
the basis of the type of health insurance and
coverage provided, and details can be found in
the online supplement of the authors’ article.
Patients with commercial insurance paid lower
out-of-pocket costs than those with public
coverage (commercial, U.S. $123 to U.S. $173/
mo;Medicare Advantage, U.S. $434/mo). This
wouldmean that patients would have to pay
betweenU.S. $1,476 andU.S. $5,208 per year
just to afford 1 year of prescriptions for the
treatment of IPF. These out-of-pocket costs are
staggering and possibly unaffordable for
patients, especially when added to the costs of
their other medications for the average of four
comorbidities theymay suffer from.
Considering that, according to the U.S. Census
Bureau, themedian annual income for a

family in the United States in 2019 was U.S.
$68,703 (9), the out-of-pocket cost of
antifibrotics could be between 2.1% and 7.6%
of the total annual gross income of the
household.Median earnings were lower for
women than for men, whichmay contribute to
the sex difference inmedication initiation
identified in this study.

This study has shown that antifibrotic
uptake remains low in the United States and
that discontinuation of treatment is high for
those who do start medications. This may be
in large part due to the high out-of-pocket cost
for patients, but it is likely that other barriers
and discrepancies exist but were not captured
by this analysis. Asmore clinical trials looking
at novel IPF treatments are combining drugs

and looking at additive benefits of different
medications, it will become evenmore difficult
for patients who would benefit from those
drugs to afford them. Exorbitant costs should
not be a barrier toward a standard of care in a
developed country with state-of-the-art
medical advances and therapies. Policy
changes to control the prohibitive costs of
those medications are needed to ensure
affordability for all who need them. Further
barriers to access to care such as sex, race and
ethnicity, or socioeconomic status also need to
be identified and addressed in future studies to
ensure appropriate care for all.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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Would a clinician prescribe a new
medication in the absence of any data about
its efficacy or safety? Of course not.
Regulatory authorities like the Food and
Drug Administration (FDA) and good
clinical judgment would prevent such a
blunder. Then why would a health system
deploy a clinical prediction model,
designed to inform high-stakes
decisions for patients at risk for critical
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illness, without any evidence of efficacy or
safety?

Although the FDA’s regulatory strategy
for clinical prediction models continues to
mature and expand to include guidance
around equity, transparency, and safety,
significant gaps and uncertainties in
oversight remain (1). For example, there are
currently no federal regulatory standards for
predictive clinical decision support (CDS)
systems developed locally by hospitals (2).
Those developed by private-sector
companies for sale on the market may, in
some cases, require FDA approval if they
meet certain criteria (3). However, some of
these criteria remain vague, and models
released before these criteria were published
have an uncertain fate.

The Epic Deterioration Index (EDI) is
one such CDS system that may meet criteria
for FDA regulation as a medical device and is
reportedly in use in “hundreds of hospitals in
the United States” (4). The EDI is a
commercially available predictive CDS built
by EPIC systems to identify patients at risk of
clinical deterioration, was developed prior to
the coronavirus disease (COVID-19)
pandemic, and uses predictor variables such
as patient age (but not race or sex), vital
signs, nursing assessments, and laboratory
values. However, the EDI is neither approved
by the FDA nor had its performance, safety,
or other important characteristics been
reported in any peer-reviewed journal
until now.

In this issue ofAnnalsATS, Singh and
colleagues (pp. 1129–1137) provided a public
service by performing the first published
evaluation of the EDI (5). Notably, none of
the authors are affiliated with the FDA, and
none disclosed any relationship to EPIC. The
authors released a preprint of this study
almost 1 year prior to this publication,
thereby allowing substantial time for public
comment and review (6). They studied the
EDI’s ability to predict a composite outcome
of transfer to the intensive care unit, need for
mechanical ventilation, or in-hospital death
among ward patients with COVID-19
admitted to the University of Michigan’s
health system during the initial months of the
COVID-19 pandemic. This is a particularly
important population in which to study the
EDI because the pandemic caused significant
strain on many hospital wards, which may
impair important care processes (7). Thus,

under such strain, clinicians may rely more
heavily on CDS systems, a scenario in which
their efficacy, safety, and fairness become
increasingly important.

This paper has several strengths that
offer useful information to hospitals trying to
decide if and how the EDI might be
deployed. First, the authors found that
among 392 patients who met inclusion
criteria for the study, the area under the
curve of the receiver operating characteristic
was 0.79 (95% confidence interval,
0.74–0.84). In plain English, this means that
if two randomly selected patients, one who
did not experience the outcome and one who
did, were compared with each other, the
model would appropriately predict a higher
risk for the latter patient 79% of the time.
Figure 2 in Singh and colleagues article offers
further insights into the lead time during
which clinicians might respond to an alert
based on the EDI’s predictions. This
information permits an assessment of
whether or not there is sufficient time, in this
case, a median of 24 hours, to respond to an
alert that may vary by hospital depending on
available resources.

Second, the authors identified clinically
relevant classification thresholds
corresponding to actual bedside care
decisions that the EDI might inform. This is
an insightful framing because many
evaluations of clinical prediction models lack
specific use cases, which precludes a
necessary and pragmatic assessment. For
example, at the high-risk threshold of an EDI
score of 68.8, the positive predictive value
was 75%, much higher than that for many
early warning scores and with a very efficient
number needed to evaluate of 1.4. However,
at this threshold, the model only identified
39% of patients with the composite
outcome.

Third, the authors provide some insight
into the potential harms of the EDI while
noting the disproportionate effects of
COVID-19 on Black people. CDS systems
such as the EDI risk reinforcing existing
inequities as they focus resources on a patient
in need, whichmay divert resources from
other patients on the same ward (8). Thus,
algorithmic equity—equivalent model
performance across demographic
subgroups—requires evaluation. No
differences in the area under the curve of the
receiver operating characteristic were detected

between patients of different ages, genders, or
races. However, the studymay have been
underpowered to detect such differences.

Fourth, Singh and colleagues chose to
evaluate the model against a very reasonable
and potentially actionable outcome to
capture clinical deterioration. An early alert
from the EDI might prompt expedited
evaluation and attention for a patient in
need. An inherent limitation to this choice,
though through no fault of the authors, is
that EPIC has never revealed the predicted
outcome used to train the EDI in the first
place. Thus, this evaluation is therefore
limited in inferences that might be drawn
about the “true” performance of the EDI
model. At the same time, the authors’
evaluation is pragmatic and appropriate
and highlights the bizarre practice of
selling and deploying clinical prediction
models without explaining or
understanding them.

The study should be interpreted in light
of several additional limitations. First, Singh
and colleagues reported the in silico
performance of the model but not its direct
effects on clinician decision-making or
patient outcomes. The latter two outcomes
would be best evaluated using a prospective
randomized design that is outside the scope
of this study but necessary for understanding
how the EDI affects patient care. Second, the
authors observed large fluctuations in the
EDI every 15 minutes, as it is calculated when
deployed. However, the authors reported
performance measures using aggregations of
the EDI at the hospitalization level. Although
this practice is not uncommon in the
reporting of clinical prediction models, it
likely overestimates the true performance of
the model and provides a less than real-world
evaluation of how the model is used in
practice. However, in the sensitivity analysis
reported using a prediction-level evaluation,
the positive predictive values were more
modest and ranged from 5.5% to 24% over
different time horizons.

We still don’t know enough to evaluate
the claim in the title of EPIC’s news item on
its own web page, “Artificial Intelligence
Triggers Fast, Lifesaving Care.” But to Singh
and colleagues, a debt of gratitude is owed by
the FDA, EPIC, “hundreds of hospitals,” and
the wider community of researchers and data
scientists working to advance the field of
clinical prediction models. Hospital leaders
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are currently being faced with a barrage of
incentives to roll out new predictive CDS
systems. At the same time, hospitals that
wouldn’t approve of their clinicians
prescribing newmedications with no data

behind them shouldn’t themselves take up
the same practice by deploying unvalidated
clinical prediction models. If regulatory
authorities don’t step in, hospitals and
independent researchers like Singh and

colleagues will have to keep diving in to
pick up the slack.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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Anyone who has attempted to recruit
critically ill patients into clinical trials
recognizes the challenges that lie therein.
Critically ill patients often lack decisional
capacity and must rely on surrogate
decision-makers (SDMs) to make both
clinical and research enrollment decisions
(1). The SDM role is both cognitively and
emotionally burdensome (2, 3).
Furthermore, it is frequently performed
by a close family member who is already
under the tremendous stress inherent in
having a loved one in the intensive care
unit (ICU). Therefore, it may be
unsurprising that many SDMs suffer
long-term psychological morbidity,
including anxiety, depression, and
symptoms of post-traumatic stress
disorder (4). These effects may be
exacerbated by being asked to consider

enrollment into research (5). The reliance
on SDMs for enrollment decisions may, in
part, explain the low enrollment rates of
critical care trials (6). To improve
enrollment rates and reduce the burden
on SDMs, an improved understanding of
SDMs’ decision-making processes
surrounding clinical trial enrollment is
imperative.

A previous study in this area
identified three phases in SDMs’
enrollment decision-making process:
1) being approached, 2) reflecting on
participation, and 3) making a decision
(7). During each phase, SDMs reported
factors related to decisions to move from
one stage to the next. Although these
findings provided some context for
understanding SDM experiences and
decision-making processes, the study was
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