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Abstract
1.	 The receiver operating characteristic (ROC) and precision–recall (PR) plots have 

been widely used to evaluate the performance of species distribution models. 
Plotting the ROC/PR curves requires a traditional test set with both presence 
and absence data (namely PA approach), but species absence data are usually not 
available in reality. Plotting the ROC/PR curves from presence-only data while 
treating background data as pseudo absence data (namely PO approach) may pro-
vide misleading results.

2.	 In this study, we propose a new approach to calibrate the ROC/PR curves from 
presence and background data with user-provided information on a constant c, 
namely PB approach. Here, c defines the probability that species occurrence is de-
tected (labeled), and an estimate of c can also be derived from the PB-based ROC/
PR plots given that a model with good ability of discrimination is available. We 
used five virtual species and a real aerial photography to test the effectiveness 
of the proposed PB-based ROC/PR plots. Different models (or classifiers) were 
trained from presence and background data with various sample sizes. The ROC/
PR curves plotted by PA approach were used to benchmark the curves plotted by 
PO and PB approaches.

3.	 Experimental results show that the curves and areas under curves by PB ap-
proach are more similar to that by PA approach as compared with PO approach. 
The PB-based ROC/PR plots also provide highly accurate estimations of c in our 
experiment.

4.	 We conclude that the proposed PB-based ROC/PR plots can provide valuable 
complements to the existing model assessment methods, and they also provide 
an additional way to estimate the constant c (or species prevalence) from presence 
and background data.
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1  | INTRODUC TION

Species distribution modeling (SDM) is an important tool to under-
stand the statistical relationship between occurrences of species 
and environmental variables, and it has been applied in a variety of 
fields (Booth et al., 2014; Elith et al., 2006; Guisan & Thuiller, 2005; 
Peterson & Holt,  2003). For example, Kueppers et  al.  (2005) 
used discriminant analysis to study the potential ranges of two 
California endemic oaks in response to regional climate change. 
Hagar et  al.  (2020) used maximum entropy (MAXENT) to predict 
the habitat suitability of northern spotted owl in Oregon with for-
est structural attributes derived from airborne light detection and 
ranging data. When both observed presence and absence data are 
available, it is straightforward to apply standard binary classifiers 
such as logistic regression and neural network to predict the con-
ditional probability of species occurrence at given locations (Guisan 
et al., 2002; Li et al., 2011; Marmion et al., 2009). However, reliable 
species absence data are usually not available in practice, which is 
referred to as the presence-only problem (Elith et al., 2006). With 
presence-only data, it is difficult to estimate the probability of spe-
cies occurrence, so researchers usually estimate a relative index of 
habitat suitability instead (Elith et al., 2006; Hastie & Fithian, 2013; 
Phillips & Elith, 2013). One category of methods for presence-only 
data is to train models using only presence data, such as ecological 
niche factor analysis (Hirzel et  al.,  2002), BIOCLIM (Booth,  2018; 
Busby, 1986), and DOMAIN (Carpenter et al., 1993). Another cate-
gory of presence-only methods involves generating pseudo absence 
or background data and combining them with observed presence 
data to train models, such as MAXENT, maximum likelihood analysis 
(MAXLIKE), inhomogeneous Poisson point process, naive logistic re-
gression, and presence and background learning (Aarts et al., 2012; 
Keating & Cherry, 2004; Li et al., 2011; Phillips et al., 2006; Royle 
et al., 2012; Ward et al., 2009).

Model performance can be evaluated from two different aspects, 
namely calibration and discrimination (Jiménez-Valverde et al., 2013; 
Lobo et al., 2008; Phillips & Elith, 2010). Calibration measures the 
agreement between predicted and true probabilities of species oc-
currence, whereas discrimination measures the ability to distinguish 
between presence and absence data (Phillips & Elith, 2010). In this 
study, we only focus on the aspect of discrimination. Using an in-
dependent test set consisting of both presence and absence data, 
we can generate a 2 × 2 confusion matrix to cross-tabulate the bi-
nary predictions and observations, from which a variety of accuracy 
measures can be derived, such as overall accuracy, kappa statistic, 
true skill statistic (TSS), and F-measure (Congalton,  1991; Fielding 
& Bell, 1997; Li & Guo, 2013; Liu et al., 2011). These accuracy mea-
sures consider both commission and omission errors, and they are 
threshold-dependent, so a single threshold is required to convert the 
continuous outputs to binary outputs. Without absence data, how-
ever, commission error cannot be calculated, making model evalua-
tion problematic with these traditional accuracy measures. To solve 
this problem, absolute validation index (AVI) and contrast validation 

index (CVI) were proposed to evaluate binary predictions without 
considering commission error (Hirzel et al., 2006). Li and Guo (2013) 
proposed two new statistics, namely Fcpb and Fpb, to evaluate the 
predictive accuracy of binary predictions from presence and back-
ground data. Fcpb is an unbiased estimate of F-measure, but it requires 
prior information of species prevalence. When species prevalence 
is not available, Fpb can be applied as a proxy of F-measure, but it 
is only applicable to rank models for the same species because its 
upper bound is affected by the unknown prevalence. Liu et al. (2013) 
proved that maximizing TSS from presence and pseudo absence data 
is equivalent to maximizing TSS from presence and absence data in 
terms of threshold selection.

The receiver operating characteristic (ROC) curve and area 
under the ROC curve (AUCROC) have also been commonly used 
for model evaluation in SDM (Fielding & Bell,  1997). Unlike the 
threshold-dependent measures that rely on a single threshold, the 
ROC curve and AUCROC evaluate model performance by consider-
ing all possible thresholds, so they are applicable to the continuous 
outputs without requiring thresholding. Alternatively, users can plot 
the precision–recall (PR) curve and calculate area under the PR curve 
(AUCPR) to evaluate model performance (Davis & Goadrich, 2006). 
Please note that the ROC curve incorporates correctly predicted ab-
sence sites (true negative), and hence, AUCROC value is influenced 
by total geographic extent (Lobo et al., 2008). When species preva-
lence is very small or the geographic extent is very large, AUCROC 
value may be inflated unrealistically (Sofaer et  al.,  2019). By con-
trast, the PR curve ignores true negative, so it is more robust to geo-
graphic extent and suitable for species with small prevalence (Leroy 
et al., 2018; Sofaer et al., 2019). In other words, the ROC curve is 
more suitable for balanced datasets whereas the PR curve is more 
suitable for imbalanced datasets (Davis & Goadrich, 2006; Saito & 
Rehmsmeier, 2015; Sofaer et al., 2019).

Essentially, the ROC and PR curves are based on both commis-
sion and omission errors, so they also suffer from the presence-
only problem. Currently, it is a common practice to plot the ROC/
PR curves and calculate area under the curve (AUC) by treating the 
background data as absence data in the literature, but researchers 
have pointed out that this approach can make the results mislead-
ing and difficult to interpret because background data are actually 
contaminated by presence data (Jiménez-Valverde, 2012; Peterson 
et  al.,  2008; Phillips et  al.,  2006). Li and Guo (2013) have proved 
that both recall (inversely related to omission error) and precision 
(inversely related to commission error) can be unbiasedly estimated 
from presence and background data given that species prevalence is 
available, thus making it possible to plot the correct ROC/PR curves 
without absence data. However, this approach has not yet been ap-
plied to correct the ROC/PR curves from presence and background 
data in the field of SDM. In this study, therefore, we aim to investi-
gate the following two questions. Given true species prevalence, can 
we plot the correct ROC/PR curves from presence and background 
data? Without true species prevalence, can we estimate prevalence 
from presence and background data?
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2  | MATERIAL S AND METHODS

2.1 | Model evaluation with a nontraditional test set

An independent test set with random samples drawn from the pop-
ulation is required for model evaluation. Let y  =  1 denote presence 
data and y = 0 denote absence data; s = 1 denote labeled data and 
s = 0 denote unlabeled data. A traditional test set contains fully la-
beled presence–absence data randomly sampled from the population. 
A nontraditional test set contains labeled and unlabeled data, in which 
only presence data are labeled and unlabeled data are a mixture of 
presence and absence data whose labels are unknown. In other words, 
the labeled data (s = 1) must be presence data (y = 1), but unlabeled 
data (s = 0) may be presence (y = 1) or absence (y = 0) data in a nontra-
ditional test set. By comparing the true labels and binary predictions 
on a traditional test set, we can generate a confusion matrix with four 
quadrants: true positive (TP), false positive (FP), false negative (FN), and 
true negative (TN). If we simply treat the unlabeled data as absence 
data in a nontraditional test set, we also create a confusion matrix with 
the four quadrants denoted differently: true positive (TP′), false posi-
tive (FP′), false negative (FN′), and true negative (TN′) (see Table 1).

From a traditional confusion matrix, we can calculate preci-
sion (p), recall (r), and false-positive rate (FPR) using the following 
equations:

The species prevalence P(y  =  1) and the proportion of pre-
dicted presences P(y′ = 1) can be calculated through the following 
equations:

Therefore, we can rewrite Equation (3) as:

By considering all possible thresholds, the ROC curve plots true-
positive rate (TPR) versus FPR, whereas the PR curve plots p versus r 
(Figure 1). TPR is exactly the same as r that is related omission error 
(FN), and both FPR and p are related to commission error (FP), so we 
can connect the ROC and PR curves through Equation (6). As the 
discrimination ability of a model increases, the curves in Figure 1 will 
shift upward, that is, the ROC curve will shift toward the point (0, 1) 
whereas the PR curve will shift toward the point (1, 1).

On a nontraditional test set, only a proportion of presence data 
are labeled and the labels of absence data are unknown, so the tra-
ditional confusion matrix cannot be completely determined. Here, 
we consider two common sampling scenarios: single-training-set 
(Elkan & Noto, 2008) and case–control (Lancaster & Imbens, 1996). 
In the single-training-set scenario, we visit a number of sites randomly 
distributed within the study area, and a site is labeled as presence if 
species occurrence is observed or unlabeled otherwise. In the case–
control scenario, the labeled presence data are randomly sampled 
from the presence subset, and unlabeled data are randomly sampled 
from the population. Let c = P(s = 1|y = 1) define the probability that 
species occurrence is detected (labeled), that is, the ratio of labeled 
presence data to the total number of presence data in a test set (Li 
et al., 2011). The value of c is usually smaller than one, so unlabeled 
data actually contain both presence and absence data. Because spe-
cies absence is difficult to observe, the presence–absence survey 
data can also be interpreted as presence-unlabeled data in the single-
training-set scenario, whereas the presence-background data can be 
interpreted as presence-unlabeled data in the case–control scenario.

With a nontraditional test set, we can define the following 
measures:

Because r′ is calculated from the observed (labeled) presence 
data, we have r′ = r. However, p′ is not equal to p because it is calcu-
lated from unlabeled data. According to Li and Guo (2013), p′ and p 
have the following relationship:

in the case–control scenario. In the single-training-set scenario, their 
relationship is slightly different, which should be:

(1)p =
TP

TP + FP

(2)r =
TP

TP + FN

(3)FPR =
FP

FP + TN

(4)P (y = 1) =
TP + FN

TP + FN + FP + TN

(5)P
(
y� = 1

)
=

TP + FP

TP + FN + FP + TN

(6)FPR =
FP

FP + TN
=

P
(
y� = 1

)
× (1 − p)

1 − P (y = 1)

(7)p� =
Tp�

Tp� + Fp�

(8)r� =
Tp�

Tp� + FN�

(9)p =
1 − c

c
×

p�

1 − p�

(10)p = p�∕c

TA B L E  1   Confusion matrices from traditional and nontraditional 
test sets

Prediction

Reference

Traditional test set
Nontraditional test 
set

y = 1 y = 0 s = 1 s = 0

y′ = 1 TP FP TP′ FP′

y′ = 0 FN TN FN′ TN′
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Here, we use Table 2 to illustrate the derivations of Equations 
(9) and (10). In Table  2, m1 and m4 can be calculated from labeled 
data, but m2, m3, m5, and m6 cannot be calculated because the true 
labels of unlabeled data are not known. Meanwhile, the total number 
of labeled data n1, the total number of unlabeled data n0, the total 
number of predicted presences k1, the total number of predicted ab-
sences k0, and the total number of test data t are known. According 
to the definitions of c, p′ and r′, we have the following equations:

In the case–control scenario, the unlabeled data are randomly 
sampled from the population, so p, r, P(y = 1), and P(y′ = 1) can be 
calculated as:

According to Equations (11) and (12), we have:

Because r = r′, substituting Equations (13)-(15) to Equation (18), 
we have:

which proves the relationship between p and p′ in Equation (9) under 
the case–control scenario. Please note that (1 − c)/c here is equal to the 
reciprocal of the constant term c in Li and Guo (2013), so Equation (9) 
of this article is equivalent to Equation (9) in Li and Guo (2013).

Unlike the case–control scenario where unlabeled data alone 
are random samples of the population, the combined labeled and 

(11)c =
m1 + m4

m1 + m2 + m4 + m5

(12)p� =
m1

m1 + m2 + m3

(13)r� =
m1

m1 + m4

(14)p =
m2

m2 + m3

(15)r =
m2

m2 + m5

(16)P (y = 1) =
(
m2 + m5

)
∕n0

(17)P
(
y� = 1

)
=
(
k1 − m1

)
∕n0

(18)1 − c

c
×

p�

1 − p�
=

m2 + m5

m1 + m4

×
m1

m2 + m3

=
m1

m1 + m4

×
m2 + m5

m2 + m3

(19)1 − c

c
×

p�

1 − p�
=

m2

m2 + m5

×
m2 + m5

m2 + m3

= p

F I G U R E  1   Examples of the ROC (a) and PR (b) curves

Prediction

Reference

Total

s = 1 s = 0

y = 1 y = 1 y = 0

y′ = 1 m1 m2 m3 k1 = m1 + m2 + m3

y′ = 0 m4 m5 m6 k0 = m4 + m5 + m6

Total n1 = m1 + m4 n0 = m2 + m3 + m5 + m6 t = n1 + n0

Note:: Numbers with shade are known, and numbers without shade are not known.

TA B L E  2   A confusion matrix from a 
nontraditional test set
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unlabeled data together constitute random samples of the popula-
tion in the single-training-set scenario, so p, r, P(y = 1), and P(y′ = 1) 
are calculated differently:

According to Equations (11) and (12), we have:

Since r = r′, substituting Equations (13), (20) and (21) to (24), we 
have:

which proves the relationship between p and p′ in Equation (10) under 
the single-training-set scenario.

Please note that c has the same definition in both scenarios, that 
is, c = P(s = 1|y = 1), but its relationship with species prevalence is 
different in two scenarios:

according to Equations (11) and (16) in the case–control scenario;

according to Equations (11) and (22) in the single-training-set scenario. 
Given a nontraditional test set, c is a fixed constant whose value is af-
fected by the number of labeled data (n1), the number of unlabeled 
data (n0), and species prevalence. Meanwhile, P(y′ = 1) is equal to the 
proportion of predicted presences among the unlabeled set in the 
case–control scenario, or equal to the proportion of predicted pres-
ences among the whole test set in the single-training-set scenario. 
According to Equation (6), FPR can be determined if p, P(y′ = 1), and 
P(y = 1) are known. Therefore, if species prevalence is available, we can 
calculate p, r, and FPR from a nontraditional test set, and then plot the 
corrected ROC/PR curves.

Here, the key information is the species prevalence or the con-
stant c. If one of them is known, the other one can be determined 
as well. In real-world applications, however, species prevalence 
and hence the constant c are usually unknown. Although species 
prevalence is normally unidentifiable without absence data, it can 

be estimated under certain assumptions or conditions (Hastie & 
Fithian, 2013; Lancaster & Imbens, 1996; Li et al., 2011; Phillips & 
Elith, 2013; Royle et al., 2012; Ward et al., 2009). Here, we propose 
to estimate c from the ROC/PR curves under the condition that a 
model with good discrimination ability exists. When we increase 
the threshold to produce binary predictions, the omission error will 
increase but the commission error will decrease. If a model has a 
good ability to separate presence from absence data, we can set a 
high threshold to minimize the commission error, so p will reach its 
maximum value of one and FPR will reach its minimum value of zero. 
The ROC/PR curves in Figure 1 are produced by a model that satis-
fies the condition of good discrimination ability, from which we can 
observe that the ROC curve passes the positions with minimum FPR 
in the lower left corner and the PR curve passes the positions with 
maximum p in the upper left corner.

According to Equations (9) and (10), p is a monotonically increas-
ing function of p′, so we can find the maximum value of p′ (i.e., the 
highest point in the PR curve or the most left point in the ROC curve) 
to infer the constant c. Because the maximum value of p′ (denoted 
as p′max) is the position where p = 1, we obtain c = p′max according to 
Equation (9) or (10). However, estimating c using a single point in the 
ROC/PR curve may result in a large variance, so we propose to select 
multiple points whose values of p′ are relatively high to estimate c. 
Let PP be a subset of points in the ROC/PR curve whose values of 
p′ fall within a range of user-specified percentiles. We have the fol-
lowing estimator:

where j is the cardinality of PP. For example, we can select those points 
where p′ falls between 90th and 99th percentiles across all possible 
thresholds. Once c is estimated, species prevalence can be estimated 
as well according to Equation (26) or (27).

2.2 | Experimental design

In this section, we investigate the effectiveness of the proposed 
method to correct the ROC/PR curves from presence and back-
ground data, which is the case–control scenario commonly used 
in SDM. We trained different models from presence and back-
ground data, and model performances were evaluated using a tra-
ditional test set with presence–absence data and a nontraditional 
test set with presence-background data, respectively. The ROC/
PR curves were plotted using three different approaches: standard 
presence–absence (PA) approach, presence-only (PO) approach by 
simply treating background data as absence data, and presence-
background (PB) approach using the proposed method to calibrate 
the curves. The curves produced by PO and PB approaches were 
compared with the benchmark curves produced by PA approach. 
Because it is difficult to obtain reliable species absence data 
in reality, we used virtual species in our experiment, which has 

(20)p =
m1 + m2

m1 + m2 + m3

(21)r =
m1 + m2

m1 + m2 + m4 + m5

(22)P (y = 1) =
(
m1 + m2 + m4 + m5

)
∕t

(23)P
(
y� = 1

)
= k1∕t

(24)

p�

c
=

m1

m1 + m2 + m3

×
m1 + m2 + m4 + m5

m1 + m4

=
m1

m1 + m4

×
m1 + m2 + m4 + m5

m1 + m2 + m3

(25)p�

c
=

m1 + m2

m1 + m2 + m4 + m5

×
m1 + m2 + m4 + m5

m1 + m2 + m3

= p

(26)c = n1∕ [n1 + n0 × P (y = 1) ]

(27)c = n1∕[t × P (y = 1) ]

(28)c =
1

j

∑

i∈PP

p�
i



     |  10197LI and GUO

become a common approach to test models from different aspects 
(Duan et  al.,  2015; Hirzel et  al.,  2001; Li et  al.,  2011; Meynard & 
Kaplan, 2013). One-class classification of remote sensing imagery 
is similar to SDM in that the same models and the same accuracy 
measures can be applied in both fields, and it is possible to collect 
reliable absence data in image classification, so we also used a real 
aerial photograph to test the proposed method.

2.3 | Dataset

We simulated five virtual species with different prevalence values 
following the procedure of Li et al. (2011). The conditional probabil-
ity of species occurrence P(y = 1|x) was modeled using the logistic 
transform of a linear function defined in Equation (29) or a quadratic 
function defined in Equation (30):

where bi is a coefficient (see Table 3) and xi is an environmental vari-
able; xi is the mean of xi. We considered three environmental variables 
in California with an extent of 410,003 km2, including annually aver-
age precipitation, annually average temperature, and elevation, all of 
which were extracted from the WorldClim database (https://world​
clim.org/) with a spatial resolution of 1 km (Fick & Hijmans, 2017). At 
each pixel, we used a random number (0 <= q < 1) to generate real-
ized binary labels, that is, presence (y = 1) if q < P(y = 1|x) or absence 
(y = 0) if q >= P(y = 1|x). From the realized binary map, we drew a 
nontraditional training set and a nontraditional test set, separately, 
both of which contained case–control presence-background data. 
The number of presence data in the test set was 1,000, whereas the 
number of presence data in the training set varied, including 10, 50, 
100, 500, and 1,000. The number of background data in the train-
ing/test set was five times of presence data. With virtual species, we 
actually know the true labels of random background data, so we also 
used them to constitute a traditional test set. The training and test 
sets were randomly realized ten different times, and the experimen-
tal results were averaged in our analysis.

The aerial photograph in Li et al. (2021) was also used to test the 
proposed method. The image covers an extent of 500 m × 500 m in 
the city of El Cerrito in California, with a spatial resolution of 0.3 m. 
The total number of pixels is 2,778,889, and the prevalence values of 
urban, tree, and grass are 0.2292, 0.2106, and 0.1880, respectively. 
We performed different one-class classifications to map different 
land types (i.e., urban, tree, and grass), separately, treating them as 
three different species. For each land type, we drew a nontraditional 
training set and a nontraditional test set, respectively, following the 
case–control sampling scheme. The number of presence data in the 
test set was 2,000, and the number of presence data in the training 
set was set as 200, 1,000, and 5,000, respectively. The number of 
background data was five times of presence data in both training and 
test sets. Again, the true labels of background data in the nontradi-
tional test set can be obtained through manual interpretation, so we 
also used these background data to constitute a traditional test set. 
Both the training and test sets were randomly realized ten different 
times, and the experimental results were averaged in our analysis.

We trained different classifiers using different sample sizes to 
produce different model performances. For convenience, we refer 
to sample size as the number of labeled presence data in a training 
set throughout this paper. We selected both simple and complicated 
classifiers, but the purpose here was only to produce poor and good 
predictions, and it does not matter what specific methods were used. 
For the virtual species, we trained DOMAIN (Carpenter et al., 1993), 
generalized linear model (GLM) (Guisan et  al.,  2002), and artificial 
neural network (ANN) (Hecht-Nielsen, 1989) using five sample sizes 
(i.e., 10, 50, 100, 500, and 1,000); for the aerial photograph, we 
trained GLM and ANN using three sample sizes (i.e., 200, 1,000, and 
5,000) and convolutional neural network (CNN) (Lecun et al., 1998) 
with only one sample size (i.e., 5,000). DOMAIN was trained from 
only presence data whereas other classifiers were trained from 
presence-background data. All of the models were evaluated by a 
traditional test set and a nontraditional test set, respectively. We 
plotted the ROC/PR curves and calculated AUC values using PA, PO, 
and PB approaches. For the PB approach, we tested two different 
scenarios: true species prevalence was given (denoted as PB1) and 
species prevalence was estimated from the ROC/PR curves (denoted 
as PB2). In real-world applications, PB1 could be applied when there 
is independent presence–absence survey data or expert knowledge 
to provide information on prevalence, whereas PB2 could be applied 
when there is no prior information on prevalence.

(29)P (y = 1|x) =
eb0 + b1x1 + b2x2 + b3x3

1 + eb0 + b1x1 + b2x2 + b3x3

(30)P (y = 1|x) =
eb0 + b1(x1 − x1)

2
+ b2(x2 − x2)

2
+ b3(x3 − x3)

2

1 + eb0 + b1(x1 − x1)
2
+ b2(x2 − x2)

2
+ b3(x3 − x3)

2

Species Prevalence

Coefficients

Functionb0 b1 b2 b3

Spec1 0.1638 −10 −0.15 −2.5 28 Linear

Spec2 0.3298 0.5 −1.5 −8.5 18 Linear

Spec3 0.4471 −0.4 −0.8 −5 18 Linear

Spec4 0.0503 −5 −0.2 5 30 Quadratic

Spec5 0.7837 2.8 5 −5 −50 Quadratic

TA B L E  3   Prevalence and coefficients 
of five virtual species

https://worldclim.org/
https://worldclim.org/
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3  | RESULTS

In Figure  2, we present part of the ROC/PR curves by different 
approaches. Generally, the curves produced by PB approach are 
quite similar to the benchmark curves by PA approach, whereas the 
curves produced by PO approach are obviously lower than that by 
PA approach for all species. Meanwhile, the discrepancies between 
PR curves are obviously larger than that between ROC curves. 
According to Figure  3, the rankings of models by AUC values are 
similar for PA, PB, and PO approaches, and the correlations of AUC 
values between different approaches are strong in general. The cor-
relation coefficient of AUC between PA and PB is slightly higher than 
that between PA and PO approaches. For example, the correlation 
coefficient of AUCPR between PA and PB is 0.9789 when true prev-
alence is given or 0.9731 when prevalence is estimated, whereas the 
correlation coefficient of AUCPR between PA and PO is 0.9689 for 
the virtual species spec1.

Based on the ranking of models by PO approach, we used the 
ROC (or PR) curve produced by the best model with the highest 
AUCROC (or AUCPR) value to estimate the constant c and preva-
lence, which are shown in Table 4. As can be seen, the accuracies 
of estimated prevalence and c are relatively high in most cases. For 
example, the true values of prevalence and c for urban are 0.2292 
and 0.4660, respectively, and the estimated values are 0.2275 and 
0.4678, respectively. For the virtual species, the absolute value of 
relative error of prevalence ranges from 2% to 8%, whereas the ab-
solute value of relative error of c ranges from 1% to 6%. For the aerial 
photograph, the absolute value of relative error of prevalence ranges 
from 0% to 14%, whereas the absolute value of relative error of c 
ranges from 0% to 7%. The highest accuracy is produced by classifi-
cation of urban, and the largest error is produced by classification of 
tree from the real aerial photograph.

According to Table  4, the largest absolute value of relative 
error of estimated c in our experiment is 6.56%. The sensitivity of 

F I G U R E  2   The ROC (left) and PR (right) curves by PA, PB, and PO approaches. PB1: prevalence is given; PB2: prevalence is estimated. 
Model: ANN trained with a sample size of 1,000. Virtual species: spec1 (a); spec2 (b); spec3 (c); spec4 (d); spec5 (e). Aerial photograph: urban 
(f); tree (g); grass (h)
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the calibrated curves by PB to the constant c is shown in Figure 4, 
in which the ROC/PR curves are plotted using the true value of c 
with additive relative errors of ±10%. We can see that the ROC 
curve moves rightward and the PR curve moves downward when 
c is overestimated, and this trend switches to the opposite direc-
tion correspondently when c is underestimated. Consequently, the 
AUCROC and AUCPR values are underestimated when c is overes-
timated, whereas they are overestimated when c is underestimated. 
Take the virtual species spec1 as an example, the values of AUCROC 
and AUCPR for PA approach are 0.9823 and 0.9224, respectively; 

the values of AUCROC and AUCPR for PB approach are 0.9800 and 
0.9000, respectively, when the true value of c is given; the values 
of AUCROC and AUCPR for PB approach are 0.9622 and 0.7443, 
respectively, when c with +10% relative error is given; the values 
of AUCROC and AUCPR for PB approach are 0.9929 and 0.9746, 
respectively, when c with −10% relative error is given. Meanwhile, 
the variation of PR curve by PB approach with different values of c is 
larger than the variation of ROC curve.

The effects of the ratio of presence to background data in the test 
set are shown in Figure 5. With different ratio values, the AUC values 

F I G U R E  3   The average values of AUCROC (left) and AUCPR (right) over ten random realizations by PA, PB, and PO approaches. PB1: 
prevalence is given; PB2: prevalence is estimated. Virtual species: spec1 (a); spec2 (b); spec3 (c); spec4 (d); spec5 (e). Aerial photograph: 
urban (f); tree (g); grass (h). For the virtual species, models 1–15 refer to DOMAIN with five sample sizes, GLM with five samples, and ANN 
with five samples, respectively. For the aerial photograph, models 1–7 refer to GLM with three sample sizes, ANN with three sample sizes, 
and CNN with one sample size, respectively. COR1: the correlation coefficient between PA and PB1. COR2: the correlation coefficient 
between PA and PB2. COR3: the correlation coefficient between PA and PO



10200  |     LI and GUO

produced by PB approach are close to that produced by PA approach 
consistently, and the curves by PA and PB approaches are almost un-
affected by the ratio. Similarly, the AUCROC values by PO approach 
are almost the same with different ratio values. However, the AUCPR 
curve by PO approach is greatly affected by the ratio value. For ex-
ample, as the ratio changes from 1:1 to 1:4, the range of AUCPR curve 
by PO approach changes from [0.77, 0.85] to [0.47 0.59].

The estimates of c by models with different abilities of discrimi-
nation are shown in Table 5. By switching the true probability values 
between P(y = 1|x) and P(y = 0|x) at different proportions (i.e., 40%, 
30%, 20%, and 10%) of randomly selected pixels, we obtained differ-
ent synthetic models of different discrimination abilities for the vir-
tual species spce1, with AUCROC values ranging from 0.6 to 0.9 and 
AUCPR values ranging from 0.2 to 0.5. Overall, the estimated values 
of c by the synthetic models with different levels of AUC are accu-
rate relatively. For the synthetic model with AUCROC of 0.5955, the 
estimated value of c is 0.5830 whereas the true value of c is 0.5498, 
with a relative error of 6.04%.

4  | DISCUSSION

Developing novel methods to evaluate the performance of mod-
els without absence data is important in SDM since reliable ab-
sence data are usually not available in real-world applications. 
Currently, one of the most commonly used approaches to address 
the presence-only problem in SDM is to train models using presence 
and background data, which belongs to the case–control sampling 
scenario, and models are usually evaluated using the ROC/PR plots 
by simply treating the background data as absence data (Jiménez-
Valverde,  2012; Lobo et  al.,  2008; Peterson et  al.,  2008; Phillips 
et al., 2006; Sofaer et al., 2019). This PO approach can rank the mod-
els by the relative value of AUC, but the absolute value of AUC may 
be quite different from its true value and hence is misleading (Lobo 
et  al.,  2008; Sofaer et  al.,  2019). In this study, both the AUCROC 
and AUCPR are underestimated by PO approach in most cases. Take 
the classification of urban as an example, the AUCROC and AUCPR 
values by GLM trained with a sample size of 200 are 0.9529 and 
0.8303 for the PA approach, but the AUC values become 0.8474 
and 0.4148 for the PO approach. Please note that the ROC curve 

of a null model is a straight line connecting the points (0, 0) and (1, 
1) in the ROC space, showing that TPR is equal to FPR. By contrast, 
the ROC curve of a trained model is usually higher than that of a 
null model, showing that TPR is larger than FPR. In other words, m2/
(m2 + m5) is larger than m3/(m3 + m6) for a trained model according 
to Table 2. Consequently, (m2 + m3)/(m2 + m5 + m3 + m6) is larger 
than m3/(m3 + m6), that is, FPR′ of PO approach is larger than FPR of 
PA approach. Meanwhile, TPR′ (equivalent to r′) of PO approach is 
equal to TPR (equivalent to r) of PA approach. As a result, the ROC 
curve and AUCROC of a trained model by PO approach are usually 
lower than that by PA approach. Meanwhile, we can infer that p′ = p/
[p + (1 − c)/c] according to Equation (9). In this study, c ranges from 
0.2 to 0.8 and p ranges from zero to one, so p is larger than p′ in most 
cases, which is the reason why the PR curve and AUCPR of a trained 
model by PO approach are also lower than that by PA approach in 
our experiment.

Unlike the PO approach that treats all of the background data as 
absence data, the PB approach acknowledges that background data 
contain both presence and absence data, and it infers the true per-
formance of a model based on a constant c. According to our exper-
imental results, the PB approach is effective in calibrating the ROC/
PR curves given that the true value of c is known. The curves and 
AUC values by PB approach are very similar to that by PA approach. 
In reality, however, the true value of c is usually unknown and hence 
it has to be estimated. According to Equation (9), an overestimate of 
c will result in an underestimate of p. Because p is negatively related 
to commission error whereas FPR is positively related to commission 
error, an underestimate of p will result in an overestimate of FPR. 
These are the reasons why the ROC/PR curves and AUC values are 
underestimated when c is overestimated. Since the largest absolute 
value of relative error of c is 6.56% in this study, we tested the sensi-
tivity of the calibrated curves by PB to c with additive relative errors 
of ±10%, and the results show that the curves and AUC values by 
PB with the largest relative error of c are still better than that by PO 
approach. Previous research has indicated that the ROC curve and 
AUCROC value may be inflated when a large number of TN data exist 
in a confusion matrix (Lobo et al., 2008). By contrast, the PR curve 
does not consider TN data in a confusion matrix so it is more robust 
to geographic extent and species prevalence, but it has a more vari-
able shape than the ROC curve especially at the positions with low 

Type

True value Estimated value Relative error (%)

P(y = 1|x) c P(y = 1|x) c P(y = 1|x) c

Spec1 0.1638 0.5498 0.1531 0.5664 −6.53 3.02

Spec2 0.3298 0.3775 0.3117 0.3908 −5.48 3.54

Spec3 0.4471 0.3091 0.4128 0.3263 −7.66 5.59

Spec4 0.0503 0.7991 0.0490 0.8032 −2.60 0.52

Spec5 0.7837 0.2033 0.7988 0.2002 1.93 −1.51

Urban 0.2292 0.4660 0.2275 0.4678 −0.74 0.39

Tree 0.2106 0.4871 0.2394 0.4552 13.68 −6.56

Grass 0.1880 0.5154 0.1839 0.5210 −2.18 1.08

TA B L E  4   The true and estimated 
values of prevalence and c
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F I G U R E  4   The sensitivity of ROC (left) and PR (right) curves to constant c by PB approach for the virtual species: spec1 (a); spec2 (b); 
spec3 (c). Model: ANN trained with a sample size of 1,000
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values of r (Boyd et al., 2012; Sofaer et al., 2019). Consistently, we 
can observe that the AUCROC values are larger than the AUCPR 
values, and the ROC curves are generally more stable than the PR 
curves. In the sensitivity analysis of c, the variation of the ROC curve 
is smaller than that of the PR curve probably because the effect of c 
is offset by a large number of TN data.

In this study, the ratio of presence to background data in the 
test set is empirically set as 1:5. According to our test, changing this 
ratio value does not affect the PB-based ROC/PR plots because 
the derivation of c is unrelated to the ratio (see Figure 5). When we 
fix the number of presence data but change the number of back-
ground data in the test set, the values of TPR′ (or r′) and FPR′ are 
unaffected; however, the value of p′ will become lower with a larger 
number of background data according to Equation (12). Therefore, 
the AUCROC value by PO approach is also unaffected by the ratio, 
but the AUCPR value by PO approach is greatly affected by the ratio. 
In practice, it is reasonable to use a larger number of background 
data than the presence data since the background data are samples 
that represent both classes (presence and absence), but we do not 
recommend using a huge number of background data which will pro-
duce an extremely unbalanced test set.

The proposed PB method to calibrate the ROC/PR curves 
is based on the work of Li and Guo (2013). The omission error is 
related to r whereas the commission error is related to p, both of 
which are quantified in the ROC/PR plots. The relationship between 
r and r′ and the relationship between p and p′ derived in Li and Guo 
(2013) are used to reconstruct the true ROC/PR curves from pres-
ence and background data. The key information of this PB method is 
the constant c or species prevalence. Although true species preva-
lence is regarded as unidentifiable without absence data, an estima-
tion of prevalence is helpful and possible under certain conditions 
(Hastie & Fithian, 2013; Li et al., 2011; Phillips & Elith, 2013; Royle 
et  al.,  2012). Please note that r is equal to r′, and the relationship 
between p and p′ is similar to the relationship between probabil-
ity of species occurrence and a naive model fitted from presence-
background data. Let f = P(y = 1|x) denote the probability of species 
occurrence and f′ = P(s = 1|x) denote a naive model. We have f = f′/c 
and p = p′/c in the single-training-set scenario, or f = (1 − c)/c × f′/
(1 −  f′) and p =  (1 − c)/c × p′/(1 − p′) in the case–control scenario 
(Elkan & Noto, 2008; Li et al., 2011). Therefore, an estimation of c (or 
prevalence) not only enables us to model the probability of species 
occurrence, but also helps us to assess the model performance with-
out requiring labeled absence data.

There are several ways to estimate the constant c (or preva-
lence). Li et al.  (2011) proved that the average predicted values of 
f′ at prototypical presence sites where the habitats are maximally 
suitable for a species can be used to estimate c, but this approach 
may lead to an underestimate of c because the probability of species 
occurrence at a selected prototypical presence site may be smaller 
than one. Royle et  al.  (2012) proposed the MAXLIKE that can be 
used to infer prevalence, but the linear logistic model assumption 
may be violated in reality (Guillera-Arroita et  al.,  2015; Hastie & 
Fithian, 2013; Phillips & Elith, 2013). Li and Guo (2013) showed that 

thresholding a naive model based on maximizing the measure Fpb 
on a validation set can also estimate prevalence, but Liu et al. (2016) 
and Leroy et al. (2018) argued that it is difficult to estimate preva-
lence using threshold-based approach. In this study, we propose to 
estimate c from the ROC/PR plots based on the fact that a model 
of good discrimination ability can produce the maximum value of p 
(or minimum value of FPR) with a high value of threshold. In other 
words, we can adjust the PR curve so that its highest point reaches 
the maximum value of one (equivalent to adjusting the ROC curve 
so that its most left point reaches the minimum value of zero), and 
the relationship between p and p′ yields an estimate of c. Because 
there could be multiple threshold values that can produce maximum 
value of p, we use multiple points rather than the highest point in 
the PR curve to obtain a more robust estimate of c, for example, 
the higher threshold values between 90th and 99th percentiles. In 
our experiment, this percentile range consistently produces high ac-
curacies of c for different species, and it can be adjusted in other 
situations. Meanwhile, the discrimination ability of a model can af-
fect the accuracy of c. The largest relative error of c is observed for 
the classification of tree because the model cannot perform well in 
discriminating tree from other land types, with the lowest value of 
AUCPR compared with other species. This is because a model with 
lower AUC value will have the lower probability to correctly rank the 
predicted probabilities. As a result, the number of points that are 
suitable to estimate c in the ROC/PR plots becomes smaller as the 
discrimination ability (measured by AUC) of a model decreases, so 
the default percentile range (i.e., 90th to 99th percentiles) might not 
be appropriate. According to our test, a model with a low AUCROC 
value like 0.6 (slightly better than a null model whose AUCROC value 
is 0.5) is still able to estimate c, but it is necessary to carefully se-
lect the optimal points in the curves where FPR is close to zero or 
p is close to one. Intuitively, we can observe that the ROC curve 
starts from the point (0, 0) where FPR is zero, and a trained model 
which is better than a null model will shift the curve upward, so it is 
possible to find points where FPR is equal or close to zero to esti-
mate c, excluding the point (0, 0) where TPR is also zero. If possible, 
users can also derive c (or prevalence) from other sources such as 
limited presence–absence surveys or expert knowledge (Phillips & 
Elith, 2013). However, the uncertainty of c is almost inevitable no 
matter it is derived from models or surveys.

In this study, we only focus on calibrating the ROC/PR curves 
from presence and background data, but model evaluation may in-
volve multiple aspects and multiple measures. The strengths and 
drawbacks of ROC/PR plots have been well investigated in the 
literature (Boyd et  al.,  2012; Davis & Goadrich,  2006; Fielding & 
Bell, 1997; Lobo et al., 2008; Sofaer et al., 2019). For example, the 
current ROC/PR plots have been criticized to equally weigh the com-
mission and omission errors, but these two types of errors may not 
be of the same importance (Lobo et al., 2008; Peterson et al., 2008). 
In spite of the limitations of ROC/PR plots, the proposed method 
can be used as a complement to other model assessment methods. 
For example, the presence-only calibration (POC) plot by Phillips 
and Elith (2010) can be used to measure the ability of calibration for 
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continuous outputs. The AVI and CVI in Hirzel et al. (2006), Fpb and 
Fcpb in Li and Guo (2013), and TSS in Liu et al. (2013) can assess the 
accuracy of binary outputs without requiring absence data. Other 
methods such as Boyce index and the compositional and multinomial 
procedure can also be considered to quantify model performance 
from different aspects when absence data are not available (Boyce 
et al., 2002; Ottaviani et al., 2004).

Similar to the proposed PB-based ROC/PR plots, both the POC 
plot and Fcpb also require additional information on the constant c (or 
species prevalence) (Li & Guo, 2013; Phillips & Elith, 2010). Actually, 
the four quadrants of a confusion matrix can be fully determined 
from presence and background data if c is known, and all of the 
accuracy measures derived from a confusion matrix can be calcu-
lated, which should be investigated in future research. Although 
different approaches to estimate c still have their limitations, such 
attempts are necessary. In practice, users can consider applying 
multiple approaches to reduce the uncertainty of c. Since c  =  n1/
[n1 + n0 × P(y = 1)] in the case–control scenario, n1/(n1 + n0) ≤ c ≤ 1 
because 0 ≤ P(y = 1) ≤ 1. If we can provide a rough estimate of prev-
alence such as from survey or expert knowledge, then the range of c 
can be refined. Meanwhile, the estimator derived from prototypical 
presences in Li et al.  (2011) usually underestimates c, so it can be 
used as the lower bound of c.

In this study, the ROC/PR curves plotted from PA approach are 
used to benchmark the curves from PO and PB approaches, so a 
test set with presence–absence data is required. Because we do not 
have real species datasets with reliable absence data, we only tested 
the proposed method using virtual species datasets. In addition, we 
used a real aerial photograph since model evaluation of binary clas-
sification in remote sensing is mathematically similar to model evalu-
ation in SDM, and both presence and absence data can be obtained 
through manual interpretation of the aerial photography. However, 
there are still some differences between remote sensing classifica-
tion and SDM due to the complicated biological processes such as 
biotic interactions (Warren et al., 2020). Therefore, the proposed PB 
method should be further investigated using real species datasets in 
the future when reliable species absence data are available.

5  | CONCLUSION

In this study, we propose a new PB approach to plot the ROC/PR curves 
from presence-background data with additional information of a con-
stant c (or species prevalence). The accuracy measures r and p derived 
from presence–absence data can be connected to r′ and p′ derived 
from presence-background data through the constant c, which enables 
reconstructing the true ROC/PR curves from presence-background 
data. Meanwhile, c can be estimated from the ROC/PR plots under the 
condition that a model of good discrimination ability exists. Our experi-
mental results demonstrate that the proposed PB approach is effective 
both in plotting the ROC/PR curves and estimating c from presence-
background data in the case–control sampling scenario.
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F I G U R E  5   The average values of AUCROC (left) and AUCPR (right) over ten random realizations by PA, PB, and PO approaches for the 
virtual species spec1. The number of presence data in the test set is fixed as 1,000, and the number of background data is set as 1,000 (a), 
2,000 (b), 3,000 (c), and 4,000 (d). PB1: prevalence is given; PB2: prevalence is estimated. Models 1–15 refer to DOMAIN with five sample 
sizes, GLM with five samples, and ANN with five samples, respectively. COR1: the correlation coefficient between PA and PB1. COR2: the 
correlation coefficient between PA and PB2. COR3: the correlation coefficient between PA and PO

Model AUCROC AUCPR True value
Estimated 
value

Relative 
error (%)

1 0.5955 0.1899 0.5498 0.5830 6.04

2 0.6928 0.2407 0.5498 0.5672 3.17

3 0.7906 0.3211 0.5498 0.5671 3.15

4 0.8844 0.4675 0.5498 0.5565 1.22

Note: The synthetic models were produced by switching the true probability values between 
P(y = 1|x) and P(y = 0|x) at a number of randomly selected pixels.

TA B L E  5   The true and estimated 
values of c for the virtual species spec1 
by synthetic models with different AUC 
values
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