Skip to main content
. 2021 Aug 2;11:15626. doi: 10.1038/s41598-021-95128-x

Table 3.

Predictive performance of the machine learning methods per-class statistics based on under-sampling.

Performance measures Methods
Class SVM-R SVM-L SVM-P ANN kNN Bagging trees
Accuracy BRCA 98.6 97.3 99.2 87.7 96.0 99.5
COAD 95.8 98.6 98.6 90.2 94.7 98.5
LUAD 97.7 99.6 98.0 82.8 90.6 98.7
OV 90.7 88.5 98.9 93.4 98.5 100
THCA 97.8 100 100 82.5 99.1 99.6
Sensitivity BRCA 99.4 100 99.7 84.8 92.7 99.7
COAD 91.7 97.2 97.2 86.1 94.4 97.2
LUAD 98.8 100 96.5 68.6 81.4 97.7
OV 81.6 77.0 97.7 92.0 98.9 100
THCA 95.5 100 100 67.6 98.2 99.1
Specificity BRCA 97.8 94.7 98.8 90.6 99.4 99.4
COAD 100 100 100 94.3 94.9 99.8
LUAD 96.6 99.3 99.5 97.0 99.8 99.6
OV 99.8 100 100 94.8 98.0 100
THCA 100 100 100 97.4 100 100
F1-score BRCA 98.6 97.5 99.2 87.5 95.9 99.5
COAD 95.7 98.6 98.6 60.8 67.3 97.2
LUAD 89.5 97.7 96.5 72.8 89.2 97.7
OV 89.3 87.0 98.8 81.6 93.5 100
THCA 97.7 100 100 75.0 99.1 99.6
Precision BRCA 97.9 95.1 98.8 90.3 99.4 99.4
COAD 100 100 100 47.0 52.3 97.2
LUAD 81.7 95.6 96.5 77.6 98.6 97.7
OV 98.6 100 100 73.4 88.7 100
THCA 100 100 100 84.3 100 100

SVM-R support vector machine with radial-basis function (RBF) kernel, SVM-L support vector machine with linear kernel, SVM-P support vector machine with polynomial kernel, ANN Artificial Neural Networks, kNN K-nearest neighbors, Bagging trees, ACC Accuracy, CI confidence interval, Kappa kappa statistics AUC area under the curve.