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Abstract
Age-related macular degeneration (AMD) is one of the leading causes of irreversible blindness and is characterized by fluid-
related accumulations such as intra-retinal fluid (IRF), subretinal fluid (SRF), and pigment epithelial detachment (PED). 
Spectral-domain optical coherence tomography (SD-OCT) is the primary modality used to diagnose AMD, yet it does not 
have algorithms that directly detect and quantify the fluid. This work presents an improved convolutional neural network 
(CNN)-based architecture called RetFluidNet to segment three types of fluid abnormalities from SD-OCT images. The model 
assimilates different skip-connect operations and atrous spatial pyramid pooling (ASPP) to integrate multi-scale contextual 
information; thus, achieving the best performance. This work also investigates between consequential and comparatively 
inconsequential hyperparameters and skip-connect techniques for fluid segmentation from the SD-OCT image to indicate the 
starting choice for future related researches. RetFluidNet was trained and tested on SD-OCT images from 124 patients and 
achieved an accuracy of 80.05%, 92.74%, and 95.53% for IRF, PED, and SRF, respectively. RetFluidNet showed significant 
improvement over competitive works to be clinically applicable in reasonable accuracy and time efficiency. RetFluidNet is 
a fully automated method that can support early detection and follow-up of AMD.

Keywords Age-related macular degeneration (AMD) · Intra-retinal fluid (IRF) · Subretinal fluid (SRF) · Pigment epithelial 
detachment (PED) · Retinal edema · Spectral-domain optical coherence tomography (SD-OCT)

Background

Age-related macular degeneration (AMD) is one of the 
leading causes of blindness in developed countries in which 
genetic and environmental factors play a large role in its 
development [1]. The typical sign of AMD is the occur-
rence of fluid types such as intra-retinal fluid (IRF), sub-
retinal fluid (SRF), and pigment epithelial detachment 
(PED) (Fig. 1). AMD has an effective yet expensive treat-
ment named anti-vascular endothelial growth factor (anti-
VEGF) [2]. Anti-VEGF effectiveness depends on the early 

detection and frequent monitoring of the disease response to 
the treatment. Developing robust diagnostic technology for 
automated detection and quantification of fluid accumula-
tion is vital to deliver efficient and cost-effective treatment.

The AMD diagnosis and follow-up commonly rely on 
multi-modal imaging tools; however, spectral-domain opti-
cal coherence tomography (SD-OCT) is the primary modal-
ity [3]. The recent advancements in the SD-OCT have aided 
in the better monitoring of disease response to the various 
treatments [4, 5]. SD-OCT is a non-invasive medical imag-
ing tool capable of providing micrometer-resolution volu-
metric retinal images [6, 7]. Generally, in SD-OCT IRF, 
SRF and PED are shown as the well-circumscribed fluid 
accumulation in the macular region (Fig. 1a, b and c). In 
some cases, like the early stage of PED, the area is maybe 
shown as non-fluid material with bright elevation (Fig. 1d).

For retinal fluid segmentation, several automated 
approaches have been developed [8–19]. Quellec et al. [13] 
used the texture of suspected regions evaluation in sub-
jection to features extracted from normal retinal layers to 
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identify retinal abnormalities. To delineate the boundaries of 
fluid-associated pathologies, Novosel et al. [10] utilized the 
local attenuation coefficient contrast of retinal layers. These 
methods exploit the handcrafted feature; thus, it may not 
be generalized for different sized and shaped fluid regions. 
Xu et al. [11] integrated the layer segmentation and region 
stratification to find fluid areas from the retina. This method 
may work better on larger fluid regions yet may fail to detect 
small fluid pockets. In Shi et al. [15], the retinal layers were 
segmented, and then the empirically set threshold value for 
layers height variation was used to detect PED. However, the 
single threshold selection approach is not robust enough to 
accommodate unpredictable sizes of fluid regions.

There are also some research works based on graph-theory 
and the traditional machine learning approach. The kernel 
regression and graph theory were adopted in Chiu et al. 
[17] to find retinal layers and fluid-related abnormalities. 
Zhang et al. [16] presented a technique that combined 3D 
graph search and supervised voxel classification to segment 

the fluid-filled anomalies from eyes affected by AMD. Sun 
et al. [14] proposed the PED segmentation method using the 
AdaBoost classifier and shape-based graph-cut. The k-means 
cluster and 3D graph-cut were assimilated in Bekalo et al. 
[19] to segment SRF-related fluid from the SD-OCT image. 
These methods may provide better results but may not 
achieve the same performance for the 3D data and multiple-
class representation. When the data gets bigger, the optimi-
zation function gets computationally more challenging for 
graph-based techniques and fails to find the optimal solution. 
Furthermore, the hard constraint selection and weight initiali-
zation in graph-based approaches are heuristics that may not 
be applicable for the unseen dataset. Furthermore, many of 
the approaches mentioned above focus on the segmentation 
of one or two fluid types and do not determine the fluid types.

The convolutional neural network (CNN) introduction 
enabled advancing retinal fluid segmentation [21, 21–36]. A 
fully convolutional neural network (FCN)-based model pre-
sented in Roy et al. [21] uses the image data and distance map 

Fig. 1  Examples of B-scans 
containing IRF, SRF, and PED. 
The green, red, and blue lines 
represent IRF, SRF, and PED, 
respectively
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to segment retinal fluids. Arunkumar and Karthigaikumar 
[22] proposed a method that integrates the deep belief neural 
network and multi-class SVM classifier to segment retinal 
lesions, including AMD. Morley et al. [28] used a ResNet 
to segment fluid regions and refined the results by apply-
ing the graph-cut technique. Bai et al. [34] used a combina-
tion of FCN and a fully connected conditional random field 
for fluid segmentation. The works mentioned above showed 
significant improvement, but the method’s confines lay on 
the extensive pre- and post-processing techniques they have 
adopted. For example, to remove false-positive fluid regions, 
Lu et al. [21] used traditional machine learning approaches, 
whereas Morley et al. [28] used the graph-cut system and 
morphological operations. Besides the limitations mentioned 
above about the graph-based and traditional machine learning 
methods, as pre- and post-processing steps, these approaches 
undeniably impose additional computational cost; thus, the 
model may not be clinically serviceable. Kang et al. [26] 
presented a two-stepped neural network in which the first 
network is to segment fluid areas, whereas the latter network 
post-processes the result by accepting the original image and 
the corresponding prediction result from the early stage. This 
approach may achieve better performance, but it computa-
tionally costs since the same model runs several times.

Roy et al. [21] presented the architecture mainly focuses on 
retinal layer segmentation. They tested the model only on IRF 
segmentation in which the effectiveness of the work cannot be 
assertive for the segmentation of untested fluid types. Rashno 
et al. [24] presented a method for the segmentation of IRF, 
SRF, and PED. The segmentation of IRF and SRF utilizes a 
trained CNN model, while the PED detection relies on com-
puting the elevation of the retinal pigment epithelium (RPE) 
layer. To tackle the effect of non-cysts regions like vitreous 
fluid, researchers in Rashno et al. [24] and Lee et al. [25] apply 
region of interest (ROI) extraction as the pre-processing stage. 
In many cases, to limit the ROI, the inner limiting membrane 
(ILM) and Bruch’s membrane (BM) layers are segmented using 
a graph-based approach. Since AMD is well-known for deterio-
rating intensity value distribution of layers, graph-based retina 
layer segmentation is prone to error. This is a very significant 
problem when severe PED detachment is available. Because 
in the case of severe PED, segmentation of the most needed 
BM layer is subjective to several empirically chosen param-
eters and weight initializations that may not be effective on 
different shaped and sized PED detachments. Lastly, to the best 
of our knowledge, existing works deploy CNN-based models 
for specific segmentation tasks, but none of them investigate 
the sensitivity of CNN architectures and its hyperparameters 
towards SD-OCT images.

In this work, we proposed a novel CNN architecture, 
called RetFluidNet, to segment retinal fluids from SD-OCT 
images. In contrast to all previously presented approaches, 
this work focuses on the following points.

1. This paper presents an improved semantic segmentation 
architecture well tested to segment three types of retinal 
fluids (IRF, SRF, and PED).

2. The method uses existing skip-connect approaches 
and integrates with Atrous Spatial Pyramid Pooling 
(ASPP) to achieve better performance without pre- or 
post-processing stages.

3. This work investigates between consequential and com-
paratively inconsequential hyperparameters to suggest 
future fluid segmentation tasks starting choice.

4. Finally, the work evaluates and presents the effect of dif-
ferent types of skip-connect techniques to judge their use-
fulness on the fluid segmentation from SD-OCT images.

The rest of this paper is structured as followed. In “Method,” 
we explain the architectural details of the proposed method. 
“Experimental Method” describes the experimental techniques 
include the details about datasets, comparative methods, and 
evaluation metrics. “Result Analysis” discusses the results in 
terms of qualitative and quantitative evaluations. In “RetFluidNet 
Architecture Analysis,” the architecture of the proposed method 
is evaluated to reveal the effects of skip-connect operations and 
respective hyperparameters. “Discussion” presents the discus-
sion that elaborates the findings of this work while comparing 
the findings with previous studies. Finally, in “Conclusion,” we 
end with a brief conclusion and an outlook for future research.

Method

RetFluidNet follows the semantic segmentation approach 
that associates each pixel of an image with one of four class 
labels IRF, PED, SRF, or background. Figure 2 shows the 
illustrative diagram of RetFluidNet architecture. The model 
consists of encoding and decoding paths. The encoding 
path is the contracting path that extracts features and pro-
duces dense low-resolution feature-maps. The decoding 
path is the expansive path that restores the original size. 
The decoding path has an additional operation termed F–C 
(fuse-concatenate) to facilitate the precise localization. F–C 
combines high-resolution features from the encoding path 
with a similar-sized feature on the decoding side. The ASPP 
operation next to the decoding path is to incorporate the 
larger contextual information. Additionally, the model has 
an operation hereafter called A-R-C (A—average pooling, 
R—resize, and C—concatenation) that allows the reuse of 
features from different encoding path layers. The details of 
each operation are explained in the following sections.

Encoding

The encoding part consists of layers in which each layer 
combines regular convolution and Relu activation function. 
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After certain encoding layers, the A-R-C operation is 
induced to the model. The A-R-C operation is a type of 
skip-connect technique that is anticipated to encourage 
feature reuse from various levels of encoding layers. The 
A-R-C operation conducts average pooling on the output 
of the layer before the operation and resizes the outputs 
of all other preceding layers to have the same size as the 
output of average pooling (Fig. 3). In the end, outputs from 

average pooling and resizing operation are concatenated 
and fed to layer followed A-R-C operation. In other words, 
each layer that follows the A-R-C operation obtains addi-
tional resized inputs from all preceding layers, including 
the original image. For the image classification task with 
small training samples, this approach was used in Huang 
et al. [37] and showed significant improvement in reducing 
over-fitting.

Fig. 2  The diagrammatic representation of RetFluidNet architecture. 
The blue boxes stand for the feature map with respective channel 
dimensionality written below the boxes. The purple box stands for 
the feature map after the ASPP operation. The channel size for the 

ASPP result is 42 which is the result of 14 channels from three paral-
lel ASPP operations. P stands for the number of classes, and in this 
paper, it is 4 (three fluid types and background)

Fig. 3  The diagrammatic representation of A-R-C operation. Red rec-
tangles are the input to A-R-C operation in which average pooling is 
applied. The green-colored rectangles including the original image 
are resized to attain the size of the average pooled result. Finally, all 

the results are concatenated. For the easy demonstration, the letters 
are given similar color with the representative rectangles. ln repre-
sents nth layer, d is the dimension feature channel, and x and y are the 
height and width of feature maps
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For a given nth layer l , the input is the output of A-R-C 
operation ( oARC on Fig. 3), if the A-R-C operation precedes 
it; otherwise, the input is the output of the preceding con-
volutional layer (see Fig. 2). It is noteworthy to remark that 
only A-R-C operation reduces the input size by a factor of 
2 in xln  and yln  directions because of 2 by 2 average pool-
ing. For the convolution operation, the output feature-map 
size remains similar to its input. The stride value was set to 
1 with the “same” padding to keep the spatial dimensions. 
The encoding path consists of seven layers, excluding the 
input layer ( l0 on Fig. 3). The first layer has a channel size of 
30, and in each successive layer, the channel size increases 
by 30.

Decoding

The series of convolutional layers and the A-R-C operation 
in the encoding phase produces dense and coarse features 
representation that may lack sharp details, limited posi-
tioning accuracy, and have a lesser spatial dimension. The 
decoding path is the expansive operation that intends to 
restore the resolution of the original image and try to regain 
the lost features. In this work, the repetitive deconvolution 
technique is applied to retain the original resolution, and 
the F–C method is implemented to restore the lost details. 
F–C is a set of operations that encapsulates the summation 
of feature maps followed by the concatenation. First, feature 
maps from the encoding path are fused (summed) to the sim-
ilar-sized output in the decoding path, and then, the result 
from summation is again concatenated with output from the 
encoding path. F–C enables the maximum information flow 
from high-resolution features of encoding to decoding path. 
It doubles the features map channel of its input and feeds 
into the next layer. Since deconvolution reverses the for-
ward and backward passes of convolution, to compensate for 
the size reduction in the A-R-C operation, the up-sampling 
stride was set to 2 for the deconvolution operation before 
F–C. In the decoding path, the feature maps’ channel size 
follows the reverse order of the encoding path except that 
the last layer of decoding has channel size of the number of 
classes (p in Fig. 2.).

Atrous Spatial Pyramid Pooling

The architecture so far can segment the edema region at a 
reasonable accuracy. However, since the three fluid types 
have similar intensity value distribution with slightly dif-
ferent shapes, many wrong class-labeling was observed. To 
solve this problem, the information about the region of fluid 
occurrence was incorporated using ASPP. Based on retinal 
fluids’ anatomy, the type of fluid is correlated to the closer 
retinal layers. For example, IRF appears in the relatively 
lower reflective region (between nerve fiber layer (NFL) and 

outer nuclear layer), whereas the PED and SRF are near to 
the brighter region (inner segment and the outer segment 
IS/OS). For SRF, the brighter region is the lower boundary, 
while PED has a brighter upper boundary. Using solely the 
intensity of pixels and its neighbors windowed by a standard 
convolutional kernel (with a dimension of 7 × 7 in this work) 
may not be good enough to extract all discriminative features 
to differentiate between three fluid types. Standard kernels 
often suffer from confusion categories and inconspicuous 
classes because of missing global context information [38]. 
ASPP captures multi-scale features so that the model can 
encode contextual information. The contextual information 
is an essential factor to segment objects with various scales 
and ambiguous pixels requiring a diverse range of contextual 
information [39]. In this work, the contextual information 
from ASPP assists the model to differentiate the fluid type 
more efficiently (see “RetFluidNet Architecture Analysis”).

ASPP is a technique that uses a series of atrous (or 
dilated) convolutions with different dilation rates to capture 
information from an arbitrary scaled region. For a given 
pixel shown by yellow, consider a 3 × 3 convolution filter 
in Fig. 4 with the image size 11 × 11. When the dilation 
rate is equal to 1, the filter behaves as a standard convolu-
tion. If the dilation rate is set to the value of k, it enlarges 
the convolution kernel by padding k − 1 zeros between two 
consecutive non-zero values. ASPP adds feature responses 
from the broader context without increasing the number of 
parameters and the computational cost. In this work, ASPP 
contains three parallel operations with the dilation rates = 4, 
8, and 12. Each ASPP operation produces a feature map 
with a channel size of 14 that is similar to the original input 
image. The output from ASPP is concatenated to the result 
from the decoding phase and followed by two convolution 
layers in which the last layer is to predict final class labels. 
Since the fluid segmentation in this work is formulated as a 
4-class labeling problem (IRF, SRF, PED, and background), 
the final convolution layer contains four filters.

Experimental Method

Datasets

RetFluidNet and all the comparative methods were trained 
and tested on B-scans from 124 patients. The B-sans were 
obtained from a Cirrus SD-OCT machine (Carl Zeiss Med-
itec, Inc., Dublin, CA). Each SD-OCT cube has 128 B-scans, 
and a given B-scan contains 512 A-scans where each A-scan 
comprises 1024 pixels).

The models are evaluated in two different ways, named 
patient-dependent and patient-independent evaluations. 
For the patient-dependent evaluation, the B-scans from all 
patients were combined, and later the training, validation, 
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and testing folds were chosen. The dataset consists of 
B-scans without fluid, only with IRF, PED, and SRF or 
in a combination of two or even three fluid types. For the 
unbiased selection, the B-scans were divided into eight cat-
egories: IRF, PED, SRF, IRF&PED, IRF&SRF, PED&SRF, 
IRF&PED&SRF, and B-scans without fluid. From each 
category, 70% of the B-scans were randomly selected for 
training. The evaluation and testing folds have 15% of the 
total images. It is essential to realize that in this evaluation, 
the B-scans from the same patient may be available in the 
training and testing datasets, which makes the experiment 
patient-dependent. This test enables us to evaluate the mod-
els’ ability to capture B-scans’ structural variability and cor-
rectly predict the result.

For the patient-independent evaluation, the datasets were 
divided in a random choice of patients rather than B-scans; 
thus, the training and testing sets are independent. Of 124 
patients, 70% were used for training, and 30% were equally 
divided for validation and testing. This evaluates the model 
capability on the patient level instead of B-scans. Since the 
large image size increases both memory and computational 
complexity of the network, in both evaluation methods, the 
B-scans were resized through the “nearest” interpolation 
method to get B-scans of size 256 × 256.

Experimental Settings

The Adam optimizer was used to update the network weights 
and bias on a mini-batch size of 6 using the learning rate of 
 10–5. The combination of softmax activation function and 

the cross-entropy was applied to estimate the training loss. 
The model was trained for the 33,000 iteration steps. The 
kernel size for all convolution and deconvolution layers was 
set to 7 × 7. The weight and bias in the network were initial-
ized using the Xavier scheme. During training, to overcome 
the overfitting, a dropout layer was inserted before the F–C 
operation with the probability of 0.5. In the testing stage, 
the dropout probability was set to 1 so that all the layers 
were kept to generate the prediction. The model was built 
on an open-source deep-learning toolbox named Tensorflow 
[40], and then, the experiments were run on an NVIDIA 
GeForceGTX 1080 GPU.

Comparative Methods and Evaluation Metrics

The performance of RetFluidNet was evaluated against 
existing methods named Deeplabv3 [41], fully convolu-
tional network (FCN) [42], UNet++ [41], and an improved 
multi-scale parallel branch convolutional neural network 
(Im-MPB-CNN) [35]. RetFluidNet and comparative meth-
ods were set to have similar learning rate values, batch size, 
and the number of training iterations. All other hyperparam-
eters of the comparative methods attain the default values 
suggested by the authors. The reason to choose the first three 
comparative methods was that the evaluation against these 
methods would help us demonstrate the advantages of the 
A-R-C, F–C, and ASPP since these comparative methods use 
one of the concepts in a different approach. For instance, to 
restore the lost details during the encoding phase, FCN uses 
features fusing, UNet++ utilizes concatenation to facilitate 

Fig. 4  The pictorial representa-
tion of ASPP operation where 
the dilation rate k set to the val-
ues of 1, 2, and 3. The overlaid 
blue area represents the region 
covered by the kernel. The 
red dots are the neighborhood 
kernel values. The yellow dot is 
a pixel where a feature response 
is calculated for. The green 
stacked rectangles represent the 
result of the different rate val-
ues. C stands for the concatena-
tion of results, whereas Conv is 
convolution
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information flow, and Deeplabv3 uses ASPP to capture a 
wide range of information. Remember that we have inte-
grated these concepts in different architecture to produce 
plausibly good results. Comparison against Im-MPB-CNN 
[35] is included to evaluate RetFluidNet with the method 
specifically designed for AMD fluid segmentation.

The accuracy of fluid volume segmentation is calcu-
lated in terms of overlap ratio (Overlap), overestimate ratio 
(Ovrest), underestimate ratio (Undest), and dice score. The 
overlap ratio indicates the amount of fluid region available 
in both the proposed method and manual segmentation. The 
overestimate ratio denotes the volume of fluid detected by 
the algorithm but not on the manual segmentation results. 
The underestimate ratio on another side measures the vol-
ume available on the manual result but not on the result of 
the algorithm. For the result of expert (A) and the proposed 
method (M), the accuracy metrics are calculated as follows:

(1)Overlap(A,M) =

k
∑

k−1

Ak ∩Mk

Ak ∪Mk

(2)Undest(A,M) =

k
∑

k−1

Ak ∩Mk

Ak ∪Mk

where TP, FP, and FN represent true positive, false posi-
tive, and false negative, respectively. 

−

Ak and 
−

Mk indicate the 
complements of Ak and Mk , whereas the operator ∪ and ∩ are 
union and intersection operations, respectively.

Result Analysis

Qualitative Evaluations

The model trained to segment three types of fluid regions from 
the SD-OCT image. In this section, the qualitative comparison 
of results from RetFluidNet and the comparative methods are 
shown. From Fig. 5, we can see that RetFluidNet achieves 
(shown on the fifth column) visually comparable results with 
the ground truth (shown on the sixth column). The training 
dataset for non-fluid PED was smaller compared to others; 
nonetheless, RetFluidNet is capable of finding non-fluid 

(3)Ovrest(A,M) =

k
∑

k−1

Ak ∩Mk

Ak ∪Mk

(4)Dice =
2 ∗ TP

2 ∗ TP + FP + FN

Fig. 5  Sample results from RetFluidNet and the comparative methods. From the left to right column, it shows the results from FCN, DeepLabv3, 
UNet++ , Im_MPB_CNN, RetFluidNet, and the ground truth
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PED even in the severe case where it appeared in combina-
tion with IRF (first row). RetFluidNet is also capable of seg-
menting small lesions, as shown in the last row. Followed by 
RetFluidNet, the Im-MPB-CNN model showed better results. 
In some cases, Im-MPB-CNN fails to segment early PED 
regions while over segmenting the NRD regions and PED 
with wrong boundary delineation (second and third rows). The 
typical limitations of UNet++ were the under segmentation 
and wrong class-labeling of the lesion regions, as indicated 
in the third column in Fig. 5. FCN and DeepLabv3 also expe-
rienced under-segmentation. In many cases, DeepLabv3 and 
UNet++ failed to segment small fluid regions (Fig. 5 last raw).

Quantitative Evaluation: Patient‑dependent

This section presents the qualitative evaluation of the models on 
the patient-dependent dataset. Table 1 shows each fluid type’s 
accuracy from the RetFluidNet and the comparative methods 
in terms of overlap, overestimate, underestimate ratios, and the 
dice score. The RetFluidNet demonstrates the highest accu-
racy for IRF, PED, and SRF. Im-MPB-CNN achieved better 

accuracy following the RetFluidNet. FCN has shown the low-
est performance in all fluid types. Another difference between 
UNet++ and RetFluidNet is that UNet++ demands nearly twice 
the memory capacity compared to RetFluidNet.

From all the fluid types, IRF detection was challenging 
(as shown in Table 1, all the methods achieved lower perfor-
mance in IRF accuracy). RetFluidNet yields reasonably good 
results in IRF identification with an accuracy of 80.05%, 
which has a substantial improvement over other comparative 
methods with an accuracy of 27.05%, 9.46%, 5.85%, and 
2.48% over FCN, DeepLabv3, UNet++ , and Im-MPB-CNN, 
respectively, in terms of dice score. Overall, the quantitative 
evaluation shows that RetFluidNet outperformed the com-
parative methods.

Quantitative Evaluation: Patient‑independent

In this section, the patient-independent evaluation is pre-
sented for the RetFluidNet and the comparative methods. 
The result of a patient-independent experiment is shown 
in Table 2. RetFluidNet achieved an accuracy of 78.95%, 

Table 1  Dice score, 
overlap, overestimated, and 
underestimate of three fluid 
types from the proposed method 
and comparative methods

Fluid types Metrics (%) FCN [42] DeepLabV3 [41] UNet++ [43] Im-MPB-
CNN [35]

RetFluidNet

NRD Dice 87.47 94.24 94.79 94.71 95.53
Overlap 77.73 89.10 90.10 89.95 91.44
Undest 17.86 5.80 6.14 5.09 5.02
Ovrest 4.40 5.10 3.76 4.97 3.54

PED Dice 84.77 88.78 83.91 88.57 92.74
Overlap 73.56 79.82 72.27 79.48 86.46
Undest 21.36 14.30 22.24 11.69 7.60
Ovrest 5.08 5.88 5.49 8.83 5.94

IRF Dice 53.00 70.59 74.20 77.57 80.05
Overlap 36.05 54.55 58.98 63.36 66.74
Undest 56.53 30.82 26.99 18.0 20.32
Ovrest 7.41 14.6 14.04 18.63 12.94

Table 2  The overlap, 
overestimate, underestimate, 
and dice score of the proposed 
method and comparative 
methods for patient-independent 
evaluation

Fluid types Metrics (%) FCN [42] DeepLabV3 [41] UNet +  + [43] Im-MPB-
CNN [35]

RetFluidNet

NRD Dice 88.21 95.10 95.69 94.20 95.78
Overlap 78.90 90.66 91.74 89.04 91.89
Undest 16.00 5.07 3.35 7.80 6.11
Ovrest 5.10 4.27 4.92 3.16 2.00

PED Dice 81.31 85.47 78.96 81.69 90.90
Overlap 68.51 74.63 65.23 69.05 83.32
Undest 25.50 21.16 17.64 26.45 10.61
Ovrest 5.99 4.21 17.13 4.49 6.07

IRF Dice 54.06 64.58 74.59 70.70 78.95
Overlap 37.04 47.69 59.47 54.68 65.22
Undest 48.73 41.56 23.44 22.35 27.10
Ovrest 14.22 10.76 17.09 22.97 7.68
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90.90%, and 95.78% for IRF, PED, and SRF, respectively. 
Compared to the patient-dependent test, the accuracy of IRF 
and PED reduced by 1.1% and 1.84%, respectively, while 
SRF increased by 0.25%. RetFluidNet holds its outstand-
ing position over the comparative methods in the patient-
independent evaluation. Compared to a patient-dependent 
evaluation in “Quantitative Evaluation: Patient-Dependent,” 
all the comparative methods showed a decline for PED and 
excluding Im-MPB-CNN; other methods achieved trivial 
improvement over the accuracy of SRF segmentation. For 
IRF detection, FCN and UNet++ exhibited improvement, 
whereas DeepLabV3, Im-MPB-CNN, and RetFluidNet 
experienced lower accuracy.

RetFluidNet Architecture Analysis

Contributions of A‑R‑C, F–C, and ASPP

We investigated the effect of A-R-C, F–C, and ASPP oper-
ations on the final result of RetFluidNet. First, the basic 
network runs without any of the operations. Basic network 
means the RetFluidNet only with convolution and Relu 
layer on the encoding side and deconvolution and relu on 
the decoding path. The subsequent experiments run on 
the different combinations, as indicated in Table 3. The 
combinations of modules were represented by a number 

in Table 3, and the corresponding numbers are used in 
Table 4 to show the respective accuracy metrics results.

The basic network was able to segment SRF, yet the seg-
mentation accuracy of IRF was not satisfactory. When the 
A-R-C and F–C modules were introduced independently, 
the accuracy of IRF and SRF were comparatively lower, and 
PED identification was better. The accuracy of all the fluid 
types increased when both A-R-C and F–C were integrated 
into the basic network. This demonstrates that assimilating 
the information flow in the different network stages has an 
essential effect on improving the final result. Another ben-
efit of A-R-C and F–C operations is that even if the training 
dataset was relatively small, the model was capable of train-
ing for a larger number of iterations without being affected 
by overfitting.

Hyperparameters Selection

One of the significant challenges in CNN-based model 
development is hyperparameter tuning. In practice, the sen-
sitive hyperparameter subset is different for various CNN 
architectures and the respective datasets. As CNN has many 
interdependent hyperparameters, it is experimentally quite 
expensive to show the effect of all hyperparameter and their 
dependence. In this work, we have tested the hyperparam-
eters known to have a stimulating effect on deep learning 
architecture [44], including the learning rate, batch size, 
filter size, and number of layers.

The effect of hyperparameter was evaluated after find-
ing the optimal result generating hyperparameters through 
a manual search approach. When the effect of a given hyper-
parameter was evaluated, the rest of the hyperparameters 
were kept fixed to the best value found via manual investiga-
tion. The hyperparameters effect was shown using a graphic 
representation of loss function (Fig. 6), accuracy metrics, 
and their effect on training and testing time per the B-scan 
(Tables 5 and 6). For the reported result, the model has seven 

Table 3  Different combinations of modules with the basic network

Number Combinations

1 Basic network
2 Basic network + A-R–C
3 Basic network + F–C
4 Basic network + A-R–C + F–C
5 Basic network + A-R–C + F–C + ASPP

Table 4  Dice score, 
overlap, overestimated, and 
underestimate of different 
module combination

Fluid types Metrics (%) 1 2 3 4 5

NRD Dice 95.06 94.72 87.14 95.18 95.53
Overlap 90.59 89.97 77.22 90.80 91.44
Undest 3.39 3.93 20.41 4.28 5.02
Ovrest 6.02 6.11 2.37 4.92 3.54

PED Dice 89.50 90.02 90.47 91.96 92.74
Overlap 80.99 81.85 82.60 85.11 86.46
Undest 2.87 11.34 11.67 6.40 7.60
Ovrest 16.14 6.80 5.73 8.49 5.94

IRF Dice 76.77 74.10 64.85 78.36 80.05
Overlap 62.30 58.86 47.98 64.41 66.74
Undest 13.09 17.81 43.34 18.12 20.32
Ovrest 24.61 23.33 8.68 17.47 12.94
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layers on each encoding and decoding side that trained using 
a learning rate of 10–5 updated on a batch size of 6. The cho-
sen filter size was 7 × 7. The model was trained for 12.05 h 
and took 0.06 s for testing.

Including the chosen values of reported results, Ret-
FluidNet was tested on four batch sizes. When batch-
size increases, the model experiences stable training loss 
(Fig. 6a). The smallest batch size produced moderately the 
lowest accuracy, whereas the larger batch size showed bet-
ter performance (Table 5). For the chosen training itera-
tion steps (33,000), batch size 6 produced a better result. 
Increasing the training iteration step may improve the larger 
batch size results, but it requires larger memory and train-
ing hours. The experiment shows that increasing the batch 
size causes longer training hours though it does not affect 
the testing time.

We have seen that the learning rate is the most sensitive 
hyperparameter that needs to be chosen very carefully. Even 
if the training loss was stable (Fig. 6b), for very large or 
small values of the learning rate, the model exhibited the 
worst performance (Table 5). Another important observa-
tion is that the learning rate has nearly no effect on training 
and testing time.

Compared to batch size, learning rate, and the number 
of the layers, changes in the filter size showed a signifi-
cant effect on the training and testing time (Table 6). When 
the filter size increases, both the training and testing time 
increase. Many CNN-based works used 3 × 3 filter sizes, 
but for RetFluidNet, it demonstrated quite unstable training 
loss (Fig. 6c) and the lowest accuracy compared to other 
filter sizes. For the reported result, we have used a filter size 
of 7 × 7, although 9 × 9 also produced a comparable result.

Fig. 6  The graphic representation of training loss response towards the change of different parameter values. The asterisk shows the values used 
for the result reported in this paper
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Finally, we have tested the effect of the number of layers 
(Fig. 6d). In this sense, the number of layers represents lay-
ers in the encoding and decoding path without changing the 
setup of ASPP. For instance, if a number of the layer was 
set to 3, then it means only the first three layers from encod-
ing were used, and the decoding path was set as explained 
in “Method.” When the number of layers set to 9, we used 
the rule of expanding succeeding layers by 30. That means 
additional layers of size 270 and 300 were added. When 
the model size increases or decreases, its accuracy reduces 
(Table 6), which may be because of lower feature representa-
tion when layers are small and lesser training time for larger 
layer size.

The number of iterations specified in this work was 
selected after running the model on different iteration 
steps ranging from 15,000 to 45,000. The model showed 

over-fitting to the iteration numbers higher than 33,000 and 
under-fitting for less than this value.

Discussion

As shown in “Result Analysis”, RetFluidNet achieved the 
best result in terms of quantitative and qualitative evalu-
ation. From Table 1, it can be seen that all the models 
attained the best performance on SRF detection. This 
may be because larger numbers of training datasets con-
tain SRF, and compared to other fluid types, SRF has a 
predictable shape and occurrence region. The accuracy of 
PED is reasonably good; nevertheless, the representation 
of two types of PED (fluid-filled and non-fluid filled) as 
one class may affect its accuracy since a small number of 

Table 5  The response of 
the proposed method for 
changes in values of different 
hyperparameters. (TR.tm and 
TS.tm stand for training and 
testing time, respectively. h and 
s represent hours and second)

Batch size Learning rate

Fluid types Metrics (%) 2 10 14 10–4 10–6 10–7

NRD Dice 94.00 95.15 95.53 95.51 91.70 67.93
Overlap 88.68 90.74 91.44 91.41 84.68 51.43
Undest 2.82 2.61 5.02 4.23 3.01 3.69
Ovrest 8.50 6.65 3.54 4.36 12.31 44.88

PED Dice 87.46 91.93 92.63 92.74 57.51 0.03
Overlap 77.71 85.07 86.26 86.46 40.36 0.01
Undest 18.23 4.21 5.69 7.60 1.24 99.90
Ovrest 4.06 10.72 8.04 5.94 58.40 0.08

IRF Dice 76.07 79.60 78.79 78.98 64.11 0.47
Overlap 61.38 66.12 65.00 65.26 47.17 0.23
Undest 14.71 17.58 24.12 16.91 15.51 98.54
Ovrest 23.91 16.31 10.88 17.83 37.31 1.23
TR.tm (h) 5.03 15.97 18.53 12.01 12.97 12.42
TS.tm (s) 0.06 0.06 0.06 0.06 0.07 0.07

Table 6  The response of 
the proposed method for 
changes in values of different 
hyperparameters. (TR.tm and 
TS.tm stand for training and 
testing time, respectively. h and 
s represent hours and second)

No. of layers Filter size

Fluid types Metrics (%) 3 5 9 3 5 9

NRD Dice 81.09 94.19 94.16 86.41 95.25 95.22
Overlap 68.20 89.02 88.96 76.07 90.92 90.87
Undest 21.51 7.23 2.47 14.68 5.14 2.86
Ovrest 10.30 3.75 8.56 9.25 3.93 6.27

PED Dice 70.92 86.37 89.30 63.24 91.29 92.14
Overlap 54.94 76.01 80.66 46.24 83.97 85.43
Undest 27.82 7.02 2.15 35.56 5.73 6.50
Ovrest 17.24 16.97 17.19 18.20 10.30 8.07

IRF Dice 41.29 67.62 75.74 30.45 76.45 79.59
Overlap 26.02 51.08 60.95 17.96 61.87 66.10
Undest 62.77 35.98 4.02 71.54 19.42 15.58
Ovrest 11.22 12.94 35.03 10.50 18.71 18.32
TR.tm (h) 6.16 10.58 13.45 3.18 5.60 18.37
TS.tm (s) 0.03 0.05 0.08 0.017 0.036 0.112
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training datasets have non-fluid filled compared to fluid-
filled PED. The lower accuracy of IRF arguably emanated 
from two main reasons. The first reason is that the inten-
sity value distribution similarity with SRF and PED and 
the extremely unpredictable shape leads to the wrong 
class-labeling. Secondly, it might be because of the over-
segmentation or under-segmentation of the ground truth. 
The medical image interpretation is commonly prone to 
the expert’s visual judgment, leading to overestimation or 
underestimation. In this case, the training datasets found 
from multiple experts and averaging to represent the final 
training dataset may improve the result.

The patient-independent evaluation shows that the fluid 
types such as SRF with relatively predictable shapes and 
occurrence regions can be trained on smaller datasets to 
achieve good performance. However, as the fluid type has 
unpredictable shapes, it is vital to increase the training dataset 
with various disease severity levels to handle varied shapes. 
In a patient-independent test (Table 2), the accuracy of IRF 
(mostly with the unpredictable shape) and PED (with unpre-
dictable shape in early-stage) was reduced. On the patient-
dependent and patient-independent evaluations, nearly all the 
methods showed a higher underestimate ratio compared to the 
respective overestimate ratio. We have found this as an intrigu-
ing observation that requires investigation of further works.

Evaluation of the effects of different skip-connect tech-
niques in “RetFluidNet Architecture Analysis” helps to 
judge their usefulness on the fluid segmentation from SD-
OCT images. In its overall evaluation, the A-R-C, F–C, 
and ASPP modules raise the performance of the RetFluid-
Net in comparison to the comparative model, which used 
the above concepts in different ways. The existing works, 
like FCN and UNet++ concatenation and fuse, were used 
in the decoding phase, respectively. As already mentioned 
by the authors of these works, these skip-connect tech-
niques help improve final results, which align with our 
experiment observation. Nevertheless, encouraging reuse 
of features in both the encoding and decoding phases pro-
vided better results (Table 4, column 6). Further improve-
ment was observed when the ASPP module was induced 
to the model. From the combination number 5 of Tables 3 
and 4, we can see that the contextual information has a 
beneficial effect on the success of RetFkuidNet. Moreo-
ver, the interesting observation is that even though vitre-
ous fluid has similar intensity value distribution with the 
fluid cysts, the model can capture the structural difference 
and avoid false-positive segmentations without applying 
ROI extraction steps used by other works. We believe that 
ASPP plays a significant role in this achievement since it 
captures features from different spatial levels. RetFkuidNet 
also showed promising achievement in differentiating fluid 
and low reflective retinal regions (such as NFL).

Conclusion

This paper has proposed a semantic segmentation method 
named RetFluidNet to segment three retinal fluid types from 
the SD-OCT image. RetFluidNet consists of seven layers 
in the encoding and decoding path. The two special skip-
connections, so-called A-R-C and F–C, were introduced to 
the architecture. The A-R-C operation was induced in the 
encoding path to permit the reuse of features throughout the 
network. F–C combines the high-resolution features from an 
encoding path with a similar-sized feature in the decoding 
side to restore the lost details in the encoding stage. RetFlu-
idNet exploits the multi-scale context information integration 
ability of atrous spatial pyramid pooling (ASPP) to achieve a 
credible good result. ASPP is applied using the dilation rates 
of 4, 8, and 12. The main aim of incorporating ASPP is to 
assimilate nearby fluid layers’ information because the three 
fluids’ main difference is their region of occurrence.

In many previous works related to retinal fluid segmenta-
tion based on CNN, the models incorporate pre- and post-
processing stages to improve the final result. Though pre- 
and post-processing can improve the results, these steps 
impose additional computational cost leading the method 
not to be clinically applicable. In the approaches that use 
layer segmentation as pre-processing, any layer segmen-
tation error can be propagated to the fluid segmentation. 
RetFluidNet enjoys the multi-level field-of-view capabil-
ity of ASPP instead of pre- and post-processing stages to 
attain higher accuracy. Additionally, contrary to the existing 
works, which mostly focus only on segmentation tasks, we 
have evaluated the effects of different hyperparameters and 
skip-connect operations in this work.

RetFluidNet yields reasonably good results on the SD-
OCT image, yet since many clinical investigations use multi-
modal imaging modalities, the model needs to be trained and 
improved to accommodate images from different modalities. 
RetFluidNet uses the 2D information; its performance may be 
improved if it can be extended to utilize the 3D information 
for volumetric images like SD-OCT and can be considered 
for further work. The effect of down-sampling on the small 
fluid regions is not studied in this work. Since it is likely to 
have small fluid pockets, especially for IRF, in the future 
work investigating the effect of down-sampling and coming 
up with an alternative image resizing approach is advisable.

It is also earnest to mention that this work’s main chal-
lenge was the extensiveness of the optimization process 
emanating because of the large number of hyperparameters 
and their interdependence. The model requires a GPU based 
computer for both training and testing with longer training 
time. Examining the effect of the hyperparameters value 
change requires more extended time and makes hyperpa-
rameters tuning very exhaustive and time-consuming. In 
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future work, it is recommendable to apply the hyperparam-
eter selection methods like BOHB [45] to search for an opti-
mal combination of hyperparameter values so that the model 
may produce a better result.

Abbreviations AMD: age-related macular degeneration; IRF: intra-retinal 
fluid; SRF: subretinal fluid; PED: pigment epithelial detachment; SD-
OCT: spectral-domain optical coherence tomography; CNN: convolutional 
neural network; FCN: fully convolutional neural network; ROI: region 
of interest; ILM: inner limiting membrane; BM: Bruch’s membrane; 
ASPP: Atrous spatial pyramid pooling; A-R–C: a-average pooling, R-resize 
and C-concatenation; F–C: fuse-concatenate; TP: true positive; FP: false 
positive; FN: false negative
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