Skip to main content
. 2021 Jul 1;297(2):100931. doi: 10.1016/j.jbc.2021.100931

Table 1.

Performance of ML algorithms in discriminating GH7 CBHs and EGsa

Features Decision tree
Logistic regression
K-nearest neighbor
Support vector machine
Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc.
A1 98.6 ± 1.2 45.9 ± 5.0 72.3 ± 3.2 42.0 ± 16.5 52.8 ± 7.3 46.9 ± 6.4 86.5 ± 15.1 88.7 ± 5.4 87.6 ± 5.6 97.0 ± 1.8 85.5 ± 3.4 91.2 ± 2.0
A2 65.9 ± 43.5 37.4 ± 42.2 50.7 ± 3.7 49.3 ± 46.7 50.3 ± 45.3 47.4 ± 2.8 4.6 ± 2.3 97.0 ± 1.9 50.8 ± 3.8 89.2 ± 27.3 18.4 ± 26.0 53.0 ± 3.5
A3 89.0 ± 26.3 16.9 ± 24.8 52.5 ± 3.7 50.8 ± 47.9 49.4 ± 45.4 47.6 ± 3.2 3.0 ± 2.0 97.8 ± 1.6 50.4 ± 3.7 96.7 ± 11.2 11.4 ± 10.9 53.9 ± 3.4
A4 95.7 ± 2.1 99.5 ± 0.7 97.6 ± 1.1 95.8 ± 2.0 99.5 ± 0.6 97.7 ± 1.1 95.8 ± 2.1 99.7 ± 0.5 97.8 ± 1.1 95.6 ± 2.2 99.6 ± 0.6 97.6 ± 1.1
B1 96.8 ± 1.8 44.1 ± 5.5 70.5 ± 3.3 79.3 ± 35.6 34.5 ± 12.2 55.9 ± 13.4 1.3 ± 1.8 98.7 ± 1.6 50.0 ± 3.7 95.1 ± 2.6 72.3 ± 4.4 83.7 ± 2.6
B2 94.6 ± 2.4 99.1 ± 1.2 96.9 ± 1.3 94.7 ± 2.4 98.4 ± 1.2 96.6 ± 1.3 95.3 ± 2.3 97.4 ± 1.8 96.4 ± 1.3 94.8 ± 2.4 98.4 ± 1.6 96.6 ± 1.4
B3 92.4 ± 2.7 99.8 ± 0.5 96.1 ± 1.4 89.9 ± 3.3 99.8 ± 0.5 94.8 ± 1.7 96.3 ± 2.2 98.6 ± 1.1 97.5 ± 1.2 89.7 ± 3.3 99.8 ± 0.4 94.8 ± 1.7
B4 97.9 ± 1.8 98.2 ± 1.3 98.0 ± 1.0 98.2 ± 1.4 98.2 ± 1.2 98.2 ± 0.9 97.6 ± 2.0 98.3 ± 1.3 98.0 ± 1.1 97.8 ± 1.6 98.2 ± 1.3 98.0 ± 1.0
All 8 loops 98.8 ± 1.2 99.1 ± 1.1 98.9 ± 0.8 98.3 ± 1.4 99.2 ± 0.9 98.8 ± 0.8 97.1 ± 2.0 99.4 ± 0.7 98.2 ± 1.1 99.0 ± 1.1 98.9 ± 1.1 98.9 ± 0.7
a

Each ML model was trained separately with each of the eight loops as a single, independent feature, and then with all eight loops combined (last row). The performance was evaluated by measuring the sensitivity (sens.), specificity (spec.) and accuracy (acc.) in percent. Error represents one standard deviation from the mean.