Table 3.
SN | Gen | Author (year) | Method | Cross-validation protocol | Data size | cIMT/PA error | Performance (cIMT error and PA errors) |
---|---|---|---|---|---|---|---|
1 | First | Liang et al. [124] (2000) | Dynamic programming | NA | 50 | cIMT | |
2 | Stein et al. [125] (2005) | Edge-detection | NA | 50 | cIMT | ||
3 | Faita et al. [126] (2008) | Edge-detection | NA | 150 | cIMT | ||
4 | Ikeda et al. [48] (2017) | BEP* detection | NA | 649 | cIMT | ||
5 | First + second | Molinari et al. [72] (2012) | Level set, morphological image processing | NA | 200 | cIMT | |
6 | Molinari et al. [127] (2011) | CARES | NA | 647 | cIMT | ||
7 | Molinari et al. [24] (2011) | CAMES 1.0 | NA | 657 | cIMT | ||
8 | Molinari et al. [128] (2011) | CAUDLES | NA | 630 | cIMT | ||
9 | Molinari et al. [129] (2011) | FOAM | NA | 665 | cIMT | ||
10 | Second | Gutierrez et al. [130] (2002) | Active contours | NA | 180 | cIMT | |
11 | Molinari et al. [131] (2009) | Snakes | NA | 200 | cIMT | ||
12 | Molinari et al. [132] (2014) | CALEX 1.0 | NA | 665 | cIMT | ||
13 | Third | Rosa et al. [92] (2013) | ANN | 60% training, 40% testing | 60 | cIMT |
mm (mean) mm (polyline) mm (center) |
14 | Rosa et al. [93] (2014) | RBNN | Jackknifing (Leave one out) | 25 | cIMT | mm | |
15 | Molinari et al. [23] (2010) | FKMC | K13 (92% training, 8% testing) | 200 | cIMT | mm (polyline) | |
16 | Rosa et al. [110] (2015) | ANN + autoencoder | K2 (50% Training, 50% Testing) | 55 | cIMT | mm | |
17 | Biswas et al. [111] (2018) | FCN | K10 (90% training, 10% testing) | 396 | cIMT |
mm (DL1) mm (DL2) |
|
18 | Elisa et al. [103] (2018) | FCN | K10 (90% training, 10% testing) | 396 | TPA |
mm2 (DL1) mm2 (DL2) |
|
19 | Biswas et al. [104] (2020) | CNN + FCN | K10 (90% training, 10% testing) | 250 | cIMT, TPA value, TPA | mm (cIMT error), mm2 (DL-TPA), mm2 (PA error) | |
20 | Del Mar et al. [112] 2020 | FCN | K10 (90% training, 10% testing) | 331 | cIMT error | mm |