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Abstract

Predicting upcoming events is a critical function of the brain, and language provides a fertile testing ground for studying
prediction, as comprehenders use context to predict features of upcoming words. Many aspects of the mechanisms of
prediction remain elusive, partly due to a lack of methodological tools to probe prediction formation in the moment. To
elucidate what features are neurally preactivated and when, we used representational similarity analysis on previously
collected sentence reading data. We compared EEG activity patterns elicited by expected and unexpected sentence final
words to patterns from the preceding words of the sentence, in both strongly and weakly constraining sentences. Pattern
similarity with the final word was increased in an early time window following the presentation of the pre-final word, and
this increase was modulated by both expectancy and constraint. This was not seen at earlier words, suggesting that
predictions were precisely timed. Additionally, pre-final word activity—the predicted representation—had negative
similarity with later final word activity, but only for strongly expected words. These findings shed light on the mechanisms
of prediction in the brain: rapid preactivation occurs following certain cues, but the predicted features may receive reduced
processing upon confirmation.

Key words: comprehension, EEG, language, prediction, RSA

Introduction
Theories of cognition and neural functioning increasingly build
in an important role for anticipatory processing—that is, pre-
diction. Indeed, some have postulated that a core mechanism
of neural coding involves higher level cortical systems in the
brain attempting to predict and explain input at lower levels
in a hierarchical fashion (predictive coding; Friston and Kiebel
2009). One area that has proven to be a particularly rich test-
ing ground for understanding the import—and limitations—
of predictive processing is language comprehension. When lis-
tening to or reading language, people can use contextual cues
and prior knowledge to generate predictions about upcoming
words in order to support rapid and efficient comprehension
and communication (Federmeier 2007; Kutas et al. 2011; Kuper-
berg and Jaeger 2016; Pickering and Gambi 2018). The contents

of these predictions can be multifaceted in nature, including
orthographic (Laszlo and Federmeier 2009; Kim and Lai 2012),
phonological (DeLong et al. 2005; Vissers et al. 2006), semantic
(Federmeier and Kutas 1999; Lau et al. 2013), and morphosyn-
tactic (Van Berkum et al. 2005; Dikker et al. 2010) features of
words. However, such anticipatory processes are not always
engaged (Wlotko and Federmeier 2015; Huettig and Guerra 2019),
suggesting that the brain flexibly allocates resources to predict
information to the extent that the environment allows it and as
a function of the utility of those predictions for the task at hand.

Studies of prediction in language using behavioral (Schwa-
nenflugel and LaCount 1988; Hess et al. 1995) and eyetracking
(Ehrlich and Rayner 1981; Altmann and Kamide 1999; Staub
and Clifton 2006) measures combine with a sizeable literature
that has focused on neural responses to predictable and
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unpredictable words as measured via electroencephalography
(EEG), including event-related potentials (ERPs; Federmeier et al.
2007; Szewczyk and Schriefers 2018; Thornhill and Van Petten
2012) or magnetoencephalography (MEG; Dikker and Pylkkänen
2011; Wang, Hagoort, et al. 2018a; Wang, Kuperberg, et al. 2018b).
This work has established that both the constraint of a context
(i.e., how much it narrows expectations and allows a strong,
consistent prediction) and the probability of the encountered
word in its context modulate brain responses (Wlotko and
Federmeier 2012; DeLong et al. 2014). Effects can even be seen
on determiners or modifiers, when these have specific gender
or phonological characteristics (e.g., “a kite”) that are consistent
or inconsistent with an anticipated noun (“an . . . kite”; DeLong
et al. 2005; Szewczyk and Schriefers 2013; Wicha et al. 2003),
as well as within 150 ms following word onsets that can
differentiate between words with many possible continuations
and words with few (Söderström et al. 2016; Roll et al. 2017).

Based on this work, the idea that comprehenders often
engage probabilistic predictive mechanisms when language
stimuli are encountered has become well-accepted (Kuperberg
and Jaeger 2016). However, most extant work has assessed
prediction by examining its consequences, measuring brain
responses after a more or less predictable word (or a deter-
miner/modifier carrying those features) has been encountered.
Direct measurement of the prediction process itself—that is, the
actual preactivation of the features—has been more elusive. As
a consequence, there remain important open questions about
when preactivation of various types of features might occur and
what cues those preactivations (e.g., Huettig 2015).

To try to instead capture processing at the time that predic-
tions are being made, some work has examined event-related
activity differences elicited by a verb or adverb, as a function
of whether that word does or does not afford a prediction for
a target, sentence-final word (Maess et al. 2016; Freunberger
and Roehm 2017). These studies report more negative N400s for
words that carry more information about the target and, cor-
respondingly, afford stronger predictions. However, it is unclear
if these responses do or do not reflect preactivation of specific
features of upcoming information. Other studies have employed
novel paradigm manipulations in order to examine anticipatory
processing. For instance, León-Cabrera et al. (2017) presented
participants with sentences that varied in contextual constraint.
By imposing a 1000-ms delay before the target word, they were
able to observe slow negative potentials that were sensitive to
constraint. Dikker and Pylkkänen (2013) implemented a picture-
noun matching task to examine the preactivation of lexical
features, in which more or less predictive pictures preceded
related nouns; they found MEG activity differences based on
predictability 400 ms prior to noun onset. However, it is unclear
if the effects in these studies arise due to the unique demands
of the task, and thus if the same processes would be observed in
more natural language comprehension settings—that is, during
sentence reading.

Examining ERP and MEG responses to prior words or time
windows in isolation presents difficulties in separating pre-
dictive processing for the upcoming information from reactive
processing of the preceding information, or more general effects
of constraint. An optimal method for examining preactivation
would consider both neural activity prior to and following the
target stimulus to determine if there is similarity in neural
processing, and if that similarity varies with predictability. If the
brain preactivates features of upcoming words, then patterns
of neural activity specifically related to processing that word

should be present in advance, and comparing these patterns
should reveal similarity graded by constraint and match to
expectation. Representational similarity analysis (RSA) presents
a promising solution (Kriegeskorte et al. 2008; Cichy and Pan-
tazis 2017). With this technique, multivariate patterns of neural
activity are compared with a correlational approach, which can
be performed across the neural time-series or across electrodes.
This method allows not only for identification of both temporal
and spatial patterns of similarity but also for detection of more
subtle but statistically separable neural states than may be
found with more conventional ERP analyses (Cichy et al. 2015).

A recent study used RSA of MEG data to investigate the
preactivation of semantic features in a language comprehen-
sion paradigm (Wang, Kuperberg, et al. 2018b). Specifically, par-
ticipants read strongly constraining sentences that were con-
structed in pairs, such that within-pair sentences predicted the
same sentence-final critical word (e.g., “In the crib there is a
sleeping . . . ” and “In the hospital there is a newborn . . . ” both
predict the word “baby”) and between-pair sentences did not.
A greater increase in neural similarity was found for within-
pair sentences, suggesting greater similarity of neural patterns
across sentences wherein the same word was predicted. How-
ever, it is unclear whether this was entirely due to prediction, or
at least partly reflected that the brain was in a more similar state
due to the shared semantics of within-pair sentences. Addition-
ally, even “pseudo-repetitions” of words that were expected but
never presented can lead to a lingering representation in the
brain, despite intervening sentences (Rommers and Federmeier
2018a), which may have influenced pattern similarity.

In this paper, we specifically target preactivation by compar-
ing pre-final word activity with postfinal word activity in sen-
tences that varied in constraint and had expected or unexpected
endings. We thus circumvent the issue of semantic similarity
across sentences that yield similar predictions, because, in this
case, the pattern comparisons for expected and unexpected
words are within the same sentence context. If the input of the
pre-final word cues the preactivation of features of the final
word, then some aspects of the neural representation of the final
word should appear during the processing of the pre-final word,
which will be detected with RSA. Critically, if this correlation is,
indeed, due to prediction-related preactivations, then similarity
for expected words should be greater when sentential constraint
and the corresponding cloze probability of the sentence-final
word are higher, as more strongly constraining sentences allow
for stronger and/or more specific predictions. Moreover, sim-
ilarity should be reduced or potentially abolished when the
ending is unexpected, as the neural representation of the final
word may no longer match with the preactivated representation.
Finally, the timing of prediction generation can be examined
by assessing the similarity of final word activity patterns with
patterns elicited by words preceding the pre-final word.

We also employ a time generalization analysis in order to
examine the time-course or development of predictions over
time (King and Dehaene 2014; Heikel et al. 2018). For instance,
pattern similarity may increase gradually across time as the
onset of the target word approaches or may come on and offline
more rapidly. Additionally, this analysis method allows us to
probe the fate of predicted representations after encounter-
ing the predicted word itself. Representations of words that
were previously predicted have been found, downstream, to
be impoverished compared with unpredicted words, suggesting
later processing of word representations differs based on pre-
dictability (Rommers and Federmeier 2018b; Hubbard et al. 2019).
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This difference in processing may be observable by analyzing
representational similarity of pre-final word activity with later
time windows of postfinal word activity.

Materials and Methods
This paper uses novel techniques to reanalyze data from the
study reported in Federmeier et al. (2007). Further specifics of
the methodology can be found in that publication.

Participants
Thirty-two right-handed individuals participated in the exper-
iment in exchange for course credit or cash. One individual
was dropped due to technical issues with importing the data,
resulting in a total of 31 participants in the analysis. All partici-
pants reported normal or corrected vision and had no history of
any neurological or psychiatric disorder. Mean age was 20 years
(range 18–28 years), and 16 of the participants were female.
The study was approved by the local ethics committee, and
all participants provided written informed consent and were
debriefed following participation.

Design and Procedure
Participants read 282 sentences that varied in contextual con-
straint (half being “strong constraint,” with expected word cloze
probability >0.67 and the other half being “weak constraint,”
with cloze probability of the most expected word <0.42) and
that ended with either the most expected or an unexpected
(cloze ≈ 0.03), but plausible word. Stimuli were counter-balanced
into two lists, such that half of the sentences completed by an
expected ending in one list were completed by an unexpected
ending in the second list, and vice versa. Thus, there were
four basic conditions of sentence final words: strong constraint
expected (SCE), strong constraint unexpected (SCU), weak con-
straint expected (WCE), and weak constraint unexpected (WCU),
with ∼70 sentences in each condition. Sentence frames were
matched in length, and lexical properties (word length, word
frequency) of sentence endings were matched.

Words prior to the final word of the sentence, or pre-final
words, were primarily made up of determiners or prepositions
(“the,” “a,” “his,” etc.; 65% of pre-final stimuli). Pre-Final words
did not reliably differ in length across sentence constraint
(P = 0.06) but did differ in log frequency (P < 0.01). Additional
linear mixed effect model analyses were run to include lexical
confounds as predictors for experimental effects of interest.
Mixed effect models were conducted in R, using the lme4
package (Bates et al. 2015), and statistical significance of fixed
effects were estimated with t-tests using the Satterthwaite
method in the lmerTest package (Kuznetsova et al. 2017).

Association strength between words within sentences and
sentence-ending words was measured using the Edinburgh
Associative Thesaurus. For each sentence in each condition,
the forward and backward association was calculated between
each word in the sentence and the sentence final word, and
the number of instances of associations greater than 0.2 were
counted. Overall, there were few associations between sentence
words and sentence-ending words: 4% of SCE sentences
contained at least one association greater than 0.2, and for
all other conditions (SCU, WCE, WCU), only 1% of sentences
contained at least one association. The mean association
strength between sentence final words and all words in the

sentence was less than 0.005 for each of the four conditions.
Thus, observed effects are unlikely to arise simply due to word
level associations (but, nevertheless, a control analysis was also
performed to further rule out this possibility as a basis for the
critical effects).

Participants viewed the sentences on a 21′′ CRT monitor in an
electrically shielded booth. Each sentence was presented word-
by-word in the center of the screen, with each word appearing
for 200 ms with an interstimulus interval of 300 ms. Sentences
were separated by a 3-s pause. Participants were instructed to
attend and read the sentences for comprehension and told that
they would be asked questions about what they had read at the
end of the experiment.

EEG Recording and Processing
EEG data were recorded from 26 tin electrodes embedded into a
flexible elastic cap distributed over the scalp in an equidistant
arrangement (see Supplementary Fig. 1). Additional electrodes
included one on each mastoid, one on each outer canthus of
the eye (for monitoring eye movements), and one below the
lower eyelid of the left eye (for monitoring blinks). Electrode
impedances were kept below 5 kΩ. Signals were amplified by a
Grass amplifier with a bandpass filter of 0.01–100 Hz and a sam-
pling rate of 250 Hz. During recording, the left mastoid electrode
was used as a reference; offline, the data were rereferenced to
the average of the left and right mastoid electrodes.

Raw EEG time series were filtered with a 0.2–60 Hz digi-
tal Butterworth bandpass filter with a 12 dB/oct roll-off. Filter
parameters were chosen a priori to remove high-frequency noise
and large drifts but retain some higher frequencies that could
potentially contribute meaningful variance to the RSA; however,
a second analysis with a 0.2–30 Hz filter produced nearly iden-
tical results. Note that the high-pass filter was implemented to
reduce noise from low-frequency drifts but was not so high as to
induce confounds in the similarity analysis. Previous work has
demonstrated that filter settings in this range do not produce
distortions in electrophysiological measurements over these
time scales (Tanner et al. 2015; Wang, Kuperberg, et al. 2018b). To
correct ocular artifacts, the data were decomposed into indepen-
dent components with the AMICA algorithm (Palmer et al. 2012).
Component time-courses that correlated with a bipolar vertical
electrooculogram channel at Pearson r > 0.6 were removed, and
the data were reconstructed with the remaining components.
The corrected data were then submitted to a sliding window
artifact scan to identify extreme amplitude excursions (>90 μV).
Any trial in which either the pre-final word or final word was
marked as an artifact was excluded from analysis. RSA results
could potentially be influenced by differences in trial numbers
(Dimsdale-Zucker and Ranganath 2018), and so for, each par-
ticipant the number of trials in each condition was equated by
randomly dropping trials from conditions with more trials than
the condition with the minimum number. This resulted in an
average of 64 trials in each condition for each participant.

The remaining trials were corrected with a z-scoring baseline
correction method (Ciuparu and Mureşan 2016), in which pre-
trial baseline periods are fused together and used to z-score the
trial data. This method reduces potential biases of single-trial
normalization techniques (Grandchamp and Delorme 2011) and
allows for scaling of neural measurements, which is important
for multivariate analyses. Separate baselines were created for
strong constraint and weak constraint sentences to reduce any
contamination from sentential constraint (as strong constraint
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baselines could differ somewhat from weak constraint base-
lines). Additionally, both the pre-final word and final word data
were corrected with pre-final word baseline data, so as not
to introduce any bias by using pre-final word data both as a
baseline and in the similarity analysis.

Spatial RSA
Spatial RSA is focused on the similarity of neural activity across
the scalp at each timepoint of two time series. It is thus able
to reveal if some aspect(s) of the timecourse of neural activity
elicited by a pre-final word anticipates similar processing when
the predicted word is actually encountered. Of course, it is
possible that the preactivation of information would not align in
time with when that information would normally be evoked by
a word input (that possibility is further assessed using a time-
generalization analysis, described next). However, given that
word processing follows a characteristic functional and neural
time-course as revealed by ERP componentry, it is not unlikely
that, for example, semantic preactivation of the final word could
arise during semantic processing of the pre-final word (which,
as revealed by studies of the N400 component, occurs in a very
stable time window around 400 ms; for a review, see Federmeier
et al. 2016), and thus show the kind of temporal relationship
assessed by spatial RSA.

For each trial of data from each participant, the vector of
amplitudes from each of the 26 scalp channels of the pre-
final word data was correlated (Pearson’s r) with the vector of
channel data of the final word data at each and every time-
point from 1 to 500 ms postword onset. This resulted in a
time-series of correlations between pre-final and final word
activity for each trial. For bin-based visualizations and analyses,
these time-series were averaged across trials within each of
the four conditions (SCE, SCU, WCE, and WCU) for each par-
ticipant, and grand averages were created by averaging across
participants. Additionally, a grand average across all items was
created, which was used to identify timepoints of interest for
analysis so as not to bias our decision by viewing the condition
data (see Supplementary Fig. 2; Luck and Gaspelin 2017). While
this method is subjective, it is unbiased in terms of condition
and allows for greater statistical power than the more con-
servative mass univariate approaches. Peak similarity in the
grand average was observed at 185 ms; statistical analyses were
then conducted in a 50-ms window around that peak, using
repeated-measures ANOVAs for testing factors of expectancy
and constraint.

Time Generalization Analysis
Time generalization follows the same steps as the spatial RSA,
but the channel activity at each timepoint of the pre-final word
is correlated with the channel activity of every timepoint of the
final word, producing a matrix of correlations with the matching
timepoints on the diagonal. This analysis thus tests for addi-
tional correlations between pre-final and final word activity that
are not precisely aligned in time. Here, only the first 300 ms of
the pre-final word activity was correlated with 1–500 ms of the
final word activity. The later timepoints of the pre-final word are
close in proximity to the early timepoints of the final word, and
thus, the overall similarity is greatly increased; however, this is
likely not due to prediction, but simply due to autocorrelation of
the time-series, and the large correlation values produced could

influence the results of statistical analyses. Thus, the time-
range of the pre-final word was limited to 1–300 ms to avoid this
issue. See Supplementary Fig. 3 for more details.

Time-generalization matrices were created for each trial and
averaged across trials for each of the four conditions for each
participant. The resultant average matrices were submitted to
cluster-based permutation analyses (Maris and Oostenveld 2007)
to test for significant differences in similarity between two
conditions. Here, t-tests were performed at each timepoint test-
ing for differences between conditions. Clusters were identi-
fied in the time × time matrix by grouping adjacent timepoints
where the t-test was significant (P < 0.05), and the magnitude
of each observed cluster was determined by summing the t-
values within the cluster. A surrogate distribution was then
created by shuffling the condition labels, performing t-tests at
each timepoint, identifying significant clusters, and recording
the largest cluster statistic. The largest statistic was recorded as
both a positive and negative value in order to perform a two-
sided test (the null hypothesis distribution was assumed to be
symmetric). This shuffling procedure was repeated 1000 times,
and the observed clusters of the actual data were then compared
with the surrogate distribution of cluster statistics to test for
significance. The observed clusters were considered significant
if 97.5% of the surrogate cluster values were smaller than the
observed cluster value, or if 97.5% of the surrogate cluster values
were larger than the observed cluster value. Multiple permuta-
tion tests were performed to examine differences between the
four conditions.

Temporal RSA
Temporal RSA is focused on the similarity of two neural time
series at each channel across the scalp, allowing for the visual-
ization of the topography of the similarity. For each trial of data
from each participant, the vector of amplitudes from the 75-ms
time window (150–225 ms) following the pre-final word was cor-
related with the 150–225 ms time series following the final word
at each of the 26 scalp channels. Note that the window used
for the temporal RSA was slightly larger than that used for the
spatial RSA. The window was widened to include more points in
the temporal RSA correlation for a more stable estimate. This
analysis resulted in a scalp map of correlations between pre-
final and final word activity for each trial. As with the spatial
RSA, these scalp maps were then averaged across trials within
each of the four conditions for each participant and averaged
across participants to create a grand average scalp map.

This method was additionally extended to a sliding window
approach to explore the results from the time generalization
analysis. For the correlation approach to be possible, the cor-
related time series must be the same length; thus, we used
60-ms windows of time from both the pre-final word and the
final word activity. A 60-ms time window (slightly larger than
the original window used for spatial RSA) was used to capture
the entire extent of the significant clusters observed. The time
series of pre-final word activity correlated with 60-ms windows
of postfinal word activity in successive 4-ms steps for each trial.
The scalp maps at each time step were then averaged across
trials within each of the four conditions.

Results
EEG was recorded while participants read sentences that varied
in contextual constraint and ended with either an expected or
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Figure 1. Example of experimental materials and RSA diagram. (A) Examples
of sentences from each of the four conditions: SCE, SCU, WCE, and WCU. The
sentence final words are highlighted in purple, and the pre-final words are

highlighted in green. (B) In spatial RSA, the vector of EEG channel activity at the
first time-point of the pre-final word (shown in green) is correlated with the
vector of activity at the first time-point of the final word (shown in purple). EEG
activity correlations are calculated at each successive time-point, resulting in a

time-course of correlations.

unexpected word (Fig. 1A). We used spatial RSA to compare neu-
ral response patterns to pre-final words and final words by cor-
relating the amplitude values across sensors at each timepoint
of the two time-series and averaging the resulting similarity
time-series within each condition (Fig. 1B).

Spatial RSA

The first analysis correlated neural activity following the pre-
final word with neural activity following the sentence final
word at matching time-points. Spatial RSA revealed a peak
in neural similarity beginning around 100 ms and continuing
to about 350 ms following word onset (Fig. 2A). This peak in
similarity appeared to vary with both expectancy and sentential
constraint. Indeed, expected endings (combining SCE and WCE)
showed greater similarity overall compared with unexpected
endings (combining SCU and WCU; t = 2.77, P < 0.01). To assess
the impact of expectancy in a more fine-grained manner, an
item-level analysis was performed. The similarity values were
averaged across subjects for each expected ending with the
same cloze probability, and a linear regression was run predict-
ing neural similarity from cloze probability. Cloze probability
significantly predicted neural similarity for the expected end-
ings (t = 2.91, r2 = 0.18, P < 0.01); see Figure 2B. Note that although
the majority of the range of cloze probabilities was sampled
with these stimuli, there were no items in the middle range
of cloze probability (∼40–60%). However, relationships between

neural activity (e.g., N400s) and cloze probability are usually
linear (Wlotko and Federmeier 2012), and thus, it is unlikely
that the inclusion of middle-range cloze items would produce
a nonlinear relationship.

To assess whether constraint—and hence the likelihood of
being able to make a specific prediction, even if it is never
realized—also affected responses to the unexpected items,
an additional regression was run predicting neural similarity
for the unexpected endings (combining SCU and WCU) from
graded sentential constraint (i.e., the cloze probability of the
most expected ending for that sentence). As seen in Figure 2B,
there was a significant linear relationship (t = 2.24, r2 = 0.12,
P = 0.03), suggesting that the prediction signal was graded with
sentential constraint.

Controlling for Lexical Characteristics

It is possible that neural similarity might have varied across
expectancy or constraint due to lexical characteristics of the
pre-final and final words. To test for this possibility, we used
linear mixed-effects models to predict pattern similarity with
cloze probability and lexical characteristics on a single-trial
level. For each trial, the average similarity derived from spa-
tial RSA from 160 to 210 ms was extracted. The first analysis
predicted trial-level similarity values from cloze probability for
expected sentence endings. Given the hypothesis that lexical
similarity could explain the observed effect, we created differ-
ences measures by taking the absolute value of the difference
between the pre-final word frequency and the final word fre-
quency, as well as word lengths (Orthographic neighborhood
size is also a lexical variable known to affect electrophysiological
responses to words. However, word length is highly correlated
with orthographic neighborhood. To simplify the model, we
only included word length and frequency.), and included these
measures in the model. The model predicting trial-level neural
similarity included random intercepts for participants and items
(the final word), and random slopes for cloze probability and
lexical properties (word length and frequency) were added.

Significance of fixed effects of the model was assessed with
t-tests using the Satterthwaite method of approximation for
degrees of freedom. The results of this analysis are reported
in Table 1. Cloze probability remained a significant predictor
of neural similarity, even with lexical characteristics included.
Neither word length nor frequency was significant.

The second analysis focused on unexpected sentence end-
ings. Here, the model was similar to the first model described
previously, but the cloze probability of the expected ending of
the sentence was included instead of the cloze probability of
the unexpected ending. Thus, the model was constructed with
random intercepts for participants and items (the final word),
as well as random slopes for cloze probability of the expected
endings and lexical properties (word length and frequency).

The fixed effects results are reported in Table 2. As before,
cloze probability remained a significant predictor of similarity
even after including lexical variables. However, word frequency
was also a significant predictor of similarity. Thus, while it
is probable that differences in word frequency contributed to
the effect for unexpected endings, there was also a continued
influence from sentence-level constraint and, hence, the extent
to which a prediction was likely to have been formed from
that context. Additional model output (e.g., random effects) is
reported in the Supplementary Appendix.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab087#supplementary-data
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Figure 2. Results of the spatial RSA. (A) The similarity time-course is shown for each of the four conditions. The darker lines show the similarity time-course after
subtracting the average word response, whereas the lighter colors show the similarity time-course without subtraction. Without subtraction, a peak in overall similarity
is observed, which varies with constraint and expectancy. With subtraction, overall similarity does not vary over time, but condition-related differences remain. (B)
Correlations for data without word subtraction. The correlation between neural similarity and cloze probability for sentences with expected endings is presented on

top, and the correlation between neural similarity and sentential constraint (i.e., cloze probability of the expected sentence endings) for sentences with unexpected
endings is presented on bottom. (C) Correlations between cloze probability/constraint and neural similarity after word subtraction.

Table 1 Fixed effect estimates and tests of significance for mixed effects model predicting trial level similarity values for expected endings
derived from spatial RSA

Estimate Std. Error Dg. freedom t-value P-value

Intercept 0.161 0.027 57.83 6.09 <0.01∗
Cloze 0.049 0.018 43.09 2.81 <0.01∗
Length 0.005 0.003 266.3 1.32 0.19
Freq −0.009 0.005 55.54 −1.55 0.13

Table 2 Fixed effect estimates and tests of significance for mixed effects model predicting trial level similarity values for unexpected endings
derived from spatial RSA

Estimate Std. Error Dg. freedom t-value P-value

Intercept 0.166 0.026 57.78 6.28 <0.01∗
E_Cloze 0.031 0.016 3525 1.97 0.04∗
Length 0.004 0.003 189.7 1.55 0.12
Freq −0.013 0.004 242.4 −2.92 <0.01∗

Controlling for General Word Processing Activity

The global peak in neural similarity observed in the time win-
dow of the effect is likely due to overall similarity in the neu-
ral activity elicited when processing visual words. To assess
how much such general activity associated with visual word
processing might have affected the observed effect pattern, a
control analysis was performed to try to subtract out “baseline
word activity” prior to running spatial RSA. For each participant,
the time-course of neural activity following each word in every
sentence, except for first words, pre-final, and final words, was
averaged to create an average “word” ERP. This ERP was then
subtracted from every pre-final and final word time-course, and
spatial RSA was conducted again on this “word-corrected” data.

The resultant RSA time-courses are shown in Figure 2A (the
darker lines). Although the global peak in similarity was indeed
greatly reduced, the same pattern of condition-related differ-
ences is apparent. To test for sensitivity to cloze probability
and constraint, trial-level neural similarity was extracted from
the word-corrected data, and the linear mixed-effects models

previously described were run with the word-corrected trial
values. The correlations are presented in Figure 2C. For expected
sentence endings, the relationship between cloze probability
and neural similarity remained significant (t = 2.32, P = 0.02), and
lexical variables were not significant predictors (P > 0.05). Thus,
for expected endings, baseline word activity differences did not
explain the pattern of observed similarity results. For unex-
pected sentence endings, neither cloze probability nor word
frequency remained as significant predictors after correcting
for baseline word activity (P > 0.05). The full model outputs are
reported in the Supplementary Appendix. This result suggests
that general word characteristics may have contributed to the
effect of constraint on the similarity pattern for unexpected
endings. Since, by design, specific features of unexpected end-
ings would not have been preactivated, it makes sense that
the effect of constraint on similarity patterns for these words
would be driven by more general word features that are also
present in the baseline word activity. However, this baseline
word subtraction is likely a coarse correction method, as some
signals of prediction could be subtracted out as well.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab087#supplementary-data
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Figure 3. Spatial RSA for sentence final words and pre-final words at three different positions: immediately preceding (right plot), two words back (center plot), and
three words back (left plot). Significant differences are observed only for pre-final words immediately preceding sentence final words.

Assessing Which Sentence Position(s) Show Evidence
of Preactivation

Predictive preactivations may have been generated or may be
detectable prior to the onset of the pre-final word. To assess,
we performed the same spatial RSA method comparing neural
activity patterns of the final word to the word prior to the pre-
final word (2 word positions back). An overall peak in pattern
similarity was found in the same time window as the pre-final
word analysis, but effects of condition were less apparent (Fig. 3).
Indeed, there was no significant difference between expected
and unexpected endings at this word position (t = 0.28; P = 0.78).
Additionally, a linear regression predicting pattern similarity
from cloze probability was not significant for expected endings
(t = 1.65, r2 = 0.07, P = 0.11) and constraint did not affect pattern
similarity for unexpected endings (t = 0.21, r2 < 0.01, P = 0.84).
A spatial RSA comparing final word activity to words 3 word
positions back also showed no significant effects of predictabil-
ity (all P-values > 0.05; Fig. 3). Thus, prediction-related pattern
similarity differences were only reliable immediately prior to the
onset of the sentence final word.

Generalization Analysis

To probe for similarity that is not temporally aligned and also
to assess the fate of predicted representations across time, we
employed a time generalization analysis. This differed from the
first Spatial RSA analysis, in that, instead of correlating activity
only at matching time-points following the pre-final and final
words, the activity at each timepoint following the pre-final
word was correlated with the activity at each timepoint follow-
ing the final word. To reduce influences from auto-correlation,
the pattern of activity across channels at each timepoint from
0 to 300 ms following the pre-final word was correlated with
every timepoint from 0 to 500 ms following the final word.
The resulting time × time matrices were analyzed by submitting
pair-wise contrasts to cluster-based permutation tests.

Permutation tests revealed four clusters of interest that
reached a significant cluster-wise threshold of P <0.05 (Fig. 4A).
First, in the contrast of expected words (SCE—WCE), a positive
cluster was found (pre-final word time: 150–275 ms; post-
final word time: 160–265 ms; P < 0.01), with SCE similarity
greater than WCE. This cluster likely reflects the same effect

Figure 4. Results of the spatial generalization RSA. (A) Generalization matrices
for each condition are plotted. The color intensity represents neural similarity.
The strong increase observed in each condition reflects the previously observed
spatial RSA peak (Fig. 2A). (B) Differences in generalization matrices for SCE-

SCU and SCE-WCU. The green box highlights the significant cluster found
for both differences. The bar-plot displays similarity values extracted from
this time window, with SCE similarity significantly below zero, demonstrating
anticorrelation.

found with the initial spatial RSA analysis, and a similar
positive cluster was found in the contrast of SCE and WCU
words (pre-final word time: 150–250 ms; postfinal word time:
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155–210 ms; P = 0.01). These positive clusters demonstrate that
early pre-final word and postfinal word similarity is greater
for more predictable sentence endings. Comparisons of other
pairs did not yield significant positive clusters. It is important
to note that the cluster-based permutation tests are more
statistically conservative than the analysis focused on the
specific peak. Critically, even under a conservative analytical
approach, similarity is found to be greater for words with high
cloze probability compared with not only unexpected words but
also expected words with lower cloze probability.

The permutation tests also identified two similar negative
clusters, with SCE words showing reduced similarity compared
with both SCU words (pre-final word time: 170–230 ms; post-
final word time: 315–475 ms; P < 0.01) and WCU words (pre-
final word time: 175–230 ms; postfinal word time: 340–500 ms;
P < 0.01). Note that this effect reflected similarity of pre-final
word activity in the time window of the previously reported
spatial RSA effect and postfinal word activity in a later time
window, roughly the timewindow of the N400 component of the
ERP. To examine this effect further, we performed exploratory
post-hoc analyses. Follow-up analyses on extracted similarity
values (pre-final word time: 175–230 ms; postfinal word time:
340–475) showed that similarity for SCE words was reduced
compared with all other conditions (WCE: t(30) = −2.60, P = 0.01;
SCU: t(30) = −3.62, P < 0.01; WCU: t(30) = −4.33, P < 0.01), and, in
fact, was significantly less than 0 (t(30) = −2.62, P = 0.01). This
pattern is depicted in Figure 4B.

Controlling for Univariate Effects

An alternative explanation of these results is that the similarity
difference results reflect a confound of univariate activation
magnitude, which has been shown to affect pattern similarity
results in fMRI studies (Coutanche 2013). The observed early
clusters could reflect differences in early visual ERP component
amplitudes (e.g., N1/P2), and the later clusters were in the time
window of the N400 following the final word, which does show
amplitude differences in a similar pattern to the reported simi-
larity pattern. We performed an additional analysis to test for
this possibility. RSA was used to compare activity elicited by
sentence final words with activity elicited by pre-final sentence
words from different sentences that were the same as the pre-
final word of the same sentence. For instance, the sentence
“Father carved the turkey with a knife” has the same pre-final
word as “His touch was light as a feather.” Here, we measured
the similarity of the activity from the word knife in the first
sentence to activity from the word a in the second sentence (a
between-sentence comparison). This was done for all pre-final
words that matched the pre-final word in the sentence, and the
resultant correlation time-courses across trials were averaged.
This allowed us to compare similarity when the pre-final word
and final word were exactly the same, but only the sentence
differed. This means only the activity at the preword differed,
as the univariate effect of the N400 at the final word was the
same as in the original analysis.

The results of this analysis are shown in Figure 5. Similar-
ity was greatly reduced for the between-sentence comparison
compared with the within-sentence comparison, and similar-
ity between conditions did not significantly differ (all P > 0.05).
Additionally, similarity was greater in the within-sentence com-
parison than in the between-sentence comparison for all four
conditions of interest (all P < 0.05). Finally, the time generaliza-
tion analysis for the between-sentence comparison revealed no

Figure 5. Results of the between-sentence similarity analysis. (A) The spatial
similarity time-courses, zoomed in on 100–300 ms. The SCE and WCE time-
courses from the initial analysis are plotted for comparison. The average across

conditions for the control between-sentence analysis is plotted in gray. All
conditions had lower similarity than the WCE similarity, and conditions did
not differ. (B) Time generalization results for the between-sentence control
analysis. The plots show differences between conditions (SCE-SCU for the top

plot, SCE-WCU for the bottom plot). The later negative cluster found in the
within-sentence generalization analysis is not observed.

significant clusters; i.e., the negative cluster was not observed.
Thus, the results are unlikely to be driven by univariate con-
founds, as the amplitude of the ERPs to the final word did not
differ in the between-sentence analysis and likely did not largely
differ for the pre-final words, but similarity between the two was
nonetheless greatly reduced. This control analysis also attests
that the observed condition effects cannot be explained by any
form of low-level orthographic or lexical similarity between the
pre-final and final words, as the same lexical pairing does not
yield those results if the pre-final words are simply taken from
a different sentence context.

Effect Topographies

To characterize the topography of the early spatial RSA effect, we
used temporal RSA. Recall that in the spatial RSA, signals across
space were correlated at different timepoints. Here, instead,
signals across time were correlated at different spatial locations:
This analysis correlated the entire time series of pre-final word
and final word activity in the selected window of analysis at each
sensor on the scalp. Note that because spatial RSA relates spatial
patterns across time, whereas temporal RSA relates temporal
patterns across space, the statistical pattern of these results may
differ. Temporal RSA showed that similarity was greatest over
occipital channels across all conditions (Fig. 6).

The topographies for each of the four conditions did not
significantly differ from one another. However, this analysis is
focused on the similarity in time at each channel, not the sim-
ilarity across channels at each time-point. Thus, the resultant
topography plots highlight the channels where the pre-final
and final word time-series were the most similar. It is thus
not surprising that the four conditions would not differ in this
analysis, as they are likely to all reflect the same process, which
varies in degree with prediction strength and level of match
between the prediction and the input.

We performed a similar analysis to characterize the late
negative cluster found in the time generalization analysis.
We implemented a sliding window approach, in which the
time series of pre-final word activity from 170 to 230 ms were
correlated with final word activity from 340 to 480 ms across
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Figure 6. Temporal RSA results for the spatial RSA peak. The central topography
plot shows the average across conditions, with the channels with the largest
similarity values as green diamonds. The topography for each condition is also
plotted. A strong occipital topography is observed.

successive 60-ms windows (Fig. 7). Note that these time
windows were designated by identifying the minimum and
maximum time values of the significant clusters reported
previously. An initial dissimilarity was observed over occipital
channels, which was more pronounced and sustained for SCE
words. This was followed by an increase in similarity over central
channels for unexpected words, but not for expected words. This
time-course corroborates the results from the cluster analyses;
namely, strongly expected words show less similarity later in
time compared with less expected words.

Discussion
Numerous studies have investigated the neural consequences
of predictability during language comprehension, but the spe-
cific mechanisms, timing, and extent of anticipatory preacti-
vation have remained elusive. Here, we used RSA to compare
the patterns of neural activity prior to a sentence-final word
to the activity following a sentence-final word, allowing us to
examine the timing of generating predictions, as well as their
specificity. Our results provide persuasive evidence that people

predict upcoming information probabilistically and that those
preactivations affect word processing quite rapidly. Addition-
ally, predictions appear to be generated or allocated at specific
times—that is, close in time to the upcoming final word. Finally,
we provide novel evidence that activity patterns representing
preactivations are anticorrelated with later activity following
confirmation of predictions. Altogether, these results elucidate
the neural mechanisms of prediction during the comprehen-
sion of language and potentially provide insight into general
mechanisms of prediction in the brain.

Spatial RSA revealed an increase in neural similarity between
pre-final word activity and final word activity that extended
from ∼100–300 ms following pre-final word onset. This similar-
ity was significantly reduced for unexpected but semantically
plausible final words compared with expected final words, sug-
gesting that the preactivated features were at some level spe-
cific to the expected word. Moreover, this similarity was graded
with the cloze probability of the sentence final word, such
that similarity decreased as the word became less predictable,
showing that predictions are graded. The graded relationship
manifested over and above the general peak in similarity and
was still observed in a control analysis that subtracted out base-
line “word” neural activity. The relationship between neural sim-
ilarity and cloze probability may reflect a graded degree of effort,
in which neural resources are allocated toward anticipatory
processing and the level of resource allocation is dependent on
predictability and, thus, a function of constraint. Alternatively,
this pattern may reflect a graded degree of success, in which
the probability of a match between the predicted and actual
outcome is greater with higher levels of sentential constraint.
In either case, we provide the first results that, when read-
ing language, features of specific upcoming words are rapidly
preactivated prior to their onset, and the magnitude of this
anticipatory processing is graded with predictability.

Examining pattern similarity of the sentence final word and
words prior to the pre-final word revealed that a significant
relationship between similarity and predictability was present
only for the pre-final word. In other words, evidence of antic-
ipatory preactivation was found only immediately prior to the
word being predicted. This finding could reflect that predictions
were generated rapidly following the onset of the pre-final word,
and not before. Alternatively, the observed signal may not reflect
the time at which information became available to the system,
but, instead, the time at which the production system allocated

Figure 7. Sliding window temporal RSA results for the late cluster. Similarity topographies are shown at different time windows, where the activity from the final word
in the displayed time window is correlated with pre-final word activity from 170 to 230 ms. SCE shows broad dissimilarity that stays near zero over time. SCU shows

early dissimilarity, followed by positive similarity over posterior channels.
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resources toward explicitly forming a prediction of a particular
type (Dell and Chang 2014). In a recent study, neural preacti-
vation of a series of expected simple visual stimuli occurred
in visual cortex only after the first stimulus in the train was
presented (Ekman et al. 2017); thus, there is precedent that the
pre-final word could serve as a cue for preactivation of visual
features of the upcoming final word. In the current study, a
sentence like “The bad boy was sent to his room” may have
allowed some level of anticipation of the final word “room” even
at the time of the word “sent” based on the semantics of the
sentence. However, as previously described, the contents of pre-
diction are multifaceted in nature, and these different features
may be generated at different times. Sentence level semantic
predictions may manifest in different neural signals than those
observed here and may influence the predictions generated at
other levels (e.g., orthographic or syntactic). We do not claim that
the preactivation signal reported here reflects the preactivation
of all linguistic information; there are likely other signals left
to be identified relating to other levels of prediction. What
our data reveal is that some aspects of prediction—possibly, as
discussed next, prediction of specific word forms—seem to be
specifically timed, perhaps cued by, for example, the preceding
(usually function) word suggesting the imminent arrival of the
target noun. This process could be epiphenomenal—that is,
stimuli automatically lead to the preactivation of features of
associated stimuli that may follow. Alternatively, such a mech-
anism could be tailored by the nervous system to be beneficial
for efficient behavior during language processing; for example,
cued preactivation could guide eye movement behavior during
reading to reduce reading times and/or skip over easily predicted
information (Ehrlich and Rayner 1981).

Temporal RSA revealed an occipital topography in the time
window of the preactivation. Given EEG’s limited spatial reso-
lution, it is difficult to pinpoint the exact networks that were
involved in the observed preactivation. However, recent related
work may provide insight into the neural systems involved in
anticipatory processing. One proposed mechanism is that mem-
ory systems in the brain, such as the hippocampus, coordinate
sensory preactivation of upcoming information through a pat-
tern completion process (Hindy et al. 2016; Kok and Turk-Browne
2018). This proposal is in line with MEG results from a picture-
word matching paradigm that demonstrated the prediction of
visual word form features (Dikker and Pylkkänen 2013). In that
study, MEG source localization of activity prior to predicted
target words revealed left medial temporal and occipital sources,
with temporal activity slightly preceding occipital activity. Thus,
temporal structures could preactivate lexical information, lead-
ing to preactivation of form features in sensory cortex. Our com-
bined results—the timing of the similarity effect, as well as the
strongly occipital topography—are consistent with this account,
and suggest that the increased similarity may have reflected
overlap of preactivated and observed lower level orthographic
lexical features.

Consistent with the idea that the observed RSA signal might
reflect the prediction of word orthography, we observed that,
although the pre-final and final word similarity was reduced
for unexpected sentence completions, it was not abolished, and
it varied with constraint. This differs from the pattern of sem
antic-based facilitation seen on the N400, wherein unexpected
sentence completions elicit large N400s that do not differ by
constraint (Federmeier et al. 2007). Although, by design, there
was likely little to no semantic overlap between expected
and unexpected completions, orthographic space is more

constrained, such that even unexpected words are likely to
sometimes carry expected low-level features (shared length,
a shared letter, etc.). The observed RSA pattern suggests that,
although the unexpected endings were not predicted, there
was, in some cases, some level of—likely orthographic—featural
overlap. Note that when average “visual word processing
activity” was subtracted prior to spatial RSA, the relationship
between sentential constraint and neural similarity for the
unexpected endings was no longer significant, suggesting that
overall word-related or visual processing activity could con-
tribute to this effect. In particular, the average word subtraction
method may have removed some of the signal related to general
orthographic features that could be preactivated, especially in
more constraining contexts. This hypothesis could be tested
further by examining neural similarity to unexpected items
that are specifically designed to be orthographically similar
but semantically dissimilar to expected words, or similarity
to unexpected items that remove orthographic features (e.g.,
pictures or Gabor patches).

The constraint-sensitivity of the similarity response for
unexpected words suggests that the prediction signal itself is
variable in strength and/or fidelity, based on the predictability of
the upcoming final word, an idea consistent with a probabilistic
prediction account (Levy 2008; Kuperberg and Jaeger 2016). More
weakly constraining sentences, by their nature, permit a wider
range of completions, both at the semantic and orthographic
level. Thus, if prediction were ubiquitous, or if equal strength
of prediction could be allocated to every potential completion,
then the possibility of a match, at any level of analysis, would
tend to be higher under weak constraint; yet, similarity was
reduced for expected as well as unexpected items in weakly
compared with more strongly constraining contexts. One
possibility is that predictions are generated to the same degree
on every trial but the preactivation signal is not distributed
probabilistically, such that the brain selects one (or a very
small set) of likely items from the set of possibilities and
then preactivates features only of those selected items (also
referred to as “preupdating”; Kuperberg and Jaeger 2016). Across
trials, then, the selection is more likely to match the observed
stimulus when constraint is higher, leading to greater neural
similarity. However, this account (alone) cannot explain why
the similarity for unexpected items also tended to vary with
constraint, since these endings were essentially unpredictable
(near 0% cloze probability) and thus should always result in a
mismatch.

We argue that rather than predicting to the same degree
and/or level every time, the brain may essentially utilize a gen-
erative model to rationally and optimally allocate resources
toward anticipatory processing based on the available contex-
tual evidence and projected costs of preactivation. This resource
allocation would lead to a more defined or “word-like” neural
representation in strongly constraining contexts, whereas if the
context does not strongly constrain toward a particular outcome,
the representation would be less precise. A similar mechanism
has been proposed to explain generalization and adaptation
during speech perception (Kleinschmidt and Jaeger 2015). If we
recognize a familiar speaker, we may generate more specific
predictions or activate more features of upcoming utterances
from this speaker compared with an unfamiliar one; essentially,
the distribution of possibilities narrows. Here, individuals may
have generated more specific predictions—perhaps including
orthographic features—when the sentential context was highly
biased toward a particular outcome. Since the preactivation
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occurred prior to the final word, the representational similarity
was graded by cloze probability even for unexpected sentence
endings, as the representation of the final word was weaker
when predictability was lower, leading to less of a possibility of
even incidental featural overlap. To our knowledge, this result
is one of the first to demonstrate rapid probabilistic preacti-
vation. Further work using this method may shed light on the
debate between serial and parallel predictions; namely, whether
similarity for other possible sentence endings varies with their
completion probability, or a graded response is only found for
a single word representation. Additionally, future experiments
examining context-specific (Nieuwland and Berkum 2006) and
speaker-specific (Ryskin et al. 2019) predictions may benefit
from application of RSA to better understand how these factors
affect neural preactivation.

To further probe the fate of predicted representations, we
conducted a time generalization analysis, in which the spatial
pattern of neural activity at each time point following the pre-
final word was correlated with the pattern at each timepoint
following the final word. This revealed a surprising finding:
Early pre-final word activity was less similar to later final word
activity for strongly constrained expected endings compared
with unexpected endings, and in fact had negative similarity or
anticorrelation. Anticorrelation has only rarely been observed
in other studies utilizing RSA but has been found in episodic
memory studies; namely, hippocampal firing patterns repre-
senting events occurring in different contexts are anticorrelated
(McKenzie et al. 2014). Similarly, hippocampal representations
of overlapping spatial routes become anticorrelated or demon-
strate “repulsion” or “differentiation,” over time (Chanales et al.
2017). Here, final word activity became differentiated from pre-
final word activity after the early increase in similarity. The fact
that this occurred most in cases wherein strong predictions were
formed and confirmed suggests that the representation of the
pre-final word was not anticorrelated, but in fact, the features of
the final word that were preactivated were anticorrelated. Such
a result is in line with other findings that, downstream, individ-
uals have impoverished representations and impaired memory
for predicted words (Rommers and Federmeier 2018b; Hubbard
et al. 2019). This provides a view of anticipatory processing
during language comprehension in which prediction allows for
rapid verification of incoming words, leading to more efficient
processing in the moment, but, once the predicted information
is verified, the brain shifts processing away, essentially “leaving
behind” the predicted information.

Another insight from the time generalization analysis is
that the similarity increase during the pre-final period was not
sustained over the delay prior to the onset of the word, as
might have been predicted by analogy to some accounts of the
maintenance of information in working memory (Fuster and
Alexander 1971). Indeed, maintained neural firing to sustain
predictions would seem a highly inefficient and metabolically
costly strategy for the brain and thus not likely to be the mecha-
nism of preactivation. Even sustained working memory signals
are observed after averaging many trials; in actuality, spiking
during delay periods on single trials is sparse and varies in time
(Shafi et al. 2007). More recent evidence suggests that activity
at specific frequencies coordinates in bursts to produce rapid
synaptic weight changes, which efficiently code information
(Miller et al. 2018). A similar mechanism seems likely to be
utilized for rapid predictive coding and would explain how a
lack of maintained delay-related activity could still produce
preactivation of upcoming information.

Our results contribute to a growing literature on predic-
tion during language comprehension, not only in the domain
of cognitive and neuroscientific experiments but also in the
field of natural language processing and neural network models
designed to predict upcoming words given a particular input
(Bengio et al. 2003; Radford et al. 2019). The outputs and contex-
tual representations of these models have been used to predict
or compare the fMRI data (Jain and Huth 2018), as well as EEG
data (Hashemzadeh et al. 2020), allowing for novel tools to probe
predictive processing in the brain. Conversely, recent work has
used insights from neural data to fine-tune these models to
better predict human language output (Schwartz et al. 2019),
as these models are trained on language corpora, which do
not show the same properties as human-generated predictions
(Smith and Levy 2011; Eisape et al. 2020). Future work in this area
could use network models to further probe the preactivation
observed in the current study, or this preactivation signal could
be used to better fine-tune network models for more accurate
and human-like predictions.

As a set, our findings demonstrate that the brain rapidly pre-
activates specific features of upcoming words during language
comprehension and does so in a timely manner to allow for
efficient processing. These results not only conclusively demon-
strate that individuals utilize prediction to preactivate informa-
tion during comprehension but also shed light on one of the
fundamental functions of the brain. Environmental cues may
lead to the generation of predictions of associated information
or stimuli, and once the preactivated stimulus is encountered
and confirmed, the brain may rapidly shift processing away to
focus resources on other objectives. While continued research
is necessary to better understand the precise mechanisms of
generating predictions in the brain, our work moves toward
providing answers to the “what”and “when”of prediction during
language comprehension (Huettig 2015).
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