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Abstract

This study examined how buffer type (shape), size, and the allocation of activity bouts inside 

buffers that delineate the neighborhood spatially produce different estimates of neighborhood-

based physical activity. A sample of 375 adults wore a global positioning system (GPS) data 

logger and accelerometer over 2 weeks under free-living conditions. Analytically, the amount of 

neighborhood physical activity measured objectively varies substantially, not only due to buffer 

shape and size, but by how GPS-based activity bouts are identified with respect to containment 

within neighborhood buffers. To move the “neighborhood-effects” literature forward, it is critical 

to delineate the spatial extent of the neighborhood, given how different ways of measuring GPS-

based activity containment will result in different levels of physical activity across different buffer 

types and sizes.
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Introduction

Regular physical activity is a cornerstone of chronic disease prevention and treatment. The 

role of the physical or “built” environment in supporting or hindering physical activity levels 

in the population has garnered substantial attention over the last several decades (Barnett et 
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al., 2017; Cerin et al., 2014; Cerin et al., 2017; Karmeniemi et al., 2018; King et al., 2019). 

For example, built environment correlates of walking, such as the presence of sidewalks, 

density of road network connections, and having utilitarian destinations within a short 

distance from the home, are well documented (Lee and Moudon, 2006b; Saelens and Handy, 

2008).

Most research linking features of the built environment with health behaviors falls into the 

category of “neighborhood-effects” studies. An important limitation of this literature is that 

the location of the physical activity is not always specified in the studies; it is often unclear 

whether the activity occurred inside the “neighborhood” of residence or in other distal 

locations (Hillsdon et al., 2015; Hurvitz and Moudon, 2012; Hurvitz et al., 2014a). In fact, 

the definition of what constitutes a “neighborhood” is debatable. Most descriptions of 

“walkable neighborhoods” use a spatially-based definition framed on relatively close access 

to utilitarian destinations and urban form characteristics inside pre-selected “buffers” around 

the home address (e.g., 400 m, 800 m, and 1600 m, or roughly one-quarter to one mile 

around the home corresponding to a range of 5 to 20 minutes at typical walking speeds) (Lee 

and Moudon, 2006a; Moudon et al., 2006). We define neighborhood as the area that is 

readily accessible to a person from home. Areas that are not readily accessible to a person 

from home are considered outside the neighborhood. Defining what is meant by 

neighborhood is critical because the characteristics of pre-selected buffers, including their 

shape and size, often drive the relationships noted between neighborhood characteristics and 

physical activity levels (Forsyth et al., 2012b; James et al., 2014).

Here, we provide a more thorough review of important concepts in the field of epidemiology 

and neighborhood-effects studies to provide the theoretical underpinnings of the study. Our 

work is aligned with a generation of research referred to as “people-based” (Kwan, 2009), 

differentiated from the more common “place-based” approach used to measure exposure to 

the built environment. For example, earlier studies of associations between physical activity 

and the built environment used “place-based” exposure measures derived from publicly 

available administrative spatial data (e.g., census blocks or census tracts) to quantify specific 

environmental features. The assumption was that all individuals living in the same spatial 

setting or context had the same exposure to the built environment within that census block or 

tract (Riva et al., 2009). In contrast, “people-based” exposure relies on individual-level data 

and acknowledges potential individual-level differences in exposure to and the way(s) that 

the built environment can influence health-related behaviors. In the present study, we used 

various measures of areas that respondents lived in (i.e., their home neighborhood) to 

capture the locational opportunities potentially available as their base exposure. We also 

address the previously identified “uncertain geographic context problem” (UGCoP), which 

acknowledges uncertainty in how the size and shape of neighborhood areas exert different 

contextual and environmental influences on health behaviors (Kwan, 2012). We considered 

several “shapes” and “sizes” of the residential neighborhood, prerequisites to such studies of 

exposure, using the conventional Euclidian aerial buffer (with buffered areas defined as the 

“crow flies”) as well as more sophisticated street network buffers (with buffered areas 

defined as those accessible by a person traveling a specified distance from home along the 

street network) (James et al., 2014; Oliver et al., 2007). Furthermore, of the several ways to 

measure street network buffers, we specifically considered the novel sausage buffer. Forsyth 
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and colleagues (Forsyth et al., 2012b) reported that their objectively measured built 

environment attributes and their self-reported physical activity and eating habits varied 

significantly by buffer type. However, the relationships between them remained similar, 

suggesting that buffer shape and size did not affect modeled associations between exposure 

and outcomes. Similarly, Frank and colleagues (Frank et al., 2017) compared the 

explanatory power of built environment measures using aerial and street network-based 

buffers and self-reported transportation- and leisure-related levels of physical activity and 

inactivity. They found that the coefficients of the different built environment measures did 

not differ significantly across buffering methods, and that associations of built environment 

measures with physical activity outcomes had the same level of statistical significance across 

buffer types. However, the sausage buffers yielded models where built environment 

measures coefficients differed in significance from the other models.

The results of the previous studies described above (e.g., James, Forsyth, and Frank) may 

have been biased by what has been termed the “residential effect fallacy” (Chaix et al., 

2017). Using self-reported energy balance behaviors, as these studies did, makes it 

challenging to match behaviors spatially and temporally to the wide range of possible buffer 

shapes and sizes. Most certainly, spatially matching self-reported behaviors and exposure 

cannot be done precisely. The residential effect fallacy further stipulates that confounding 

from the urban-rural continuum, from the socioeconomic organizations of territories, and the 

resulting correlations between residential and nonresidential exposures, suggest that 

classically estimated residential neighborhood– physical activity outcome associations also 

capture nonresidential environment effects on physical activity, and overestimate residential 

contextual effects. That is, exposures outside of the home neighborhood are likely to affect 

behaviors, but these exposures are not captured by home-based buffers. This phenomenon is 

similarly described as the “neighborhood effect averaging problem” (Kwan, 2018), which is 

the observed attenuation of the neighborhood effect associated with people’s daily mobility 

patterns. Accordingly, the present study expands on the above body of work by using 

objectively measured (GPS- and accelerometry-based) physical activity and walking bouts, 

which are continuously timestamped and geolocated. Finally, the study uniquely tests 

different ways to precisely allocate physical activity spatially and temporally within buffers 

by describing activity bouts as continuous lines in space and calculating the precise location 

at which the line crosses a buffer. Overall, the present study offers approaches to spatially 

parcel out physical activity so that analyses can be carried out to distinguish between 

potential associations with exposure to the home neighborhood (inside the neighborhood) 

and those to the non-home environment (outside the neighborhood). Specifically, as 

described next, the study compares results from 16 different options to allocate physical 

activity to home neighborhoods.

Because neighborhood-effects studies focus on associations between exposures, such as the 

built environment, with health behaviors, such as physical activity, the careful matching of 

physical activity episodes (or bouts) with location (“where” does the activity occur?), often 

using accelerometry and GPS monitoring, is central to this research. Our group developed 

methods for integrating data from these devices using common timestamps into a single data 

structure (the LifeLog) (Hurvitz et al., 2014b). Here, we build on concepts described in our 

previous work and extend the neighborhood-effects literature by investigating how buffer 
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type (shape), size, and delineations of neighborhood location of physical activity (i.e., the 

allocation of activity bouts inside buffers that represent the neighborhood spatially) produce 

different estimates of neighborhood-based activity. We hypothesized that buffer 

characteristics and delineations of neighborhood location of physical activity result in 

significant differences in physical activity levels measured inside of the home neighborhood. 

The study findings will be discussed in terms of how buffer characteristics result in different 

levels of quantifiable physical activity within home neighborhood locations, which has 

important implications for any study investigating associations between aspects of the built 

environment and physical activity levels.

Methods

Participants

This study included a sample of 375 individuals from the community-based Washington 

State Twin Registry (WSTR). Details regarding the WSTR are reported elsewhere (Duncan 

et al., 2019; Strachan et al., 2013). The parent study of the present cross-sectional analysis 

used objective measures of physical activity in space and time over two weeks of monitoring 

(accelerometry and GPS) under free-living conditions. The parent study was reviewed and 

approved by the local IRB.

Outcome measures

Participants wore a Qstarz BT-Q1000XT GPS data logger (Qstarz International Co. Ltd., 

Taipei, Taiwan) and Actigraph GT3X+ accelerometer (Actigraph Inc, Pensacola, FL) 

attached to an elastic belt worn around the waist for two weeks. Accelerometry data were 

stratified into “wearing” and “nonwearing” intervals using methods from the NCI (Troiano 

et al., 2008) operationalized within the “accelerometry” (Van Domelen, 2015) package in the 

R statistical programming environment. Nonwearing time was defined as intervals of at least 

60 minutes allowing for up to two consecutive minutes with accelerometry values less than 

100 counts per minute.

Physical activity was measured as moderate-to-vigorous physical activity (MVPA) bout 

minutes per week and walking bout minutes per week. Walking bouts were identified using a 

classification algorithm adapted from Kang et al. (Kang et al., 2013), described by us 

previously (Hwang et al., 2016) and in brief below, whereas MVPA bouts were identified as 

sustained intervals with 3D vector magnitude ≥ 2690 counts per minute (CPM) (Sasaki et 

al., 2011), using a modified 10-minute bout definition that allows for up to two minutes 

outside the specified CPM threshold (Troiano et al., 2008). Light-to-moderate physical 

activity (LMPA) bouts used vector magnitude thresholds between 2000 and 6166 CPM. 

Walking bouts were identified as a subset of LMPA bouts after accelerometry and GPS data 

were combined into “LifeLogs” using common time stamps (Hurvitz et al., 2014b). Walking 

bouts had (1) at least three records with GPS coordinates, (2) ≥ 20% of records with GPS 

coordinates, (3) median Doppler shift-based GPS speed between 2 – 6 kmh−1, and (4) 

appropriate spatial configuration. The spatial configuration criterion calculates the inter-

point distance for all GPS coordinates in the bout, and creates a minimum bounding circle 

(MBC) around the 95% most tightly clustered points in the bout; bouts with MBC > 20 m 
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that met all other criteria were flagged as walking. Figure 1 (left panel) shows data for a 

single walking bout, indicating speeds 2 – 6 kmh−1 and vector magnitude 2,000 – 6,166 

CPM; the map (right panel) shows the GPS track along a popular walking trail. The MBC 

criterion was used to differentiate LMPA episodes that took place in relatively confined 

spaces (e.g., gym, garden) from those that involved greater movement through space.

Exposure measures

Four different geometric buffers were constructed (Fig. 2) at two different radii each (833 

and 1666 m, to represent the distance typically walked in 10 and 20 minutes, respectively) 

(Forsyth et al., 2012b; Frank et al., 2017; Hurvitz et al., 2014a; James et al., 2014; Oliver et 

al., 2007). Buffer construction used PostgreSQL/PostGIS, an open-source SQL database that 

includes support for geographic information system (GIS) data and a large set of standard 

functions for spatial analysis. The Euclidean buffer (Fig. 2a) was created by generating a 

circle centered at the home location (using 833 m and 1,666 m radii). The other three buffer 

types were based on network analysis using pgRouting (a PostGIS extension for network 

routing) with OpenStreetMap data from 2017, converted to PostGIS format using osm2po-

core (FreeWare) (C. Moeller, Pinneberg, Germany, available at http://osm2po.de/), an 

application that parses OpenStreetMap data and makes it routable. The first step was to 

select all roadways which were traversable on the street network from the home location to 

the preset buffer size (833 m and 1,666 m) and which could be used by pedestrians; roads or 

streets that have limited access to vehicles (e.g., see Fig. 2, Interstate 5 shown in red while 

traversable streets within the distance tolerance are shown as cyan lines) were not included 

since they did not support physical activity or walking. The convex hull of a set of points is 

the smallest convex set that contains the points. Based on this definition, the convex hull 

buffer (Fig. 2b) was constructed by drawing a polygon that connects the outermost points in 

an area (e.g., the endpoints of the roads accessible by walking from home (833 m and 1,666 

m) along the selected roadways) and contains the remaining points inside the polygon 

(Hasanzadeh et al., 2017), a procedure which is analogous to placing a rubber band around 

the terminal points of the accessible roads. A concave hull is a polygon which includes the 

full set of points, but has less area compared to the convex hull. The concave hull buffer 

(Fig. 2c) (Moreira and Santos, 2007), created with the PostGIS ST_ConcaveHull function, is 

based on the convex hull, but requires a user-defined percent of area to be removed from 

parts of the convex hull that have no traversable network segments. This is similar to the 

“trim” option in ArcGIS (e.g., see Forsyth et al. 2012a, Frank et al. 2017). Finally, the 

“sausage buffer” (Fig. 2d) (Forsyth et al., 2012b) was created by generating a Euclidean or 

“detailed-trimmed” buffer of 30 m along each side of the centerline of roads which were 

identified as being traversable by pedestrians from the network analysis. In a deviation from 

the Forsyth et al. method (Forsyth et al., 2012a), we filled in the “holes” created by areas 

larger than 60 m (the two 30 m buffers along street centerlines) in order to capture physical 

activity or walking bouts that may take place in areas such as gardens or parks located in the 

inner street-blocks of the home neighborhood. This approach was deemed preferable to 

using a trim dimension large enough to avoid creating holes, which, as discussed by Forsyth 

et al. (2012a and b), would create large extensions at the end of the buffered streets; 

however, our methods include the option to maintain holes, or to fill in holes below a user-

specified tolerance. We used rounded street ends.
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Activity bouts were delineated as linestrings (connected series of line segments) by joining 

the set of temporally sequential GPS points within the bout. Each activity bout linestring 

was overlain on each buffer type to estimate the total duration of MVPA and walking inside 

and outside of the home neighborhood buffer area. Containment of linestrings inside the 

buffer was determined by the different possible overlaps as shown in Fig. 3. We first used a 

“strict” delineation, which included only the activity bout linestrings that were completely 

inside the home neighborhood buffer, as represented by bout (a). We also used a “flexible” 

delineation, where a linestring was either completely or partially contained inside the buffer. 

Partial overlaps are illustrated by the portions of bouts (b), (c), (d), and (e) that are inside 

(solid portion of the line) the neighborhood buffer, whereas portions of bouts that are outside 

(dashed portion of line) of the neighborhood buffer did not count toward the calculation of 

the bout. The linestring represented by bout (f) is completely outside of the neighborhood 

buffer. Apportioning bout portions to inside or outside of the home neighborhood buffer was 

done using the temporal, rather than the physical dimension of the linestring, to correspond 

to the temporal measurement of physical activity. For each bout segment, the fraction of 

bout duration spent inside the buffer was estimated by multiplying the segment duration by 

the proportion of the segment inside the buffer (e.g., a 60 s segment with 40% of its length in 

the buffer would have 24 s inside the buffer and 36 s outside the buffer) (Scully et al., 2019). 

The durations of both complete and partially overlapping segments were summed to provide 

an estimate of the total time spent within and outside the buffer. These estimates were 

generated for both MVPA and walking bouts, and were normalized per participant as 

minutes per week to account for differences in the count of valid wearing days (i.e., a valid 

day was defined as a minimum of 10 hours of wearing time per day) across participants.

Statistical analysis

Descriptive statistics for duration of MVPA and walking bouts (min per week) were 

computed and reported by buffer size (833 m, 1666 m), buffer type (Euclidean, concave hull, 

convex hull, and sausage), overlap delineation (flexible, strict), and location (inside and 

outside the home neighborhood buffer). We used linear regression models to examine the 

extent to which the amount of MVPA and walking differed across the four buffer types for 

each buffer size, delineation, and location combination. Buffer type was used to estimate the 

amount of MVPA (or walking). As buffer type is a categorical variable, the linear regression 

model in which the buffer type is used to estimate the amount of MVPA (or walking) is 

analogous to a one-way Analysis of Variance (ANOVA). Eight comparisons were performed 

for MVPA and walking, respectively. A Bonferroni corrected alpha was used for multiple 

comparisons with p < 0.006 (i.e., 0.05 / 8 = 0.006) considered statistically significant in 

these comparisons. For comparisons that were statistically significant, post-hoc comparisons 

were performed using the Tukey Honestly Significant Difference (HSD) test to determine 

which buffer type comparisons were statistically different from each other. All statistical 

analyses were performed in the statistical program R 4.0.02.

Results

The devices were worn on average 10.8 ± 3.5 hours per day over 10.4 ± 3.4 days. 

Individuals’ ages ranged from 23 to 79, with an average of 45.3 ± 13.0 years. The sample 
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was 72.2% female, and a majority of the participants self-identified as White (90.3%) and 

non-Hispanic (95.7%).

Descriptive statistics of MVPA and walking bout duration by buffer type, size, and 

delineation of activity location are presented in Supplementary Tables S1 and S2, 

respectively. Comparisons between MVPA and walking bout levels inside and outside of the 

buffers, by delineation, are presented in Supplementary Tables S3–S6.

Differences in MVPA bouts across the four buffer types, by size, delineation, and location, 

are presented in Table 1 and illustrated in Fig. 4. The amount of MVPA was significantly 

different across the buffer types for the 833 m strict inside, 833 m flexible inside, 1666 m 

strict inside, 1666 m strict outside, and 1666 m flexible inside buffers, respectively (all ps < 

0.006).

Table 2 presents the post-hoc comparisons for MVPA bouts. For the 833 m strict inside 

location, most of the pairwise comparisons were statistically significant (p < 0.05), except 

for the comparison between the convex hull and concave hull buffers. For the 833 m flexible 

inside location, the amount of MVPA in the Euclidean was higher than the concave hull 

(mean difference = 10.31, p = 0.003), convex hull (mean difference = 8.28, p = 0.029), and 

sausage buffers (mean difference = 15.25, p < 0.001). For the 1666 m strict inside location, 

most pairwise buffer type comparisons were statistically significant (p < 0.05), except for the 

comparison between the convex hull and concave hull buffers. For the 1666 m strict outside 

location, the amount of MVPA measured using the sausage buffer was higher than amounts 

in the concave hull (mean difference = 16.73, p = 0.013), convex hull (mean difference = 

18.19, p = 0.006), and Euclidean buffers (mean difference = 277.48, p < 0.001). For the 

1666 m flexible inside location, the amount of MVPA assessed using the Euclidean buffer 

was higher than that measured using the sausage buffer (mean difference = 16.60, p < 

0.001).

Differences in walking bouts (minutes per week) across the four buffer types, by size, 

delineation, and location, are presented in Table 3 and illustrated in Fig. 5. The amount of 

walking was statistically different across the buffer types for the 833 m strict inside, 833 m 

flexible inside, 1666 m strict inside, and 1666 m strict outside buffers, respectively (all p < 

0.006).

Table 4 presents the post-hoc comparisons for walking bouts. For the 833 m strict inside 

home location, all pairwise buffer type comparisons were statistically significant (p < 0.05), 

with the exception of the comparison between the convex hull and concave hull buffers. For 

833 m flexible inside home location, the amount of walking measured with the Euclidean 

buffer was substantially higher than assessed with concave hull (mean difference = 5.96, p = 

0.012), convex hull (mean difference = 5.10, p = 0.045), and sausage buffers (mean 

difference = 7.67, p < 0.001). For the 1666 m strict inside location, all pairwise comparisons 

were statistically significant (p < 0.05), except for the comparison between convex hull and 

concave hull buffers. For the 1666 m strict outside location, the amount of walking assessed 

using the sausage buffer was substantially higher than assessed using concave hull (mean 
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difference = 11.76, p = 0.014), convex hull (mean difference = 12.56, p = 0.007), and 

Euclidean buffers (mean difference = 19.85, p < 0.001).

Discussion

The major new finding from the present study is that objective measures of physical activity 

inside the home neighborhood vary substantially depending on the buffer type constructed 

and the delineation of containment of GPS and accelerometry-based bout lines inside (and 

beyond) the buffer. Of the four types investigated, Euclidean buffers always resulted in the 

greatest, and sausage buffers in the lowest, levels of physical activity inside the home 

neighborhood. Invoking a “strict” delineation of inside the home neighborhood (see line (a) 

in Fig. 3) always resulted in lower levels of activity than the “flexible delineation” (see lines 

(b), (c), (d), and (e) in Fig. 3) within each buffer type. These findings were mostly consistent 

for both activity outcomes – MVPA and walking – with a few exceptions of statistical 

differences by specific buffer types, distances, and delineations of neighborhood location.

An application of the results from the present study is depicted in Fig. 6, which illustrates a 

single walking bout with geocoded home location and origin (square marker), destination 

(triangle marker), and walking bout (red line with white circles), and all four buffer types at 

1,666 m radii. Descriptively, this bout started at home, with the individual walking to a distal 

location (e.g., a store or other utilitarian destination). Using a strict delineation of bout 

inclusion in the home neighborhood would identify the walking bout within the Euclidean 

buffer only, because the entire bout is contained inside that buffer, whereas there would be 

no detectable walking using the other three buffers because the bout line straddles the 

sausage, convex, and concave hull buffer boundaries. Thus, a strict delineation of bouts 

contained inside the home neighborhood leads to an “all or nothing” spatial allocation of 

activity.

However, the limitations of Euclidean buffers are known, chiefly among them being that not 

all of the space contained within these buffers is in fact “walkable”; note that much of the 

western half of the Euclidean buffer in Fig. 2a lies across a freeway with few overpasses (see 

the cyan lines in Fig. 2 b–d towards the top and bottom of the buffer diagram that cross the 

red colored freeway), and thus is not part of the walkable environment accessible to the 

individual. The network buffers (Fig. 2 b–d) address this limitation by explicitly capturing 

the actual walkable space available to individuals within the constraints of the available 

transportation network.

In contrast to the strict delineation, when invoking the flexible delineation of inside the 

home neighborhood location, the amount of activity quantified for a given walking bout will 

be “parsed out” based on the buffer type. For example, referring back to Fig. 6, there is 

detectable walking in all four buffers. For the Euclidean buffer, all linestring data are 

included in the calculation of the total amount of walking because the bout is completely 

contained within the buffer, mirroring line (a) in Fig. 3. However, for the concave hull, 

convex hull, and sausage buffers, this specific walking bout corresponds to line (d) in Fig. 3 

because the bout starts inside of the buffer (square marker) and ends outside those buffers 

(triangle marker). Analytically, only those linestring data that are contained within these 
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buffers will be included in the calculation of the total amount of walking, resulting in a 

shorter duration walking bout (i.e., the leftmost linestring data shown in the inset of Fig. 6 

will not be included in the concave hull, convex hull, and sausage buffers). Because 

Euclidean buffers cover a larger area than the other buffers, they capture more activity than 

the smaller buffers; it is expected that buffer type will follow the pattern Euclidean > convex 

hull > concave hull > sausage in terms of quantified activity bouts.

Based on the results of the present study, we make the following recommendations regarding 

the measurement of neighborhood-based physical activity bouts using accelerometers and 

GPS monitors. First, it is necessary to describe and justify the choice of buffer type in any 

study of neighborhood-based physical activity because the measured bouts will vary 

substantially based on choice of buffer. Euclidean buffers result in higher levels of physical 

activity being allocated to the home neighborhood, but network buffers are more justifiable 

for identifying features that individuals would have access to within their home 

neighborhood locations. Among the network buffers, the sausage buffer appears to have 

several strengths over the other types. For example, it is based on the physically accessible 

transportation network. The sausage buffer avoids the inclusion of potentially large 

inaccessible areas (as long as the holes are removed, as described in Methods), which can be 

present in all three other buffer types. It also contains the parcels and buildings closely 

adjacent to the road network that could be accessible by walking. Finally, the sausage buffer 

is highly replicable.

Next, regardless of which buffer type is ultimately chosen, the decision should be made in 

conjunction with the choice of location of activity bouts in the neighborhood (i.e., strict or 

flexible delineations of “neighborhood”). Using the strict delineation that only includes 

complete activity bouts in the neighborhood location will naturally lead to smaller physical 

activity bouts and great differences in bouts across the buffer types. The analyst may want to 

first specify the reasons for wanting to only consider complete activity bouts within the 

spatial context or, conversely, for including all “bits and pieces” of activity within the 

neighborhood that would be captured with a flexible delineation. As well, the choice of 

buffer type may be related to the local context. For example, studying populations living in 

dense (urban) or less dense (suburban) areas may affect the choice of buffer type. 

Specifically, a sausage buffer in a dense area will correspond to streets as the main 

accessible open space, whereas the same buffer in less dense areas could exclude open 

spaces away from streets but that are still accessible on foot. On the other hand, we 

acknowledge that sausage buffers may underestimate the accessible area in locations with 

low road density (Frank et al., 2017).

Strengths and limitations

A general strength of the current study is that the combined use of GPS and accelerometry 

provides objectively measured assessment of MVPA and walking, which reflects the actual 

physical activity levels of individuals, relatively free of self-report bias. Another general 

strength is that the 2-week assessment period included both weekdays and weekends, which 

may differ in the amount of physical activity and should thus both be included in any 

assessment of “usual” activity patterns. On average, participants had 10 valid wearing days 
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over the 14-day assessment, which is a little over a week and generally exceeds levels 

reflective of “usual” activity patterns in adults (Cain and Geremia, 2011; Tudor-Locke et al., 

2012).

A more specific strength is that our method of allocating bouts to inside or outside of the 

home neighborhood location can be refined to account for the direction of movement. For 

example, fig. 3 shows directional bouts, which would lend themselves to filtering activity 

that originates either within or outside the neighborhood location, and whether activity 

terminates within or outside the neighborhood location. In addition, the buffer generation 

methods were implemented completely within open-source GIS software, which can 

potentially support more tractable longitudinal analyses, as compared to the use of 

commercial, proprietary software, such as ArcGIS, whose algorithmic details may not be 

reviewable, and which may change across software versions (Forsyth 2012a). We recognize 

that PostGIS is not yet widely used, but to support other researchers, our team is in the 

process of creating complete documentation of our methods, which will be provided freely 

on the WSTR web page. This documentation will enhance replicability should other 

researchers choose to adopt our methods.

Although we took great care in developing our methods, in particular our choice of buffer 

types and delineations for home neighborhood locations (i.e., GPS containment), there are 

likely additional considerations, such as additional buffer types and sizes, availability of 

software platforms, and alternate delineations for home neighborhood locations, that we did 

not address in the present study. In addition, although accelerometers record continuously 

and generally are less prone to data loss (unless of course the participant forgets to wear the 

device), GPS data loggers are known to suffer from incomplete data due to factors such as 

cold starts and signal impedance from urban canyons or other obstructions. Therefore, GPS 

based bout linestrings may have shorter durations than the accelerometry-based bout if the 

GPS signal was lost at either end of the bout; this would result in less spatially referenced 

bout time than total bout time based solely on accelerometry data. Finally, our 

documentation of how to precisely allocate physical activity bouts within buffers can serve 

to reduce the risk of falling into the residential effect fallacy trap by insuring the accurate 

location of physical activity bouts with respect to the home neighborhood. Although beyond 

the scope of this paper, the buffer type (shape) and size options also acknowledge (but does 

not directly address) the UGCoP (Kwan, 2012).

Conclusions

The present study explored ways to spatially allocate accelerometer and GPS-based activity 

in a binary fashion, inside versus outside of a neighborhood location. We demonstrate 

different GIS-based approaches to buffering points of interest (typically home locations) and 

to stratifying activity bouts by type of containment within those buffers. Our focus on 

activity within and outside of a neighborhood is ostensibly aiming at built environment 

exposure near anchor locations, such as the home (i.e., features that are readily accessible in 

the proximal neighborhood) or workplace. GPS-based activity data, being continuous in 

space and time, have allowed research to move from place-based exposure to people-based 
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exposure (Kwan, 2009). Buffering techniques continue to evolve by considering personal 

activity space (Kestens et al., 2012; Lee and Kwan, 2019; Zenk et al., 2011).

Analytically, the amount of walking in a neighborhood estimated from objectively measured 

data can vary substantially, not only due to buffer shape and size, but by how GPS-based 

bouts are allocated with respect to containment within the buffer. Based on the results of the 

present study, and consistent with Forsyth et al. (Forsyth et al., 2012b), we suggest using the 

sausage buffer for empirical studies that investigate associations between the neighborhood-

built environment and physical activity in urban environments, with inclusion of the 

Euclidean buffer for comparison purposes. Clearly, buffer size must be described and 

justified, given that larger buffer sizes will always lead to more neighborhood-based physical 

activity than smaller buffer sizes. This is an important factor because one must consider how 

far people will travel to access different destinations using different transportation modes. 

Finally, it is critical to delineate what the spatial extent of “neighborhood” represents in any 

such study, given how different ways of measuring GPS based activity containment will 

result in different levels of physical activity across different buffer types and sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Many studies do not clearly define and describe how “neighborhood-based” 

activity is measured.

• Neighborhood-based activity varies substantially by buffer shape, size, and 

neighborhood delineations.

• Delineations of spatially allocated accelerometer and GPS activity bouts are 

provided.

• Use of open-source GIS software and clear methods will increase replication 

across different studies.
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Figure 1. 
Accelerometry profile for a walking bout, with bout interval shaded in pink (left panel); 

mapped GPS profile for the same walking bout (right panel).

“Bout points” are those GPS points that were measured during the walking bout.
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Figure 2. 
Four approaches to delineating home neighborhood buffers.

Euclidean (a), convex hull (b), concave hull (c), sausage (d).

Unit ha = hectares.
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Figure 3. 
Allocating bout level GPS linestring data to inside and outside home neighborhood 

locations.
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Figure 4. 
Average moderate-to-vigorous physical activity (MVPA) (minutes per week) by buffer type, 

size, and location (inside and outside the home neighborhood).

Error bars denote standard errors.
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Figure 5. 
Average walking (minutes per week) by buffer type, size, and location (inside and outside 

the home neighborhood).

Error bars denote standard errors.
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Figure 6. 
Illustration of four buffer types (1,666 m distance) and flexible delineations of bout level 

linestring data to inside and outside home neighborhood locations.

Note that GPS points (white circles) are included for illustrative purposes only; the 

determination of physical activity inside the neighborhood location is based on linestring 

measures.
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