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Abstract

The budding of membranes and curvature generation is common to many forms of trafficking in 

cells. Clathrin-mediated endocytosis, as a prototypical example of trafficking, has been studied in 

great detail using a variety of experimental systems and methods. Recently, advances in 

experimental methods have led to great strides in insights on the molecular mechanisms and the 

spatio-temporal dynamics of the protein machinery associated with membrane curvature 

generation. These advances have been ably supported by computational models, which have given 

us insights into the underlying mechanical principles of clathrin-mediated endocytosis. On the 

other hand, targeted experimental perturbation of membranes has lagged behind that of proteins in 

cells. In this area, modeling is especially critical to interpret experimental measurements in a 

mechanistic context. Here, we discuss the contributions made by these models to our 

understanding of endocytosis and identify opportunities to strengthen the connections between 

models and experiments.
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Model development for the different subprocesses of clathrin-mediated endocytosis (CME) can 

span different length scales. Like the pieces of a puzzle, these different modeling approaches at 

different scales contribute to our understanding of the mechanisms underlying CME.
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Introduction

In the 1970s, two separate developments in two disparate fields took place: cell biologists 

discovered receptor-mediated endocytosis [1, 2]; meanwhile other researchers, investigating 

the mechanics of lipid bilayers (not biological membranes), generated a model that 

expresses the energy of a lipid bilayer as a function of its local curvatures [3, 4, 5]. While 

these two developments stem from what appear to be independent fields and methods, 

molecular and cell biological approaches to elucidate the molecular mechanisms of clathrin-

mediated endocytosis (CME) and the non-trivial mathematics of differential geometry and 

thin shell theory for lipid mechanics models [6, 7], they have converged over the years to 

result in experimentally-informed models that have given us insight into the mechanics and 

energetics of CME [8, 9, 10, 11, 12, 13, 14]. Here, we summarize those models from the 

context of their predictive capabilities and discuss the value of modeling CME. We have 

organized these models, with a focus on bud formation, based on specific biophysical 

themes including identifying the role of membrane tension in CME, the spatial organization 

of endocytic proteins, and accounting for the heterogeneous composition of the plasma 

membrane (Figure 1A). Throughout our discussion we consider the following question: what 

is the value of the model?

Membrane curvature generation in clathrin-mediated endocytosis - a 

mathematical description

As noted in a comprehensive review by Seifert [15], the mechanical models for membrane 

curvature generation were primarily biologically inspired physics (focused on lipid bilayer 

mechanics) as opposed to biophysically inspired (focused on cell membrane mechanics). 

Although such models make many simplifications, they lay the theoretical and 

computational foundations for biophysically inspired models. We first summarize the 

Helfrich model in the context of membrane budding in CME because it is the foundation for 

a vast majority of the current models of membrane curvature generation.

The principle behind the Helfrich model is as follows: while lipids can flow in the plane of 

the membrane, the bilayer is elastic in bending. Compared to the observed curvatures of 

membrane buds, the thickness of the bilayer (~ 5 nm) is very small and so the membrane can 

be thought of as a surface with negligible thickness. In this case, the bending energy can be 

written as a function of the curvatures of the surface [16, 17]. This bending energy density 

was proposed by Helfrich [4], Canham [3], and Evans [5] and is shown in (Figure 1B). To 
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obtain the shape of the membrane for a given load, the bending energy must be minimized, 

often under the assumption is that the membrane is under mechanical equilibrium. This 

approach is commonly used to model buds in CME [8, 18, 12, 9, 11]; indeed one of the 

energy minimizing configurations that can be obtained from this model is the spherical 

vesicle associated with a bud in CME. We illustrate how this model has played an important 

role in addressing some critical phenomena in CME.

The role of membrane tension in CME

In general, the plasma membrane of animal cells is under tension as a result of in-plane 

stresses in the bilayer and connections between the membrane and the underlying 

actomyosin cortex [19, 20, 21, 22•]. Recent studies have shown that the membrane tension is 

heterogeneous in cells [23] and can be measured using a fluorescent sensor [22•]. 

Furthermore, membrane tension varies across cell types and plays an important role locally 

and globally [21, 23]. In CME, in particular, membrane tension plays a critical role in the 

progression of bud formation. Experiments have demonstrated that membrane tension 

opposes deformations to the membrane by curvature-generating proteins [24]. Elevated 

tension in combination with actin inhibitors causes clathrin-coated pits (CCPs) to exhibit 

longer lifetimes and stall at an open, U-shaped intermediate conformation [25, 26•, 27]. 

Similar observations have been made in a reconstituted system [28]. However, these 

observations did not explain the mechanical principles relating membrane tension to bud 

formation.

Using the Helfrich model described above, the role of membrane tension in regulating 

budding was investigated in recent studies by us and others [12, 10, 29•]. The curvature 

induced by the coat proteins was modeled using the spontaneous curvature term (Figure 1B). 

Such model representation allowed us to simulate a clathrin coat by tuning the area of the 

coat, spontaneous curvature, and the bending modulus of the coated region with respect to 

the uncoated membrane. Most of these values have been measured experimentally either in 
vitro or in cells [12, 18, 21, 20]. This model predicted that high tension is energetically 

unfavorable for bud formation, while low tension is favorable. More importantly, as the 

membrane tension was tuned, the model also predicted that there is a “jump” from the U-

shaped bud to an Ω-shaped bud at intermediate, physiologically relevant [30], membrane 

tensions (Figure 2).

This “jump” can be understood as follows. There are two stable branches of solutions of the 

equilibrium membrane shape equations. The lower branch consists of open, U-shaped buds 

while the upper branch consists of closed, Ω-shaped buds. The dashed portion of the curve 

indicates “unstable” solutions that are not accessible by simply increasing and decreasing 

the area of the coat. The marked positions on the curve denote the membrane profiles shown 

in (Fig. 2A). The transition between these two shapes is a snapthrough instability, in which 

the bud “snaps” closed upon a small addition to area of the coat. In other words, a small 

addition to the coat area, coat curvature, or tension does thermodynamic work on the system 

to enable access to a closed bud configuration. Thus, a continuum description of membrane 

budding synthesizes multiple factors that can deform the membrane and helps us interpret 

the transition from the open to closed bud shape from an energetic standpoint.
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The spatial organization of endocytic proteins

The above models were useful in predicting the effect of membrane tension; however, their 

predictive power was limited to regimes where the molecular organization of the protein 

composition on the membrane could be simplified in terms of a spontaneous curvature. A 

critical step in CME is the assembly of a multicomponent protein coat that clusters cargo 

and bends the membrane into a budded morphology [31, 32, 33••, 34••]. The initiation of an 

endocytic patch is thought to be random and likely involves fluctuation-driven molecular 

binding and unbinding until a critical concentration is achieved [35]. Clathrin assembles into 

a lattice-like cage on the membrane with the assistance of adaptor proteins which directly 

bind lipids and membrane receptors [36, 37, 38, 29•]. This assembly is generally thought to 

act as a scaffold which restricts the fluctuations of the membrane curvature, similar to a 

Brownian ratchet, while the adaptor proteins such as AP2 and epsin may impose membrane 

curvature [39, 38, 40]. Recent work suggests that other components of the coat can also 

contribute to membrane bending through scaffolding by F-BAR domains, amphipathic helix 

insertion into the bilayer, and adaptor protein crowding [41, 42, 37,43]. The BAR domain 

proteins associated with CME and the details of their recruitment have been identified but 

how they synergize with coat components and their unique role relative to isotropic coat 

proteins (coat proteins that induce the same curvature in both principal directions) is yet to 

be investigated in detail or understood. From a structural standpoint, proteins containing 

BAR domains can induce two different curvatures along the membrane, allowing them to 

form tubes or neck-like (catenoidal) structures [44].

We consider two critical questions based on the above information: how can this level of 

detail be incorporated in a model, and what can be learned from such modeling efforts? 

From a modeling perspective, the simplest way to include the contributions of the many 

proteins discussed above has been to combine the contributions into a single measure of the 

curvature generating capability of the coat, or spontaneous curvature (Table 1), with an 

effective strength that depends on the local protein composition, density, and area coverage 

[4, 45]. Even with this simplification, when the localization of this spontaneous curvature on 

the membrane surface is considered, we and others have shown that this local protein-

induced spontaneous curvature alters the membrane tension locally [46, 45, 24]. 

Spontaneous curvature only accounts for the isotropic curvature on the membrane surface 

such that the curvature induced in both principal directions is the same [4,45], such that the 

protein coats result in spherical buds or vesicles [4]. The curvatures induced by BAR-

domain proteins, on the other hand, can be captured by using anisotropic spontaneous 

curvature [47, 48]. As summarized in Table 1, the radius of curvature induced by these 

proteins and their molecule numbers gives us a critical set of parameters to constrain more 

detailed models. Going beyond the spontaneous curvature term, the energetics of membrane-

protein interactions can be directly considered in a more quantitative model for curvature 

generation in CME [49, 50, 51, 52, 53], where the contributions to the total energy of the 

system can be formulated to include the energy of the membrane-protein interactions and the 

energy of bending the membrane. While the exact form of the interaction energy with these 

proteins remains to be experimentally verified, based on thermodynamic arguments, a 

quadratic dependence of the energy on the local protein density has been proposed [50, 54, 
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51, 55, 56, 57, 52]. Using these thermodynamic arguments, the protein density on the 

membrane (number of molecules per unit area), the curvature generation capability (both 

isotropic and anisotropic), binding and unbinding kinetics, and diffusion of proteins on the 

membrane can be modeled. Over the years, we have extended this formulation to include 

heterogeneity in the membrane due to proteins [58, 50], flow of lipids along the plane of the 

membrane [46], membrane-protein interactions [59, 60], and diffusion of proteins in the 

plane of the membrane [52]. These studies have highlighted how adding layers of 

complexity to the models can give rise to emergent properties due to the interaction of 

multiple aspects in CME. Therefore, these heterogeneous, dynamic features are important 

not only because they are one way to capture the compositional complexity of biological 

membranes in CME but also because heterogeneity implies that membrane tension is a local 

and dynamic variable [23, 58, 12, 50, 45].

Estimation of material properties to account for compositional 

heterogeneity of the membrane

Another important parameter in membrane curvature generation in CME is the bending 

modulus. This bending modulus, or rigidity, of the plasma membrane is a material property 

of the lipid bilayer describing its resistance to bending, and is function of the molecular 

composition [74]. Estimates of the membrane bending modulus for specific lipid 

compositions range from ~10–50 kBT [75, 76]. Actin and microtubules, for reference, have 

bending rigidities on the order of ~2500 and ~350 000 kBT respectively (given measured 

rigidities of 7.3 × 10−26 Nm2 and 2.1 × 10−23 Nm2 divided by approximate filament widths 

of 7 nm and 25 nm for actin and microtubules respectively [77]). Although cellular 

membranes have a heterogeneous composition that can vary dynamically with location, cell 

type, and cell stage. Particularly for CME, PIP2 is important for the progression of 

endocytosis since it interacts with binding sites in AP2 and other proteins involved in the 

coat assembly [78••, 79•]. The dynamics of phosphoinositide conversion specify the site of 

endocytosis [78••] and have been modeled using line tension as a model parameter [80]. 

Lipid composition variations can thus alter the membrane bending and Gaussian moduli 

along the membrane.

How can models incorporate the variation in membrane physical properties? If experimental 

measurements exist, then the modulus can be input as a heterogeneous parameter for the 

simulations [12, 18]. In the absence of such measurements, one method to estimate the 

membrane bending modulus is to use molecular dynamics simulations [75]. Recent advances 

in computational power and complexity of lipid force fields now allow for the simulation of 

realistic bilayers with complex lipid compositions and asymmetry at atomistic and/or coarse 

grained detail [81]. While MD simulations can be computationally intensive, Coarse 

Grained Molecular Dynamics (CGMD) models such as the MARTINI force field among 

others, coupled with advanced simulation and analysis schemes [82, 75, 83, 76], provide a 

good compromise between chemical detail and computational tractability to estimate 

properties such as area per lipid and bending moduli [81]. Given the diversity and 

heterogeneity of lipids in cell membranes, modeling the individual properties of the myriad 

compositions will be a challenge. Scaling laws for lipid mixtures such as those proposed by 
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Kelley et al. [84•] which related the area per lipid to the bending modulus, area compression 

modulus, and the viscosity of the bilayer, can help create improved approaches for extracting 

membrane material properties from MD simulations while helping to interpolate the material 

properties between known lipid compositions in large length scale models of membrane 

bending.

Image-based modeling for CME

Finally, we discuss an emerging avenue for image-based modeling in CME. The explosive 

advances in microscopy have now given us high resolution and 3D images of an endocytic 

site. Can such data be used to inform quantitative models of CME? Conceptually, the shape 

of the membrane in an endocytic site can be considered as a reporter of applied forces [59]. 

This concept has been used to calculate the axial forces in membrane tethers drawn from a 

vesicle [85] and to estimate the magnitude of the Gaussian modulus [86]. 3D reconstructions 

of CME [87, 88, 33••] sites can be processed using image analysis and meshing software 

such as GAMer 2 [89] and the curvatures of the membrane along the endocytic pit can be 

calculated. From these curvatures, the traction forces acting along different portions of the 

membrane can be calculated [59] assuming that the Helfrich model is valid. Such 

calculations can be coupled to the molecular mechanism either from CGMD simulations 

[90, 91] or experimental analysis. We note that while it is difficult to assign a reaction 

coordinate or a temporal scheme from still images, the progression of endocytosis can be 

inferred from the changes to the membrane geometry [88]. One of the advantages of using 

electron micrographs of membrane structures in cells is that we can now bridge the gap 

between membrane mechanics, curvature studies, and realistic geometries in CME.

Summary

We are the cusp of a very exciting time in cell biology - quantitative experimental biology 

methods can be ably supported by quantitative models, especially in CME given its state of 

maturity. Success in such an endeavor requires a community-wide acknowledgment of the 

expanding role played by models and modelers in enhancing our understanding of cellular 

processes.

As a community, we also need to invest in two fronts to realize the promise of model-

experiment collaboration in quantitative biology. The first investment requires a wider 

recognition that while models are not “real”, they are necessary to understand the physical 

mechanisms governing these cellular processes. A predictive model generally does not 

include all the known molecular details; after all, the goal is not to build the entire cell in a 

computer. With reasonable assumptions, a well-constrained model can generate 

experimentally testable hypotheses and, critically, eliminate hypotheses that are not 

physically plausible. These two features are what make for “good” and useful models. In 

order to achieve such a value proposition, we need to have more conversations about the 

bounds for what models can predict and what experiments can measure. Establishing metrics 

that can be compared between models and experiments, and between models of different 

scales will strengthen the connection and confidence in the iterative loop between models 

and experiments.
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The second investment needed from the community, in order to realize the opportunities 

identified here, is to acknowledge the jargon barrier that arises from the differences in 

technical language used by cell biologists and theoreticians, which can be sometimes 

compounded by field-specific cultural differences. It is the corresponding author’s own 

experience in transitioning between engineering, biology, and back to engineering that while 

such communication barriers do exist, with good faith effort and interdisciplinary training, 

such barriers can be lowered. Ultimately, such efforts will bring fresh ideas and insights and 

strengthen our understanding of CME and membrane trafficking.
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Highlights

• Membrane curvature generation is a readout of the underlying biomechanical 

events

• Computational models help identify the physical principles behind membrane 

budding

• Tight connection between experiments and models will aid study of design 

principles

• New experiments should consider how measurements can be related to model 

parameters
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Figure 1: 
Schematic of endocytosis. A) 3D cartoon of an endocytic bud with protein machinery of 

interest. The localization of many of these molecules is being elucidated by advances in 

experimental imaging techniques. B) Equivalent 2D axisymmetric representation of the 

endocytic bud in A. In the Helfrich model, the contributions of the clathrin scaffold to 

membrane bending can be represented by a localized non-zero spontaneous curvature c0. 

Here W is the total energy of the membrane, k is the bending modulus, H is the mean 

curvature of the membrane, which is the average of the two principal curvatures, C is the 

spontaneous curvature, kG is the Gaussian modulus, K is the Gaussian curvature, which is 

the product of the two principal curvatures, λ is the membrane tension, and A is the total 

membrane surface area [15].
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Figure 2: 
Transition from open to closed buds in CME is mediated by a snapthrough instability. This 

instability is observed as a function of coat area (A, B), coat curvature (C, D), and 

membrane tension (E,F). Membrane profiles of the bud morphology before (dashed line, 

Acoat = 20,065 nm2) and after (solid line, Acoat = 20,105 nm2) addition of a small amount of 

area to the coat, C0 = 0.02 nm−1 are shown in (A, B). Bud morphologies before (dashed line) 

and after (solid line) a snapthrough instability with increasing spontaneous curvature, Acoat 

= 20, 106 nm2, C0 = 0.02nm−1 are shown in (C, D). Bud morphology before (dashed line) 

and after (solid line) a snapthrough instability with decreasing membrane tension, Acoat = 

20, 106 nm2, C0 = 0.02nm−1, λ0 = 0.02 pN/nm is shown in (E, F). Phase diagram showing 

the range of membrane tension and spontaneous curvature variations and the regimes in 
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which the membrane shape corresponds to open and closed buds (G). The green region 

indicates transitions with a “jump”. Adapted from Hassinger et al. [12] with permission 

pending.
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Table 1:

Preferred curvature and molecule numbers of select endocytic proteins.

Protein Protein Class Type of Curvature Radius of Curvature (nm) No. of Molecules

Clathrin Coat scaffold Isotropic >15[61] 120 (40 triskelia)[61]

FCHo F-BAR Anisotropic 9–40[62] 20 (10 dimers)[63, 64••]

Epsin Coat protein Both 19[65] 20[63, 64••, 66]

Endophilin N-BAR Anisotropic 5[24] 10–20[67]

Amphiphysin N-BAR Anisotropic 3[68] 10–20[69]

SNX9 BAR Anisotropic 5–10[70] 22–40[64••]

Dynamin GTPase Anisotropic 10 (unconstricted)
3.5 (constricted)
1.9 (superconstricted)[73]

20–60[71, 72]
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