risk. Cluster 5, the “liver/

lipid” cluster, was associated with decreased serum triglycerides but increased NAFLD risk, 

suggesting a role of liver metabolism in T2D risk(8). Notably, these 5 genetic clusters were 

largely able to recapitulate the clinical clusters previously identified(6). Moreover, the 

identified genetic clusters showed remarkable similarity to subsequent work by Mahajan et 
al, who also used soft clustering methods, but identified an additional cluster corresponding 

to a “mixed” picture with aspects of both insulin secretion and insulin resistance (Table 1, 

(37)).

Application of this method to independent replication cohorts demonstrated that 30% of 

participants were in the top 10% of genetic risk for a single cluster(8). When comparing the 

mean characteristics of these individuals at the highest genetic risk, Udler et al found 

characteristic clinical profiles defining each genetic cluster: for example, those in the highest 

genetic risk for the obesity cluster had significantly higher BMI, body fat, and waist 

circumference. In contrast, those in the highest genetic risk for the lipodystrophy had 

significantly lower BMI, body fat, and HDL levels(8). In summary, these results suggested 

that each genetic cluster represented a specific pathophysiology through which T2D risk was 

affected through intermediate phenotypes.

Using Genetics to Predict Risk for T2D

In recent years a number of groups have proposed the concept of partitioned polygenic risk 

scores (pPRS) to identify patients at high risk of T2D through a specific, intermediate 

pathway (e.g., insulin deficiency) for early intervention(11). However, pPRS builds upon 

prior work over the past two decades to build polygenic risk scores based on candidate genes 

for complex diseases(43–47) and more recent work creating global polygenic risk scores 

(gPRS) for CVD(48) and T2D(9, 10, 48).

Early attempts at combining risk alleles:

Using 3 well-replicated variants in candidate genes (KCNJ11, PPARG, and TCF7L2), 

Weedon et al created the first restricted polygenic risk score (rPRS; see Figure 2) for T2D by 

calculating the area under the receiver-operator curve (AUROC) to determine the benefit 

conferred by this rPRS in predicting T2D. From this, they reported that the AUROC using 

their rPRS was 0.58 – improved from what would be expected from chance alone (0.5) – but 

falling well short of the threshold typically required for clinical implementation(43).

With the release of GWAS data for T2D and the identification of dozens of novel loci(24–

26), several independent groups attempted to create new sets of rPRS for prediction of 

T2D(44–46). In all studies, the AUROC was improved; however, the added discriminatory 

benefit of including SNVs for T2D was only 1–2% in all 3 studies compared to a model 

using clinical covariates alone (e.g., improvement from an AUROC of 0.74 → 0.75 (44)).
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Global polygenic risk scores provide risk estimates on par with monogenic diseases:

Acknowledging the limited prognostic value of rPRS for complex disease, Khera et al 
recently took a different approach of using variants across the genome to construct a 

“global” polygenic risk score (gPRS, see Figure 2(48)). Using a bioinformatic machine-

learning tool(49), they leveraged genetic inheritance patterns (“linkage disequilibrium” or 

“LD”) in European ancestry populations to create a gPRS that accounted for nearly all the 

common variation in a genome, rather than a subset of several dozen variants (as used in 

prior rPRS(44–46)). Participants in the top 5% of gPRS distribution for T2D risk had a 

2.75x increase in odds of T2D, as compared to the remaining 95% of participants, a risk 

similar to that seen in some monogenic diseases, which could lead to actionable precision 

medicine in the clinic (48).

Using an updated GWAS for T2D performed in close to one million individuals, Mahajan et 
al created a similar gPRS and applied it to data from the entirety of the UK Biobank(9). In 

their updated gPRS, those in the top 2.5% of risk for T2D had an increase in odds of 3.4x as 

compared to those with median (50%) T2D gPRS risk. Unfortunately, direct comparison to 

the estimates of Khera et al(48) was not possible, as they used different reference 

populations for calculation of their odds ratios (i.e., bottom 95% versus median 50%) 

despite applying their different gPRS to the same UK Biobank population(9). Follow-up 

work by Vujkovic et al(10) used the gPRS developed by Mahajan et al(9) in the multi-

ancestry Million Veteran Program (MVP) and found that those in the highest risk group for 

T2D gPRS had significantly increased odds of T2D microvascular complications (DKD, 

neuropathy, retinopathy(10)).

Partitioned polygenic risk scores apply to individual pathways/intermediate phenotypes 
leading to disease:

In addition to rPRS and gPRS, a number of groups have proposed pPRS (Figure 2 shows a 

schematic differentiating rPRS, gPRS, and pPRS) for identification of genetic risk specific 

to intermediate phenotypes that represent possible pathologic mechanisms to disease (e.g., 

lipodystrophy-like genetic cluster leading to T2D(11)). These pPRSs integrate with the 

palette model proposed by McCarthy(50). In the palette model of complex disease, the focus 

is not on the end phenotype of T2D, but rather on the various intermediate phenotypes 

representing different pathogenesis to T2D (e.g., obesity/adiposity, lipodystrophy, insulin 

deficiency, and NAFLD/lipid metabolism). Each of these intermediate phenotypes are 

themselves complex genetic traits, requiring use of pPRS to define level of variance for an 

individual patient. Conceptually, each intermediate phenotype can be visualized as a primary 

color. Hence, by calculating pPRS for each intermediate phenotype, one can define germline 

genetic risk for T2D via known genetic clusters/pathologic pathways. These colors can then 

be combined or “mixed” and an individual’s risk of T2D aggregated, with the various 

contributions of individual pathways visualized (Figure 3). Then, for those patients at 

highest risk for a specific intermediate phenotype/pathologic pathway, clinicians can attempt 

targeted prevention/treatment(11, 50).
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Use of polygenic risk scores for T2D:

To date, the clinical use of various polygenic risk scores in T2D has been limited. Using a 65 

variant rPRS for T2D, Li et al reported that those with higher genetic risk had a greater 

reduction in HbA1c at 1-year follow-up in response to therapy with 

sulfonylureas(51).Separately, Jiang et al demonstrated that each increase in standard 

deviation for their 123 variant T2D rPRS increased risk of developing an insulin-dependence 

by 7%, with replication in an independent cohort(52). Using a gPRS for T2D, Wagner et al 
reported that increased pancreatic steatosis interacted with decreased insulin secretion(53). 

Interestingly, Wagner et al performed sensitivity analyses across the 5 clusters of T2D 

defined by Udler et al(8) and found that the interaction was driven by a pPRS defining the 

liver metabolism/NAFLD gene cluster(53).Finally, recent work using a pPRS for 

lipodystrophy found that despite having lower BMI/waist circumference, those with a higher 

lipodystrophy pPRS had significantly higher insulin resistance and low-density lipoprotein, 

portending possible increased CVD risk in this specific subpopulation(54). Further work will 

be needed to elucidate the relationship between pPRS and risk prediction/stratification in the 

clinical context.

Genetics and the potential for tailored therapy in T2D:

For illustration of the concept of pPRS and the palette model for tailoring of treatments, we 

can consider the concrete example from monogenic diabetes. Monogenic diabetes can be 

partitioned by the specific genetic mutations, each of which has different treatment strategies 

available(55). Heterozygous inactivating mutations in the key glycolytic enzyme 

glucokinase (GCK) cause stable mild fasting hyperglycemia from birth which is refractory 

to pharmacological intervention and usually successfully managed by diet alone(56–58). In 

contrast, mutations in the transcription factor hepatocyte nuclear 1 alpha (HNF1A) cause a 

more severe progressive phenotype which has a risk of complications similar to T2D(59, 

60). Identifying patients with HNF1A-monogenic diabetes is important because they are 

optimally treated with low dose sulfonylureas(61, 62). Similarly, patients with heterozygous 

activating mutations in either of the genes encoding the components of the pancreatic beta 

cell KATP channel (KCNJ11 or ABCC8) can be treated with high dose sulfonylureas rather 

than insulin(63–65). Providing the optimal medication based on the genetic etiology 

improves glycemic control (55).

Harnessing physiology to guide the molecular characterization of T2D 

GWAS variants

The translation of genetic signals into biological and clinical insights has not kept a pace 

with their discovery. This is in part due to the fact that unlike monogenic forms of diabetes, 

which are largely due to variants that alter the protein sequence, most GWAS signals are in 

non-coding regions of the genome with a presumed regulatory function, making it 

challenging to be certain which is the “effector” gene. Gene regulation is highly context 

dependent, with the degree of gene expression (and resulting magnitude of association with 

a trait/outcome) conditional on numerous factors, including: specific cell type, 

developmental time point and/or chromatin accessibility, and environmental conditions. All 
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of these context-cues are critically important for interpreting the effect of a T2D-associated 

regulatory variant. Large scale efforts to characterize tissue-specific regulatory landscapes 

such as Genotype-Tissue Expression consortium (GTEx) have been critical in this 

regard(66). Investigations into the physiological processes that are influenced by T2D-

associated variants have been enormously helpful in providing information on which tissue 

and/or cell type should be studied to understand the disease mechanism. Below we provide 

examples from the literature, which exemplify different physiological/molecular 

mechanisms and showcase how researchers move from GWAS signal to a molecular 

mechanism. We first highlight colocalization: a method through which investigators can 

fine-map hundreds-to-thousands of GWAS signals in a genetic region to the likely causal 

variant.

Colocalization can identify causal variants/genes, prioritizing translation:

A powerful way to identify effector transcripts at GWAS loci is to identify colocalization of 

association signals for disease risk and gene expression. Colocalization of genetic signals is 

generally performed using summary-level statistics from GWAS for disease (e.g., T2D) and 

GWAS for expression quantitative trait loci (eQTL) data(67), though any other type of 

genome-wide study data could also be used in colocalization methods (i.e., DNA 

methylation data, histone methylation data, etc). eQTL data reflects genome wide variant 

associations with individual gene expression levels within a specific tissue or cell type (e.g., 

pancreatic islet). eQTLs can be detected in multiple tissues; however, working with disease 

relevant tissues is the preferred approach, as eQTLs are frequently tissue-specific. Many 

genes are highly dependent on context-specificity, with their expression levels dependent on 

a combination of cell-type, environmental perturbation (e.g., starvation vs hyperglycemia), 

and/or epigenome structure. In particular, epigenetics has become a focus in the last decade 

with mounting evidence that aging and disease alter the physical structure of DNA, 

potentially limiting gene expression even in cases where the context-specificity is otherwise 

met(68). In this context, methods such as chromatin segregation to highlight the active and 

repressed regions of DNA represent promising avenues through which to integrate many 

data sources and identify effector transcripts(69).

Identifying colocalization of a T2D-GWAS signal and an eQTL in a diabetes relevant tissue, 

such as pancreatic islets, offers evidence for a potential causal link (and thereby identifies 

the effector transcript). In this causal relationship, the genetic variant influences pancreatic 

islet gene expression, which in turn affects T2D risk (Figure 4). In addition to the GTEx 

database(66), recent publications of eQTL data for skeletal muscle(70), adipose(71), and 

pancreatic islet tissue(72), have contributed to deciphering possible mechanistic links for 

T2D GWAS variants.

Examples of translation of T2D GWAS signals into understanding of molecular 
mechanism/pathogenesis:

The early identification of two independent coding variant signals in the PAM gene for T2D 

risk provided a molecular “signpost” to the effector transcript (i.e., strongly implicating 

PAM as the causal gene), accelerating efforts to understand the molecular mechanisms of 

PAM(73). Further work highlighted the association of PAM with both T2D and beta-cell 
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function(73). Thomsen et al reported that both coding alleles in the PAM protein result in a 

loss of function, reducing the ability of this amidating enzyme to increase the biological 

potency of glycine-extended neuropeptides(74). Loss of PAM in a human beta-cell model 

resulted in reduced insulin content and secretion an effect also observed in isolated primary 

islets from carriers of the PAM T2D-risk allele (74).

Even when the effector transcript and the tissue of effect are known, there can still be 

challenges. The SLC30A8 locus provides an example of the complexity. Early GWAS for 

T2D(25) identified a nonsynonymous coding allele in SLC30A8 associated with T2D-risk; 

however, whether T2D risk was associated with loss vs. gain-of-function in the gene was 

unclear from early functional and rodent studies(75–77) but human genetic evidence 

provided compelling support that loss-of-function in SLC30A8 was associated with diabetes 

protection(78). A recent study, combining detailed physiological characterization in human 

carriers of the SLC30A8 loss-of-function variants coupled with cellular studies in a suite of 

human beta-cell models, demonstrated that the SLC30A8 T2D-protective alleles cause 

enhanced insulin secretion (79).

TM6SF2 was first identified as a missense variant (hence identifying TM6SF2 as the likely 

effector transcript) causing low low-density lipoprotein cholesterol(80) (LDL-C), but 

paradoxically increased NAFLD risk(81). Several groups found that TM6SF2 was primarily 

expressed by the liver(82) and congruent work by Smagris et al and Mahdessian et al found 

that the likely mechanism of action for TM6SF2 was through impaired very-low density 

lipoprotein (VLDL) release from the liver, leading to NAFLD via fat accumulation but also 

lower LDL-C in serum(82, 83). Subsequent work supports this proposed mechanism and has 

found that TM6SF2 is associated with incident T2D(84), a finding that is supported by 

large-scale GWAS that later identified TM6SF2 as a T2D risk locus(31).

A locus containing FTO has long been associated with obesity and Fto knockout in mice 

reduces BMI(85). However, recent evidence suggests that FTO is not the causal gene at this 

locus. The T2D risk allele in the locus increased both IRX3 and IRX5 gene expression(86). 

Adding further weight to these convincing human studies, Irx3 knockout mice recapitulated 

the prior Fto knockout phenotype(85): substantially reduced body weight and increased 

brown adipose tissue, suggesting that IRX3, rather than FTO, is the causal gene causing 

obesity and increased T2D/CVD risk(86). The example of FTO/IRX3 illustrates the 

complexity in untangling the molecular mechanism of T2D GWAS variants that are 

regulatory in nature, and highlights the importance of context (correct tissue, at the right 

developmental time point, and with appropriate environmental conditions).

Genetic methodologies informing and/or validating drug discovery in T2D

Given the saturation of genetic data in the scientific literature (>400 signals at >350 loci 

associated with T2D(9, 36)), deciding which specific gene to target for functional validation 

and drug development has been difficult. Prior mechanistic studies on candidate genes were 

largely driven by biologic plausibility. Novel methods offer can prioritize genetic loci for 

translational research and also have improved drug discovery pipelines.
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Mendelian Randomization (MR) for validation and identification of potential drug targets:

Mendelian Randomization (MR) is a powerful technique that leverages the random 

assortment of alleles during meiosis to assess potential causality between SNV genotype and 

outcomes (Figure 5 and (87) for a topical review on interpretation of MR studies in 

cardiometabolic disease). MR has already been used to demonstrate a causal link between 

hyperglycemia and CVD risk(17). A further example of the utility of MR comes from 

PCSK9 inhibition. In 2005, Cohen et al identified two nonsense mutations in PCSK9 that 

resulted in drastically lower LDL-C, spurring drug development of PCSK9 inhibitors(88). A 

subsequent MR study demonstrated that loss-of-function variants in PCSK9 were associated 

with decreased LDL-C and CVD, suggesting a causal pathway(89). Concurrent to this MR 

study, PCSK9 inhibition was found to reduce both LDL-C and CVD events(90).

MR can also be done at large-scale, allowing for rapid screening of multiple candidates for 

potential drug development. For example, Folkerson et al recently reported on genetic 

variants influencing 90 serum protein levels (a pQTL study) and performed a MR study that 

implicated a causal role for RAGE protein in T2D(91), whereby AGER (the gene encoding 

RAGE) SNVs caused higher RAGE protein levels, and subsequent lower T2D risk. Of note, 

their MR analysis did not find evidence of an association with Alzheimer’s disease, for 

which a RAGE inhibitor had previously been studied (NCT00566397). This study, in 

conjunction with prior work on PCSK9 inhibition, demonstrates the utility of MR in 

identifying novel drug targets and validating drugs under development.

Although classically described for SNV alleles, MR can also be used to assess if a given 

pPRS is causally associated with an outcome via an intermediate phenotype. For example, 

Sanna et al used a pPRS for proprionate, a fecal short-chain fatty acid, and found that the 

pPRS was associated with both increased proprionate levels and increased T2D risk(92). 

These results suggested that genetically controlled proprionate levels were causally linked 

with differential T2D risk (see (93) for in-depth review on the gut microbiome and T2D 

risk). Similarly, Sinnott- Armstrong et al leveraged deep phenotyping with protein and urine 

biomarkers to demonstrate causal relationships across many traits and diseases including 

highlighting an emerging causal role for decreased LDL-cholesterol and increased T2D risk 

((94), Figure 5).

Phenome-wide association studies (PheWAS) to identify potential non-label use for 
existing drugs:

A final genetic tool that has broad relevance in drug repurposing and identification of 

potential adverse reactions is the phenome-wide association study (PheWAS). A PheWAS 

inverts the study design of a GWAS: a single SNV is tested for association with multiple 

phenotypes; mostly commonly through use of ICD-10 codes in EMR data (see Figure 6). 

Through such large-scale SNV-disease associations, investigators can identify off-target 

effects (OTEs) that may represent targets for drug repurposing and also potential adverse 

drug reactions (ADRs). However, after identification of an OTE, further investigation must 

be undertaken to ensure that the direction of effect for the SNV-disease association is 

consistent with beneficence. For example, although TM6SF2 is associated with decreased 

LDL-C and CVD(80), it is concomitantly associated with increased NAFLD(81).
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As an example of PheWAS, Cai et al recently analyzed an IL6R SNV and found a significant 

association with abdominal aortic aneurysm, representing a possible OTE(95). Tocilizumab, 

an IL-6R antagonist, has since been approved for use in giant cell arteritis, of which a 

significant complication is aortic aneurysm. Moreover, Cai et al found that decreased IL-6R 

levels was associated with increased risk of ADRs eczema, conjunctivitis, and pleuritis, 

consistent with trial data for tocilizumab. These results offer a glimpse into the power of 

PheWAS for drug discovery and repurposing in T2D, as well as in identifying the likely side 

effect profile of a given agent.

Future directions for research into the genetics of T2D

Precision Medicine for T2D using gPRS/pPRS:

gPRS can be used to risk-stratify patients, enabling earlier interventions and prevention of 

T2D pathogenesis and complications(48). We envision that gPRS can be used to identify 

asymptomatic patients at high risk of developing T2D based on their non-modifiable genetic 

risk. Clinicians can then intervene with intensive lifestyle modification, medications (e.g., 

metformin), and/or counseling to prevent onset and progression of T2D(11, 12). gPRS-based 

risk stratification can also be implemented in conjunction with clinical covariates, as 

recently demonstrated by Wagner et al(20), as simple clinical covariates are excellent 

predictors of T2D-related complications(5).

As we move toward more precise measurements and targeting of pathways, pPRS for 

intermediate phenotypes has the potential to further refine our diagnostics and therapeutics 

with regard to complex diseases like T2D. Already, pPRS methods have highlighted 

unknown or unappreciated pathways (such as NAFLD or lipodystrophy) leading to T2D (11, 

12). Although in the seminal work by Udler et al only 30% of patients segregated to the 

highest decile of genetic risk for a given pPRS(8), we suspect that this proportion will 

increase with larger/improved GWAS (as demonstrated in follow-up work by Mahajan(37)), 

particularly in non-European populations (see below). More clinically relevant is the 

question of how pPRS will change management of T2D: although we infer that T2D caused 

by lipodystrophy-like vs beta-cell failure processes can likely be optimally managed with 

different combinations of medications/lifestyle interventions (Figure 3), there is yet a 

paucity of evidence to support these hypotheses. Hence, moving forward with gPRS/pPRS 

in clinical settings, we strongly advocate for randomized studies to evaluate the effect of 

these genetic risk tools in clinical decision making and outcomes, simultaneous to its 

implementation(96). With such an evidence base available, we are hopeful that the treatment 

of T2D can mirror that of monogenic diabetes (see above), whereby specific therapies are 

tailored to genotype (55).

Limited studies in non-European ancestry populations:

Perhaps the greatest limitation of research into the genomics of T2D and CVD is that the 

vast majority of studies have been performed in European-ancestry populations. Recently, 

several high-profile GWAS and other genetic studies for T2D have been performed for 

Asian-ancestry(36, 52) and African-ancestry individuals(10, 97, 98). Further GWAS/genetic 

studies in non-European-ancestry populations are of crucial importance, as they serve as the 
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input data for gPRS/pPRS, which in turn have the potential to identify patients at high-risk 

for chronic diseases, thereby enabling clinicians to implement strategies for aggressive 

prevention/treatment. However, algorithms are strongly influenced by their input data and 

have already been shown to be less predictive in African-ancestry individuals(99). Already, 

early application of rPRS has found that efficacy is reduced when applied to African-

ancestry subjects for T2D(47). Similar application of rPRS/gPRS for CVD found attenuated 

effects in African-ancestry populations(100). Factoring in multi-ethnic GWAS data to create 

gPRS/pPRS while accounting for complex population genetics will likely complicate 

matters further(101), as there is evidence of latent population structure even within the 

relatively racially-homogenous UK Biobank(102). Moreover, the largest studies currently 

are from European-ancestry populations, and gPRS/pPRS derived from these data perform 

poorly when extrapolated to other populations, hence exacerbating existing health disparities 

in non-White populations(103). In line with the recent International Common Disease 

Alliance (ICDA) white paper(104), we believe that greater efforts must be made to ensure 

that all genetic ancestry groups are represented in biobanks linking genetic data and EMRs, 

and the resulting discovery genetic work.

Metabolomics/Proteomics and T2D:

One growing area of research is the role of the metabolome/proteome in T2D 

pathogenesis(105). Although the metabolome/proteome is vast, the majority of research has 

focused on the strong link between branched-chain amino acids (BCAA) and T2D risk(105). 

Cross-sectional analyses first found that BCAA levels were higher in T2D patients as 

compared to healthy controls and positively correlated with insulin resistance(106). This 

finding was later confirmed in longitudinal data that showed a 2–3.5x increased risk of T2D 

with higher BCAA levels in 12-years of follow-up(107). The association between BCAA 

levels and T2D risk were later confirmed using MR(108, 109), demonstrating a likely causal 

relationship. Given the predictive value of BCAA levels and the wide-spread use of 

metabolomic assays for newborn diagnoses (e.g., phenylketonuria), one promising avenue of 

investigation is the use of BCAA levels for precision medicine in identifying patients at 

high-risk for T2D and implementing intensive preventative measures(105).

Conclusions and Perspectives

In summary, clustering methods allow for more precise sub-phenotyping of T2D and 

increased understanding of the pathophysiology leading to complex disease. In particular, 

genetic methodologies offer a wealth of information for a specific patient from a single 

peripheral blood draw. Use of germline genetics for patients in combination with pPRS has 

the potential to identify patients at high risk for specific intermediate phenotypes for T2D 

(e.g., NAFLD vs lipodystrophy), leading to earlier implementation of interventions tailored 

to the patient’s specific risk for various pathologic processes leading to T2D. In addition, 

development of novel methodologies has allowed for increased drug discovery and 

validation. Further work will be required to elucidate and demonstrate the clinical utility of 

germline genotyping and pPRS in T2D, particularly in non-European ancestry populations.
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Highlights

• The association of type 2 diabetes (T2D) with cardiovascular disease accounts 

for substantial morbidity and mortality.

• Genetic associations delineate mechanistic pathways influencing T2D 

phenotypes with implications for pathogenesis and treatment.

• Further work is needed to characterize these genetic links across diverse 

ancestries.
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Figure 1. Genetically defined clusters and example genes.
Schematic representation of the genetic clusters identified by Udler et al, with the additional 

“mixed” genetic cluster concurrently identified by Mahajan et al (see main text and Table 1), 

with example genes. Abbreviations: EX – for example, NAFLD – nonalcoholic fatty liver 

disease.
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Figure 2. Visualization of the different polygenic risk score types.
From GWAS results (visualized as a Manhattan plot), investigators can choose only the 

significantly associated SNVs and create a restricted polygenic risk score (rPRS). 

Alternatively, they can create a genome-wide polygenic risk score (gPRS), which accounts 

for nearly all the variation in the genome. Finally, as proposed by Udler et al, investigators 

can create specific, partitioned polygenic risk scores (pPRS) for intermediate phenotypes 

that confer risk of the disease in question. These polygenic risk scores often underscore 

pathologic mechanisms through which the end-phenotype of disease can be achieved. 

Abbreviations: GWAS – genome wide association study, NAFLD – nonalcoholic fatty liver 

disease.
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Figure 3. Potential clinical use of partitioned polygenic risk scores.
Each row in the “pPRS genotypes” represents presence/absence of risk alleles for a specific 

pPRS pathway. Combination of risk from different pPRS pathways (each represented by a 

different color) leads to an overall “palette” of color. In this figure, a primary color/pPRS 

pathway is predominant for each specific patient. We do note that this figure is likely an 

oversimplification – most patients will not have a specific dominant process driving their 

T2D pathogenesis. In the original work by Udler et al, only 30% of participants segregated 

into the top decile of pPRS genetic risk for a given genetic cluster. Abbreviations: BMI – 

body mass index, GLP-1Ra – glucagon-like peptide-1 receptor agonist, HLD - 

hyperlipidemia, HTN - hypertension, M – man, NAFLD – nonalcoholic fatty liver disease, 

SGLT2i – sodium-glucose cotransporter 2 inhibitor, T2D – type 2 diabetes, Tx – treatment, 

W – woman, yo – years old.
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Figure 4. Colocalization of genetic signals offers evidence of causality.
(A) Example of an eQTL study, where the outcome is gene expression and variant genotypes 

are tested across the genome to find specific loci that are associated with differential gene 

expression (eQTL levels). (B) Colocalization analysis of GWAS and eQTL studies, with 

colocalization of signals offering mechanistic evidence for a potential causal variant. In the 

case of non-colocalization, the two variants are in linkage disequilibrium (LD) meaning they 

are often inherited together as a haplotype. Abbreviations: eQTL – expression quantitative 

trait loci, GWAS – genome-wide association study, LD – linkage disequilibrium.
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Figure 5. Mendelian randomization identifies causal associations between an allele/outcome.
For evidence of the causal association between lower LDL-C and T2D, please refer to 

(89)and (94). * denotes that meiosis during gamete production acts as a randomization event 

for inheritance of a given genetic variant allele. Abbreviations: LDL-C – low-density 

lipoprotein cholesterol; T2D – type 2 diabetes.
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Figure 6. PheWAS identifies potential off target effects and adverse drug reactions.
From a genome-wide association study (GWAS) “Manhattan plot”, the top gene variant 

associated with an outcome can be tested against multiple phenotypes (e.g., International 

Classification of Disease-10 (ICD-10) codes) to identify pleiotropic associations with other 

diseases and adverse reactions. In this example, Gene X encodes protein X, for which an 

inhibitor X is currently on the market for treatment of rheumatoid arthritis (RA). PheWAS of 

the top variant in Gene X finds OTEs for type 2 diabetes (T2D) and cardiovascular disease 

(CVD) – suggesting that inhibitor X may be repurposed for treatment of these diseases. 

However, an association alone does not suggest that an OTE may exist – examining the 

direct of effect is important in secondary analyses (see main text) – hence, the potential OTE 

for T2D is nullified in this example. An ADR is also identified via an association with 

bacterial sepsis, warranting caution in prescribing inhibitor X.
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Central Figure. Disentangling T2D pathogenic mechanisms, leading to precision medicine.
Partitioned polygenic risk scores (pPRS) can identify the intermediate phenotypes that are 

driving T2D pathogenesis in a specific patient. With further research (preferably with 

randomization concurrent with clinical implementation), we aim to develop an evidence 

base similar to that with monogenic diabetes that tailors prevention/treatment strategies 

based upon a specific patient’s genetics and pPRS-identified pathologic pathways. 

Abbreviations: B-cell – pancreatic beta cell, NAFLD – nonalcoholic fatty liver disease, T2D 

– type 2 diabetes.

Kim et al. Page 26

J Am Coll Cardiol. Author manuscript; available in PMC 2022 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 27

Ta
b

le
 1

.

C
om

pa
ri

so
n 

of
 T

2D
 s

ub
gr

ou
ps

 id
en

tif
ie

d 
by

 r
ep

re
se

nt
at

iv
e 

cl
in

ic
al

 c
ov

ar
ia

te
 v

s 
ge

ne
tic

 c
lu

st
er

in
g 

m
et

ho
ds

.

C
lin

ic
al

 &
 B

io
ch

em
ic

al
 C

lu
st

er
in

g 
A

hl
qv

is
t 

et
 a

l (
6)

G
en

et
ic

 C
lu

st
er

in
g 

U
dl

er
 e

t a
l (

8)
 a

nd
 M

ah
aj

an
 e

t a
l (

37
)

C
lu

st
er

C
ha

ra
ct

er
is

ti
cs

 (
6)

O
ut

co
m

es
C

lu
st

er
C

ha
ra

ct
er

is
ti

cs
O

ut
co

m
es

 (
8)

E
xa

m
pl

e 
G

en
es

 
ca

pt
ur

ed
 in

 c
lu

st
er

β-
ce

ll

A
ut

oi
m

m
un

e
A

ut
oa

nt
ib

od
y 

+
 ↓

 I
ns

ul
in

 (
pl

as
m

a)
↑ 

in
su

lin
 d

ep
en

de
nc

e
β-

ce
ll

↑ 
pr

oi
ns

ul
in

,
↓ 

in
su

lin
↑ 

C
A

D
,

↑ 
st

ro
ke

H
N

F1
A

, S
L

C
30

A
8

In
su

lin
 d

ef
ic

ie
nc

y
↓ 

In
su

lin
 (

pl
as

m
a)

↑ 
R

et
in

op
at

hy
,

↑ 
in

su
lin

de
pe

nd
en

ce
Pr

oi
ns

ul
in

↓ 
in

su
lin

,
↓ 

pr
oi

ns
ul

in
-

K
C

N
J1

1

M
ix

ed
 β

-c
el

l +
 

in
su

lin
 r

es
is

ta
nc

e 
(f

ro
m

 (
37

))
-

-
-

M
ix

ed
↓ 

in
su

lin
,

↓ 
pr

oi
ns

ul
in

,
↑ 

H
O

M
A

2-
β

-
PA

M
, R

R
E

B
1

In
su

lin
 R

es
is

ta
nc

e
In

su
lin

 r
es

is
ta

nc
e

↑ 
H

O
M

A
2-

IR
,

↑ 
H

O
M

A
2-
β

↑ 
D

K
D

L
ip

od
ys

tr
op

hy
↓ 

B
M

I,
 ↑

 in
su

lin
, ↑

 T
G

↑ 
C

A
D

,
↑ 

D
K

D
,

↑ 
H

T
N

K
L

F1
4,

 F
A

M
13

A

N
A

FL
D

/L
ip

id
↓ 

T
G

↓ 
D

K
D

T
M

6S
F2

, G
C

K
R

O
be

si
ty

↑ 
B

M
I;

 m
ild

 T
2D

-
O

be
si

ty
/A

di
po

si
ty

↑ 
B

M
I,

 ↑
in

su
lin

-
FT

O
/I

R
X

3,
 M

C
R

4

?
A

gi
ng

↑ 
A

ge
, n

or
m

al
 B

M
I,

 m
ild

 T
2D

-
-

-
-

-

A
bb

re
vi

at
io

ns
: B

M
I 

– 
bo

dy
 m

as
s 

in
de

x,
 C

A
D

 –
 c

or
on

ar
y 

ar
te

ry
 d

is
ea

se
, D

K
D

 –
 d

ia
be

tic
 k

id
ne

y 
di

se
as

e,
 H

O
M

A
-β

 -
 h

om
eo

st
at

ic
 m

od
el

 a
ss

es
sm

en
t o

f 
pa

nc
re

at
ic

 b
et

a 
ce

ll 
fu

nc
tio

n,
 H

O
M

A
2-

IR
 -

 
ho

m
eo

st
at

ic
 m

od
el

 a
ss

es
sm

en
ts

 o
f 

in
su

lin
 r

es
is

ta
nc

e,
 H

T
N

 -
 h

yp
er

te
ns

io
n,

 L
A

D
A

 –
 la

te
nt

 a
ut

oi
m

m
un

e 
di

ab
et

es
 in

 a
du

lts
, N

A
FL

D
 –

 n
on

al
co

ho
lic

 f
at

ty
 li

ve
r 

di
se

as
e,

 T
1D

 –
 ty

pe
 1

 d
ia

be
te

s,
 T

G
 -

 
tr

ig
ly

ce
ri

de
s

J Am Coll Cardiol. Author manuscript; available in PMC 2022 August 03.


	Abstract
	Condensed abstract
	Introduction
	Defining subtypes of T2D using clustering approaches
	Clustering based on non-genetic, clinical data:
	Historical approaches to genetic clustering analyses:
	“Soft” hierarchical clustering approaches to genetic clustering:

	Using Genetics to Predict Risk for T2D
	Early attempts at combining risk alleles:
	Global polygenic risk scores provide risk estimates on par with monogenic diseases:
	Partitioned polygenic risk scores apply to individual pathways/intermediate phenotypes leading to disease:
	Use of polygenic risk scores for T2D:
	Genetics and the potential for tailored therapy in T2D:

	Harnessing physiology to guide the molecular characterization of T2D GWAS variants
	Colocalization can identify causal variants/genes, prioritizing translation:
	Examples of translation of T2D GWAS signals into understanding of molecular mechanism/pathogenesis:

	Genetic methodologies informing and/or validating drug discovery in T2D
	Mendelian Randomization (MR) for validation and identification of potential drug targets:
	Phenome-wide association studies (PheWAS) to identify potential non-label use for existing drugs:

	Future directions for research into the genetics of T2D
	Precision Medicine for T2D using gPRS/pPRS:
	Limited studies in non-European ancestry populations:
	Metabolomics/Proteomics and T2D:

	Conclusions and Perspectives
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Central Figure.
	Table 1.

