Table 3.
Confusion matrix for the pre-trained VGG19 network with added FC layers | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG19—patch-based scoring | VGG19 – Image based scoring with voting | |||||||||||||||||
Predicted Score | Predicted score | |||||||||||||||||
0/1+ | 2+ | 3+ | 0/1+ | 2+ | 3+ | |||||||||||||
Ground truth | 0/1+ | 298 (93.1%) | 22 (6.9%) | 0 (0.0%) | Ground truth | 0/1+ | 40 (100.0%) | 0 (0.0%) | 0 (0.0%) | |||||||||
2+ | 19 (7.9%) | 221 (92.1%) | 0 (0.0%) | 2+ | 1 (3.3%) | 29 (96.7%) | 0 (0.0%) | |||||||||||
3+ | 5 (2.1%) | 14 (5.8%) | 221 (92.1%) | 3+ | 0 (0.0%) | 1 (3.3%) | 29 (96.7%) | |||||||||||
Classification report for the pre-trained VGG19 network with added FC layers | ||||||||||||||||||
VGG19—patch-based scoring | VGG19—image-based scoring with voting | |||||||||||||||||
Class | Precision | Recall | F1-score | Support | Class | Precision | Recall | F1-Score | Support | |||||||||
0/1+ | 0.93 | 0.93 | 0.93 | 320 | 0/1+ | 0.98 | 1.00 | 0.99 | 40 | |||||||||
2+ | 0.86 | 0.92 | 0.89 | 240 | 2+ | 0.97 | 0.97 | 0.97 | 30 | |||||||||
3+ | 1.00 | 0.92 | 0.96 | 240 | 3+ | 1.00 | 0.97 | 0.98 | 30 | |||||||||
Accuracy | 0.93 | 800 | 0.98 | 100 | ||||||||||||||
Macro accuracy | 0.93 | 0.92 | 0.93 | 800 | Macro accuracy | 0.98 | 0.98 | 0.98 | 100 | |||||||||
Weighted accuracy | 0.93 | 0.93 | 0.93 | 800 | Weighted accuracy | 0.98 | 0.98 | 0.98 | 100 |