Skip to main content
. 2021 May 7;34(3):605–617. doi: 10.1007/s10278-021-00455-0

Table 3.

Comparison with the state-of-the-art works for the classification of lung cancer subtypes. This work used the results of the GBRT algorithm based on the augmented images of the training set, the original images of the test set, and used RS method to split for 5 times

Works Lung subtypes Samples Methods No. of features Image modal Results
(1) Wu W [17] ADC, SCC 350 Naive Bayes 440 CT AUC 0.720
(2) Saad M [18] ADC, SCC, LCC 317 SVM 624 CT

ACC 0.783

AUC 0.863

(3) E L [19] NSCLC, SCLC 278 SVM 1695 CT AUC 0.741
(4) Liu J [58] ADC, SCC, LCC, NOS 349 SVM 1029 CT ACC 0.860
(5) Han Y [60] ADC, ACC 1419 VGG16 No feature extraction PET/CT

ACC 0.841

AUC 0.903

(6) This work SCC, LCC 169 GBRT No feature extraction CT

ACC 0.960 ± 0.005

AUC 0.984 ± 0.004

ADC  adenocarcinoma, SCC squamous cell carcinoma, LCC large-cell carcinoma, NOS not otherwise specified, NSCLC non-small cell lung cancer, SCLC small cell lung cancer, ACC accuracy, AUC area under the curve, SVM support vector machine