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Abstract
Non-invasive image-based machine learning models have been used to classify subtypes of non-small cell lung cancer 
(NSCLC). However, the classification performance is limited by the dataset size, because insufficient data cannot fully 
represent the characteristics of the tumor lesions. In this work, a data augmentation method named elastic deformation 
is proposed to artificially enlarge the image dataset of NSCLC patients with two subtypes (squamous cell carcinoma and 
large cell carcinoma) of 3158 images. Elastic deformation effectively expanded the dataset by generating new images, in 
which tumor lesions go through elastic shape transformation. To evaluate the proposed method, two classification mod-
els were trained on the original and augmented dataset, respectively. Using augmented dataset for training significantly 
increased classification metrics including area under the curve (AUC) values of receiver operating characteristics (ROC) 
curves, accuracy, sensitivity, specificity, and f1-score, thus improved the NSCLC subtype classification performance. These 
results suggest that elastic deformation could be an effective data augmentation method for NSCLC tumor lesion images, 
and building classification models with the help of elastic deformation has the potential to serve for clinical lung cancer 
diagnosis and treatment design.

Keywords  Non-small cell lung cancer (NSCLC) · Subtype classification · Data augmentation · Elastic deformation · 
Radiomics · Machine learning

Introduction

Lung cancer is the leading cause of mortality worldwide 
[1–4], and non-small cell lung cancer (NSCLC) is the most 
common type of lung cancer (75—85%) [5, 6]. Major histol-
ogy subtypes of NSCLC include adenocarcinoma, squamous 
cell carcinoma, and large cell carcinoma, separated by dif-
ferent genomic patterns [7, 8]. Previous works have shown 
that classifying NSCLC subtypes contributed to therapy plan 
design, cancer prognosis evaluation, increased drug response 
and survival time period [9–15].

The most common clinical method for classifying 
NSCLC subtypes is tumor tissue biopsy [5]. This approach 
is limited by several factors, including involuntary body 
movement due to breathing, risk of infection, unstable DNA 
quality [16], and poor time efficiency [14]. Recent researches 
have adopted a non-invasive, image-based method named 
radiomics for NSCLC subtype classification [17–20]. In the 
radiomics method, features are extracted from tumor lesion 
images and then used to predict the subtypes [21–23]. This 
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method yielded promising results, but it also had limitations. 
Feature selecting parameters were often tuned by experi-
ence, which could have impact on the final predictions [24]. 
Some features may have high predictive power when used as 
a group, but each feature often offered limited information. 
These features could be neglected by the feature selection 
step so they could not contribute to classification [17]. In 
order to overcome these limitations, the end-to-end machine 
learning classification models could be used. These models 
take tumor images as input, automatically select features, 
and then output subtype predictions.

A limitation of using image-based models is the scarcity  
of data, which restricts the classification performance [20, 
25, 26]. To solve this problem, a method named data aug-
mentation could come in handy. Data augmentation enlarges 
the original dataset by creating new samples based on avail-
able data, helping reduce overfitting and improve classifica-
tion results [27–29]. In order to expand the NSCLC data-
sets in this work, a data augmentation method called elastic 
deformation is proposed. This method was originally used to 
mimic the distortion of handwritten characters due to invol-
untary hand muscle tremor [30]. Being different from aff-
ine data augmentation methods including rotation, flipping, 
and rescaling, elastic deformation is non-linear so it has the 
potential to simulate the elastic shape change of soft biologi-
cal tissue under compression from surrounding tissues [31, 
32]. Previous studies have shown that elastic deformation 
had improved other image classification results [29, 33].

A number of studies have focused on differentiating 
adenocarcinoma and squamous cell carcinoma [26, 34–36]. 
As to squamous cell carcinoma and large cell carcinoma, 
previous works focused on comparing various biomarkers 
to analyze the drug response and prognosis of these two 
subtypes [37–41]. However, to the best of our knowledge, 
research on using image-based machine learning models to 
classify these two subtypes remains at an early stage. Thus, 
the objective of this work is to improve classification per-
formance of NSCLC subtypes (squamous cell carcinoma vs. 
large cell carcinoma) by a machine learning approach with 
the help of elastic deformation.

The dataset in this study consisted of tumor lesion 
images (of squamous cell carcinoma and large cell carci-
noma) from a public lung cancer CT image database. Our 
dataset was then augmented by both the traditional aff-
ine transformation and our proposed elastic deformation. 

Machine learning classification models were trained on 
original dataset and augmented dataset, respectively, and 
their classification performances on the test samples were 
compared. The results showed that using the augmented 
dataset from elastic deformation to train the model signifi-
cantly improved the classification performance, compared 
with using the original dataset for training. This work pro-
vides encouragement for a new way to improve NSCLC 
subtype classification by using elastic deformation, and 
our approach could serve as a valuable tool for future stud-
ies on lung cancer detection and diagnosis.

Materials and Methods

Data

The public database (NSCLC-Radiomics-Lung1) con-
tains the pretreatment CT scans of 422 NSCLC patients. 
Gross tumor volume and contour are delineated manually 
by oncologists, and the size of each original CT image is 
512 × 512 pixels [42–44]. We have manually checked scans 
of each patient, selected tumor scans that belonged to the 
squamous cell carcinoma and large cell carcinoma, respec-
tively. Finally, 169 patients were selected for this study (81 
patients were diagnosed with squamous cell carcinoma, 88 
patients were diagnosed with large cell carcinoma).

Rectangular regions of interest (ROIs) of tumor lesion 
were extracted from the CT scans of those 169 patients 
(Fig. 1 shows some example tumor ROIs of both sub-
types). Three thousand one hundred and fifty-eight ROIs 
were selected for this study (consisting of 1579 squamous 
cell carcinoma ROIs and 1579 large cell carcinoma ROIs). 
These ROIs were adjusted to the same size (200 × 200 pix-
els). The pixel intensity level of each ROI was normalized 
to the range of [0,1] . Each ROI contained both the lesion 
and its surrounding area, which has been found to con-
tain lesion information that contributes to classification 
[45, 46]. Each tumor lesion was cropped from original 
CT image by drawing a square box around it. The size 
of the square box was set as 125% of the largest axis of 
the tumor lesion. Therefore, each ROI captured the whole 
tumor lesion and its surrounding lung tissues and the ROI 
size was relative to the tumor lesion size.

Fig. 1   Example images of 
lesions of NSCLC patients 
having squamous cell carci-
noma (upper row) and large cell 
carcinoma (bottom row)
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Elastic Deformation

The shapes of biological tissues change elastically when 
they are compressed by surrounding organs, because of 
their non-rigidity. Thus, the traditional spatial rigid data 
augmentation methods including rotating, flipping and 
re-scaling could not effectively capture the biological 
variance of medical image data [25]. Initially used for 
generating hand-written characters, the elastic deforma-
tion method has the potential to model this tissue shape 
change and simulate the tissue appearance.

In this paper, we have introduced the concept of elastic 
deformation into the augmentation of NSCLC datasets. 
In the elastic deformation method, two matrices Mx and 
My are created to store the offsets of each pixel along the 
x-axis and y-axis, respectively. First, each pixel is moved 
randomly in either direction for a distance d or remains 
unmoved,

Then the two matrices are convoluted with two one-
dimensional Gaussian kernels with size n (n should be 
an odd number) and standard deviation σ [47]: every row 
of Mx and My is filtered with the first Gaussian kernel kx,

where x = 0,… , n − 1 and α is the scale factor chosen so 
that 

∑

x kx = 1.
Then every column of Mx and My is filtered with the 

second Gaussian kernel ky,

where y = 0,… , n − 1 and α is the scale factor chosen so 
that 

∑

y ky = 1.
Finally, each pixel of original image is moved accord-

ing to the distances in Mx and My.
In previous work [30], the offset d was 1 on images 

of 28 × 28 pixels. Since characteristics of tumor lesion 
are more subtle than the hand-written digits, the offset 
d in this study was extended to one-tenth of the image 
size (d = 20 on 200 × 200 images). In order to decide the 
key parameters of elastic deformation (width of Gauss-
ian kernel n and standard deviation σ), five values of n 
and three values of σ were chosen empirically, and their 
effects on deformation were compared. Based on the com-
parison results, four combinations of n and σ were used 
for data augmentation. After data augmentation, both 
original images and generated images were stored in the 
augmented dataset.

Mxij
,Myij

∈ {−d, 0, d}

kx = � ∗ e−(x−(n−1)∕2)
2∕(2∗�2)

ky = � ∗ e−(y−(n−1)∕2)
2∕(2∗�2)

Training, Testing, and Evaluation Metrics

The whole image data set was later resized into the same 
size (32 × 32 pixels) before splitting into training set and test 
set, in which each class was equally represented. Images of 
each patient formed a group, in which images were mutually 
dependent. Due to this internal dependency, our data needed 
to be split in a way that training set and test set did not have 
images from the same patient, otherwise the probability 
distribution represented by the samples in the training set 
would “leak” to the test set, thus inflating the performance of 
machine learning models [48]. In this study, the dataset was 
split at the patient level and then all images from a patient 
went to either training set or test set.

Two methods were used to generate the training set and 
test set: k-fold cross-validation (KF) and random shuffle 
split (RS). The KF method (k = 5) took turns to take part of 
the original data as the test set, and finally each part of the 
whole original data could be used for testing, while the RS 
method which randomly generated the test set with multiple 
times (n = 5) could introduce more randomness. Both of the 
two methods were adopted in this study, which could fully 
evaluate the generalization performance of the model and 
avoid the performance interference caused by the unicity and 
special partition of the original data in the best way.

In the KF method, the dataset was split into k subsets, 
by GroupKFold function in scikit-learn package. In order 
to ensure the class balance in each subset, this method was 
implemented manually. As illustrated in Fig. 2, from left to 
right, the labels were unsorted in the dataset to be split. First, 
the dataset was separated according to label, resulting in two 
subgroups of the same size (shown in color of magenta and 
orange). Then, each subgroup was shuffled and then split 
into five folds. These folds were checked to guarantee that 
they did not have images from the same patients. Finally, one 
fold of label 0 and another fold of label 1 were combined 
into a complete fold. Five “complete folds” were generated. 
Note that each complete fold had nearly the same number 
of samples of label 0 or 1. In the cross-validation step, each 
complete fold was the test set, while the rest four complete 
folds formed the training set (training-to-test ratio was 4:1). 
In this way, five training set/test set pairs were generated, 
so the model could be trained and evaluated for five times.

In order to examine whether the method of separating 
training set and test set interfered with the classification 
results, RS method was also implemented to split the data-
sets. In the RS method, the dataset was shuffled randomly 
and then split into the training set and test set (training-to-
test ratio was also 4:1), using the GroupShuffleSplit function 
in scikit-learn package [49]. The whole dataset was split for 
five times, resulting in five training/test pairs. All five pairs 
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were examined, and they did not share any samples from 
the same patients.

Then the training set obtained by KF method or RS 
method was used to train the classification models, whose 
performance was later evaluated on the test set. Different 
types of training set and test set were used in three combi-
nations (Fig. 3): (1) training set was from original data, and 
test set was from original data; (2) training set was from 
augmented data, and test set was from original data; (3) 
training set was from augmented data, and test set was from 
augmented data. In combination 1, the original dataset was 
split into training set and test set directly. In combination 2, 
the augmented dataset was generated by elastic deformation 
and then split into training set and test set. Then, only the 
original images in this test set were kept and they formed a 
new test set, which was used for model evaluation. In com-
bination 3, the augmented dataset was split into training set 
and test set, which was directly used for model evaluation.

In conclusion, the original dataset was split into training set 
and test set (training-to-test was 4:1) by two methods (KF and 
RS) and performed five validations, then three different combina-
tions were adopted for each data partition. A total of 30 (2×5×3) 
results could be obtained and enable this study to comprehen-
sively compare the effects of elastic deformation augmentation.

The model establishment and evaluation were performed 
in scikit-learn package. The ensemble methods combine 
machine learning models to improve their performance 
[50]. Decision tree based ensemble models including random 
forests (RF) and gradient boosted regression trees (GBRT) 
showed the advantage of being less susceptible to over-fitting 
compared to models based on single decision tree [51]. In the 
present study, RF and GBRT models were both used.

The parameters max_features (max number of features in a 
node) and n_estimators (number of decision trees) were keys 
to RF, and the parameter max_depth (the max depth of each 

decision tree) was important to GBRT. Optimal parameters are 
results of the trade-off between model complexity and test per-
formance [50]. For the RF models, the max_features was set 
to 32, n_estimators was set to 60. For the GBRT models, the 
max_depth was set to 10.

Classification metrics including accuracy (ACC), speci-
ficity (SPE), sensitivity (SEN), positive predictive value 
(PPV), negative predictive value (NPV), and f1-score were 
used for model evaluation:

where TP, TN, FP, and FN stand for true positive, true nega-
tive, false positive, and false negative, respectively.

Moreover, to take uncertainty into account, the model 
could be analyzed by changing the threshold that was used 
for making a classification decision and adjusting the trade-
off of false positive rate (FPR) and true positive rate (TPR) 
(TPR is the same as sensitivity):

Accuracy =
TP + TN

TP + TN + FP + FN

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

PPV =
TP

TP + FP

NPV =
TN

TN + FN

f1 − score =
2 ⋅ Sensitivity ⋅ PPV

(Sensitivity + PPV)
=

2 ⋅ TP

2 ⋅ TP + FN + FP

Fig. 2   Schematic illustration of 
KF method for separating train-
ing set and test set (k = 5)
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Fig. 3   Three combinations of 
training set and test set. (1) The 
original dataset was separated 
into training set and test set. (2) 
The augmented dataset was split 
into training set and test set. In 
the test set, only the original 
images were kept. These origi-
nal images were used for model 
evaluation. (3) The augmented 
dataset was split into training 
set and test set, and they were 
used directly for training and 
evaluation
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The relation between FPR and TPR was shown in the 
receiver operating characteristics (ROC) curve, and the area 
under the curve (AUC) of ROC was calculated.

Model performance metrics were expressed as mean and 
standard deviation. Mean and standard deviation were cal-
culated using Excel 2016 (Microsoft Corp., Seattle, WA, 
USA).

Results

Elastic Deformation

Two parameters (n and σ) were experimented to find suitable 
combinations for elastic deformation.

Based on the results of various parameters, two values 
were selected for each parameter: Gaussian kernel width 
n = 11, 15 and standard deviation σ = 4, 8, resulting in 
four different parameter pairs (Fig. 4). Each image passed 
through the elastic deformation with these four parameter 
pairs, generating four new images, which were stored in 
the augmented dataset with original images. Notably, each 
generated image comes from only one original image, and 
it does not have information of other original images. The 

FPR =
FP

FP+TN

TPR =
TP

TP+FN

original dataset expanded for four times and there were 
15,790 images in total (squamous cell carcinoma 7895, large 
cell carcinoma 7895), including the original images.

Classification

Three combinations were generated as described previously in 
the the “Training, Testing, and Evaluation Metrics” Section. 
On each of these combinations, classification models includ-
ing RF and GBRT were trained, and then evaluated using five-
fold cross-validation. ROC curves and their AUCs of the two 
models and three combinations are presented in Fig. 5. For the 
RF model (upper row, Fig. 5), training on the original images 
resulted in mean AUC that was around 0.788 (combination 1). 
Changing the training set to augmented images while keeping 
testing on original images significantly increased the mean 
AUC to 0.977, and kept the AUC variation among folds rela-
tively small (0.005). Using augmented images for both train-
ing and testing further pushed the mean AUC up to 0.99 while 
limited standard deviation to 0.001. For the GBRT model, 
a similar pattern was observed (bottom row, Fig. 5).

Classification metrics including ACC, f1-score, SPE, 
SEN, PPV, and NPV were calculated (upper halves of 
Tables 1 and 2). Switching the training set to augmented 
images significantly increased all the six metrics (from 
near 0.740 to around 0.950), using both RF and GBRT 
models.

Fig. 4   Elastic deformation results of an example original image with 
various parameters. a An original image of tumor lesion. b Images 
after elastic deformation with kernel size n = 3, 11, 15, 25, 45 and 

standard deviation σ = 4, 8, 12. Selected parameters for data augmen-
tation in the present study were indicated by the dashed line box
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In order to examine whether the method of separating 
training set and test set interfered with the classification 
results, RS method was also implemented to split the data-
sets (both original and augmented). After each split, the size 
of test set and training set was 1:4, which was the same as 
the ratio in KF method (since k = 5). Three combinations 
were generated in the same way as in the KF method.

For each model and each combination, the dataset 
separation process was repeated for five times, in order 
to match the settings in five-fold cross-validation. ROC 
results of the RS method were summarized in Fig. 6. For 
the RF model (upper row, Fig. 6), changing training set 
from original images to augmented images significantly 
lifted the AUCs (from 0.758 to 0.977) while restrain-
ing the standard deviation (from 0.019 to 0.006). Using 

augmented dataset for both training and testing further 
increased the mean AUC to 0.984. The GBRT results 
showed a similar pattern (bottom row, Fig. 6). Note that 
GBRT model led to higher mean AUC compared to RF 
model, especially for combination 1 (0.813 vs. 0.758).

Classification metrics of the RS method were sum-
marized in bottom halves of Tables 1 and 2. All metrics 
of combination 2 were significantly higher than those of 
combination 1. This increase in classification metrics was 
in line with the pattern of KF method results.

Results of both KF method and RS method pointed to the 
idea that training classification models on augmented images 
(generated by elastic deformation method) could significantly 
improve the performance of distinguishing NSCLC subtypes 
(squamous cell carcinoma and large cell carcinoma).

Fig. 5   Classification results of RF (upper row) and GBRT (lower 
row) on three combinations of training set and test set. The KF 
method was used for generating the training set and test set. The table 
above ROC subfigures indicated the  source of training set and test 
set: original dataset and augmented dataset. ROC curves of five folds 
were plotted (thin lines) along with the average ROC curve (thick 

blue line) and the standard deviation (gray area). For both RF and 
GBRT, training the model on augmented images (combination 2) 
led to significantly improved classification performance compared 
to training on original images (combination 1) (mean AUCs 0.788 
to 0.977, 0.796 to 0.980). Training and testing on both augmented 
images (combination 3) further increased the AUCs

611Journal of Digital Imaging (2021) 34:605–617



1 3

In Table 3, some of the state-of-the-art works for the clas-
sification of lung cancer subtypes was shown. The work of 
(1) to (5) used machine learning or deep learning to classify 
different lung cancer subtypes, and they obtained classification 
results of AUC 0.72–0.903, ACC 0.783–0.860. These works 
demonstrated the feasibility of using medical imaging data for 
quantitative feature analysis to predict lung cancer subtypes, 
but their classification results still needed to be improved to 
meet the actual clinical requirements. In this study (6), the 
elastic deformation method was used for the first time to 
carry out the subtype classification task of lung cancer, and 
quite good results were obtained (ACC 0.960 ± 0.005, AUC 

0.984 ± 0.004; the GBRT algorithm based on the augmented 
images of the training set, the original images of the test set, 
and used RS method to split for 5 times).

Discussion

Classifying NSCLC subtypes is important for accurate diag-
nosis and therapy design. Our goal is to improve the clas-
sification performance of NSCLC subtypes (squamous cell 
carcinoma vs. large cell carcinoma) using machine learn-
ing models with the help of elastic deformation. The results 

Table 1   Classification metrics: accuracy (ACC), area under the 
curve (AUC) and f1-score of three data combinations, two classifica-
tion models (RF and GBRT), and two training/test splitting methods 
(KF and RS). In both KF and RS results, using combination 2 led to 
significantly improved accuracy (from ≤ 0.745 to ≥ 0.950), for both 

RF and GBRT. Combination 3 further increased the metrics. Simi-
lar pattern was observed for AUC and f1-score: using combination 2 
increased the results (AUC: from ≤ 0.813 to ≥ 0.972, f1-score: from 
≤ 0.747 to ≥ 0.950). Std. stands for standard deviation

Ori. original, Aug. augmented

Method Data Model Mean ± std

Training Test ACC​ AUC​ f1-score

KF (1) Ori Ori RF 0.726 ± 0.020 0.788 ± 0.007 0.726 ± 0.018
GBRT 0.738 ± 0.009 0.797 ± 0.008 0.740 ± 0.009

(2) Aug Ori RF 0.955 ± 0.005 0.978 ± 0.005 0.955 ± 0.003
GBRT 0.956 ± 0.004 0.982 ± 0.003 0.956 ± 0.003

(3) Aug Aug RF 0.966 ± 0.002 0.992 ± 0.001 0.966 ± 0.002
GBRT 0.967 ± 0.002 0.993 ± 0.001 0.967 ± 0.002

RS (1) Ori Ori RF 0.692 ± 0.015 0.758 ± 0.019 0.671 ± 0.019
GBRT 0.745 ± 0.012 0.813 ± 0.017 0.747 ± 0.012

(2) Aug Ori RF 0.950 ± 0.006 0.972 ± 0.007 0.950 ± 0.006
GBRT 0.960 ± 0.005 0.984 ± 0.004 0.960 ± 0.004

(3) Aug Aug RF 0.950 ± 0.003 0.985 ± 0.002 0.950 ± 0.003
GBRT 0.965 ± 0.003 0.992 ± 0.001 0.966 ± 0.003

Table 2   Other classification 
metrics: specificity (SPE), 
sensitivity (SEN), positive 
predictive value (PPV), and 
negative predictive value (NPV) 
of three data combinations, 
two classification models (RF 
and GBRT), and two training/
test splitting methods (KF 
and RS). For all five metrics, 
combination 2 showed better 
performance over combination 
1, using both RF and GBRT 
model and both KF and RS 
method

Ori. original, Aug. augmented

Method Data Model Mean ± std

Training Test SPE SEN PPV NPV

KF (1) Ori Ori RF 0.727 ± 0.030 0.725 ± 0.014 0.727 ± 0.024 0.725 ± 0.017
GBRT 0.730 ± 0.010 0.746 ± 0.010 0.734 ± 0.009 0.742 ± 0.009

(2) Aug Ori RF 0.954 ± 0.005 0.955 ± 0.005 0.954 ± 0.003 0.955 ± 0.008
GBRT 0.954 ± 0.002 0.958 ± 0.007 0.954 ± 0.002 0.958 ± 0.010

(3) Aug Aug RF 0.961 ± 0.004 0.971 ± 0.002 0.961 ± 0.004 0.970 ± 0.002
GBRT 0.963 ± 0.005 0.971 ± 0.005 0.963 ± 0.004 0.971 ± 0.005

RS (1) Ori Ori RF 0.758 ± 0.019 0.626 ± 0.022 0.723 ± 0.024 0.668 ± 0.018
GBRT 0.741 ± 0.016 0.750 ± 0.024 0.745 ± 0.017 0.746 ± 0.026

(2) Aug Ori RF 0.951 ± 0.016 0.950 ± 0.013 0.949 ± 0.017 0.951 ± 0.013
GBRT 0.958 ± 0.013 0.963 ± 0.008 0.957 ± 0.014 0.964 ± 0.007

(3) Aug Aug RF 0.960 ± 0.004 0.940 ± 0.003 0.959 ± 0.004 0.940 ± 0.004
GBRT 0.964 ± 0.004 0.967 ± 0.004 0.965 ± 0.004 0.966 ± 0.004
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suggest that using augmented dataset (created by elastic 
deformation) as the training set improved the performance 
of machine learning classifiers including RF and GBRT.

According to the clinical information of public NSCLC data-
set, the subtypes “squamous cell carcinoma” and “large cell 
carcinoma” was determined by histology. After WHO modified 

Fig. 6   Classification results of RF (upper row) and GBRT (lower 
row) on three combinations of training set and test set. The RS 
method was used for generating the training set and test set. The 
table above ROC subfigures indicated the  source of training set and 
test set: original dataset and augmented dataset. ROC curves of five 
experiments were plotted (thin lines) along with the average ROC 

curve (thick blue line) and the standard deviation (gray area). For 
both RF and GBRT, training the model on augmented images (com-
bination 2) led to significantly improved classification performance 
compared to training on original images (combination 1) (mean 
AUCs 0.758 to 0.972, 0.813 to 0.981). Training and testing on both 
augmented images (combination 3) further increased the AUCs

Table 3   Comparison with the state-of-the-art works for the classification of lung cancer subtypes. This work used the results of the GBRT algo-
rithm based on the augmented images of the training set, the original images of the test set, and used RS method to split for 5 times

ADC  adenocarcinoma, SCC squamous cell carcinoma, LCC large-cell carcinoma, NOS not otherwise specified, NSCLC non-small cell lung can-
cer, SCLC small cell lung cancer, ACC​ accuracy, AUC​ area under the curve, SVM support vector machine

Works Lung subtypes Samples Methods No. of features Image modal Results

(1) Wu W [17] ADC, SCC 350 Naive Bayes 440 CT AUC 0.720
(2) Saad M [18] ADC, SCC, LCC 317 SVM 624 CT ACC 0.783

AUC 0.863
(3) E L [19] NSCLC, SCLC 278 SVM 1695 CT AUC 0.741
(4) Liu J [58] ADC, SCC, LCC, NOS 349 SVM 1029 CT ACC 0.860
(5) Han Y [60] ADC, ACC​ 1419 VGG16 No feature extraction PET/CT ACC 0.841

AUC 0.903
(6) This work SCC, LCC 169 GBRT No feature extraction CT ACC 0.960 ± 0.005

AUC 0.984 ± 0.004
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NSCLC subtyping criteria, the term “large cell carcinoma” 
could include tumor subtypes that lack clear histology definition 
[52]. Our results provided an approach to distinguish a NSCLC 
subtype with clear definition (squamous cell carcinoma) from a 
NSCLC subtype of various content, which therefore is hard to 
define (large cell carcinoma).

Previous works on NSCLC subtype classification  
showed promising results, but they had been limited by the 
size of dataset, which is a common restriction in medical 
image researches. Training classification models on a rela-
tively small dataset could lead to suboptimal performance. 
In this study, RF and GBRT models resulted in accuracy of 
mere 0.726 and 0.735 on the original dataset, respectively.

This limitation could be improved by the data augmenta-
tion method. Data augmentation generates new images based 
on original ones and enlarges dataset [28, 29]. Therefore, it 
improves the classification performance by providing the 
models with more information of the targets. As elastic 
deformation mimics the non-linear shape changes of in vivo 
biological tissue under compression, it has the potential to 
help with medical image classification tasks.

After the dataset was enlarged by elastic deformation, 
three data combinations were created and used in this study 
(Fig. 3). Combination 1 was created to test the classifica-
tion performance of models that were trained on original 
images. Combination 2 used augmented images for training, 
note that these augmented images include both the original 
images and the generated images. For testing, combination 2 
kept only original images (similar to the settings in previous 
work [32, 33, 53]). Note that the training set did not include 
images generated from the test set. In this way, combination 
2 made test performance independent to the data augmenta-
tion process, thus removed possible disturbance. Combina-
tion 3 used augmented images for both training and testing. 
This combination was designed to measure possible “leak-
age” of elastic deformation details from training data to test 
data, which could lead to inflated classification results.

Combination 2 significantly improved the classifica-
tion performance compared to combination 1 (Figs. 5 and 
6; Tables 1 and 2). The mechanism behind this improve-
ment could be that elastic deformation successfully kept the 
invariance of their subtype-specific details by creating new 
images of tumor lesions. Therefore, the augmented dataset 
covered a broader distribution of tumor lesion appearance, 
compared to the original dataset. As the result, the classifi-
cation models learned more characteristics of subtypes and 
yielded better performances. Notably, affine data augmenta-
tion methods including rotation and flip did not improve the 
classification (see the Supplementary data section), suggest-
ing that the non-linear details generated by elastic deforma-
tion contributed to the classification.

Combination 3 showed further improvement over com-
bination 2 and achieved the highest metrics among three 

combinations (Figs. 5 and 6; Tables 1 and 2). However, these 
optimistic results might not fully come from the classifica-
tion capability. In combination 3, when models recognized 
similar elastic deformation patterns in a generated image 
in the test set, they might use details of elastic deforma-
tion, rather than the details of the image itself, to predict 
the label of that image. Therefore, classification results 
could be inflated, and features related to tumor subtype 
physiology could be neglected. In this way, results of com-
bination 2 should be regarded as the best one among three 
combinations, as the “improvement” of combination 3 over 
combination 2 could be triggered by the leakage of elastic 
deformation details from training set to test set. By the term 
“leakage”, we mean that the elastic deformation features, 
rather than the image features, were leaked from training 
to testing.

Moreover, although two models (RF and GBRT) in  
this study led to similar classification metrics, their train-
ing time showed significant differences. For instance, the 
training time per fold in GBRT model (1068.2 ± 25.9 s) was 
nearly 50 times as large as that in RF model (20.8 ± 0.7 s), 
when the augmented data (~ 12,630 images) were used for 
training, and KF method was used for dataset separation 
(Table 4). Although RF was not as accurate as GBRT (espe-
cially on combination 1), RF could be trained relatively fast 
(less than half a minute). This advantage makes it suitable 
for possible applications that require real-time classification 
results in clinical settings.

It is plausible that a number of limitations might have 
influenced our results. Firstly, as powerful as it may be, elas-
tic deformation applies same level of deformation across the 
image. Therefore, applying elastic deformation on tissues of 
different elasticity could lead to distortion. For instance, the 
bone appeared like straight lines in original images, but after 
data augmentation, its shape became curvaceous, which would 
not happen in reality (Fig. 7). These distorted bone structures 
(green boxes, Fig. 7b) might interfere with the subtype related 
features and then compromise the classification performance. 

Table 4   Training time of each fold using RF and GBRT. GBRT 
needed longer time to train (1068  s on average) compared to RF 
(20.8 s on average) (KF method was used for splitting the dataset and 
augmented images were used for training)

Training time per fold (s)

RF GBRT

Fold 0 22 1039
Fold 1 21 1084
Fold 2 21 1111
Fold 3 20 1054
Fold 4 20 1053
Mean ± std 20.8 ± 0.7 1068.2 ± 25.9
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Furthermore, tumor ROI images that were fed into the models 
have different resolutions. Since the size of each raw ROI is 
proportional to the tumor, raw ROIs cropped from CT scans 
have different dimensions. Therefore, after being resized to 
the identical size, their resolutions are different.

Future work will focus on implementing other non-linear 
or generative data augmentation methods including genera-
tive adversarial networks (GAN) on the lung cancer dataset 
and comparing their effects on classification performance. We 
also intend to explore ways to quantify the mechanisms of how 
data augmentation methods (especially non-linear ones such as 
elastic deformation) improved classification performance. The 
sample distribution after data augmentation could be studied 
and compared with that of the original dataset, in order to bet-
ter understand the data augmentation mechanism quantitatively. 
Also, integrating other subtype-specific information, including 
NSCLC genomic data [42, 54–56], and lesion distance to the 
central lung region (this distance tends to be short for squamous 
cell carcinoma [57]) with the end-to-end classification models 
could be important to further enhance classification and help 
reveal model interpretability. In addition, the effectiveness of our 
proposed method needs to be further validated on independent 
NSCLC datasets. Last but not least, our method has the potential 
to help studies on multiple NSCLC subtype classification [58, 
59] to overcome the problem of data scarcity.

Conclusions

The results of the present study indicate that NSCLC subtype 
classification (squamous cell carcinoma vs. large cell carcinoma) 
could be effectively improved by using elastic deformation. 

Artificially enlarged tumor image dataset can provide more 
NSCLC subtype characteristics to the classifiers and enhance 
their predictive power. For application, our method could be used 
to augment clinical NSCLC datasets and train classification mod-
els prior to diagnosis, so the models would be ready to classify 
NSCLC subtypes later for new patients. This approach also has 
the potential to provide validation for clinical subtype genomic 
tests and serve as a valuable image-based tool for both treatment 
strategy design and future lung cancer physiology studies.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10278-​021-​00455-0.
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