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Abstract

Photodynamic Therapy (PDT) is an externally activated, photochemistry-based approach that 

generates cytotoxic reactive molecular species (RMS), which kill or modulate biological targets. 

PDT provides unique opportunities for applications of nanotechnology where light activation 

can trigger both direct RMS-mediated cytotoxic activity and the release of contents within the 

nanoconstructs (Figure 1). This process allows several species, working via different mechanisms 

and molecular targets to be activated or released in the right place and time, thus providing a 

distinctive approach to combination therapy. With advances in the development of miniaturized, 

even biodegradable, light sources and delivery systems, exciting possibilities of anatomical reach 

with PDT are being made possible. This brief article introduces aspects of interfaces of PDT and 

nanotechnology but, due to space constraints, makes no attempt to be a comprehensive review.

Introduction

The concept of combining light and chemicals for therapy is thousands of years old 

[1,2]. PDT, in its present form, can be dated back to Raab’s accidental discovery in 

1900 that Paramecia combined with acridine orange and exposed to sunlight resulted in 

cytotoxicity to the organism [3]. Contemporary PDT was developed by contributions from 

many investigators, notably of Lipson, Schwartz and Dougherty [4–8] and is approved 

for several cancer and non-cancer applications [2]. PDT involves the light activation of 

certain chemicals called photosensitizers (PS) to elicit photochemistry that is cytotoxic 

or deleterious to biologic targets. Inherent to PDT is the dual selectivity imparted by 

preferential accumulation of the typical photosensitizing agents and by the confinement of 

light to defined volumes. This photochemistry-based approach is distinct from the more 

frequently reported laser-activated photothermal approaches where high intensity, often 

using pulsed lasers, is required to generate thermal effects. PDT typically requires low 

irradiances in the mW/ cm2 ranges and does not depend on thermally induced “burning” of 

tissues but rather on the induced photochemistry. It is thus a “kinder, gentler” approach to 

phototoxicity allowing biological effects to continue after the light trigger has been switched 

off. Combined with nanotechnology, PDT-Nano provides exceptional opportunities for 

delivery of therapeutic reagents and newer approaches to combination treatments grounded 

in cellular mechanisms [9–13] and other advances in photomedicine [14,15]. In addition to 
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enhanced PS delivery, it allows modification of PS physiochemical properties, development 

of novel, even resorbable light sources, establishment of personalized predictive dosimetry, 

and the evolution of novel combinatorial therapeutic approaches.

A wide variety of organic and inorganic nanoconstructs (e.g. liposomal, micellar, polymeric, 

silica and gold nanoparticles) [16] have been introduced to deliver high payloads of PS 

to the desired sites when combined with targeting moieties. Thus far, the most studied 

and clinically used nanoconstructs for PS delivery is the liposome [17,18]. Jori et al. 
demonstrated liposomal delivery of porphyrins and phthalocyanines to the tumors in the 

80–90’s [19–21]. In 2001, collaborative work from several laboratories including ours 

led to the first clinical approval of PDT as a frontline treatment, using Visudyne®, a 

liposomal verteporfin formulation, and red light for the treatment of age-related macular 

degeneration [22]. Visudyne is now featured in the listing of nanomaterials approved 

by the U.S. Food and Drug Administration (FDA). Micelles, with a single layer of 

polar-nonpolar molecules, are also commonly used to delivery PS [23–25]. TOOKAD 

delivered in Cremophor micelles (WST09) was in phase II/III clinical trials for the PDT 

of prostate cancer (ClinicalTrials.gov) [26,27]. Francis et al. modified Bacteriophage MS2 

virus capsids with porphyrins and Jurkat-specific aptamers to selectively target and photo-

damage Jurkat leukemia T cells in vitro [28]. Packaging of PS into the nanoconstructs 

can significantly impact the photophysiochemical properties of PS. Pioneered by Zheng, 

Lovell and colleagues, porphysomes are extraordinarily tightly packed porphyrins within 

the confined space of the liposomal lipid bilayer [29,30]. These extensively self-quenched 

porphyrins nanoconstructs (over 1,200-fold greater than the monomerized porphyrins) can 

be light activated for in vivo photothermal, but not PDT, tumor ablation. Wang et al. 
demonstrated that reactive oxygen species (ROS) production from protoporphyrin IX can be 

enhanced up to 4.7 fold when conjugated to gold nanoparticles, thus improving the efficacy 

of PDT against breast cancer cell in vitro [31]. This enhancement of ROS is likely due to 

an enhanced electromagnetic field as a result of the localized surface plasmon resonance of 

gold nanoparticle upon light exposure.

In the context of PDT, nanoconstructs may be built with enough flexibility to be responsive 

to a broad spectrum of microenvironmental barriers and be more than simple drug carriers. 

They become photoresponsive entities that act directly, release enclosed materials and yet 

home in or accumulate at the desired sites preferentially [32]. Polyethylene-glycol (PEG) 

or monosialoganglioside molecules are widely used to sterically stabilize nanoconstructs 

and, therefore, can reduce PS uptake by the macrophages in the reticuloendothelial system, 

prolong circulation half-life, and allow passive accumulation of PS at tumor sites (e.g. via 
the enhanced permeability and retention effect) [33–36]. Actively targeted nanoconstructs 

have been developed with the following broad goals:

1. Inherent targets: where nanoconstructs are driven by moieties (e.g. aptamers, 

monoclonal antibodies etc.) to direct against specific cancer-associated 

molecules.

2. Therapeutically induced targets: where a given treatment triggers or sensitizes 

the aberrant expression of biomarkers that can serve as molecular targets (e.g. 

with molecular inhibitors or PDT) [37–40].
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3. Combinations of targets: where cooperatively targeting of both inherent 
targets and therapeutically induced targets maximizes the treatment benefits by 

activating several cell death pathways via nanoconstructs.

Photoimmunoconjugates are probably the best examples of focusing on inherent targets. 

Using non-quenching PS associated with tumor-targeting monoclonal antibodies or antibody 

fragments, Levy et al. first reported this approach [41]. This has been subsequently 

developed by several groups including ours in the 80s and the 90s [42–47] and more recently 

by others [48,49] in different tumor models. We recently reported a “tumor-activatable” 
photoimmunoconjugate to further improve the safety and selectivity of photoimmunotherapy 

[50]. In this study, verteporfin was covalently linked to the EGFR-targeting cetuximab 

at a high payload, which resulted inself-quenching of PS (non-phototoxic). Upon cancer 

cell internalization, verteporfin phototoxicity and fluorescence was activated via lysosomal 

proteolysis resulting in de-quenching of verteporfin followed by light irradiation. This 

enabled the fluorescence imaging of ovarian cancer micrometastases nodules as small as 30 

μm and the tumor-specific photo cytotoxicity in a disseminated model of peritoneal cancer 

micrometastases [50].

The ability to target and control the spatiotemporal release of the PS (e.g. via external 

activation) has been suggested [51–53]. This approach is extremely useful for applications 

to tumor where the genetically complex and heterogeneous tumor cells develop multiple 

mechanisms of survival and resistance to treatments. It enables rational mechanism-based 

combination of PDT with a secondary mechanistically non-overlapping treatment. Through 

combinatorial approaches, the molecular responses elicited by PDT (or the other therapy) 

can sensitize the tumor to the second treatment modality [54,55]. In this context, 

multicompartmental nanoconstructs provide the opportunity to co-deliver multiple agents, 

such as PS and conventional or evolving drugs within a single construct (Figure 1),

[23, 56]. These constructs are designed with appropriate mechanism-based combinatorial 

agents and spatiotemporal control release enabled by a combination of appropriate light 

switch and appropriate chemistries. Such combination treatments customized to deliver the 

nanoconstruct payloads to the right place at the right time show promise in early studies in 

pancreatic and ovarian cancer models [47, 50,57–59].

With the advent of sophisticated endoscopes and miniaturized light generating and delivery 

devices, most anatomical sites are accessible for PDT. For example, lung cancer treatments 

routinely use bronchoscopes incorporating optical fibers. Intra-operative and trans-cutaneous 

light delivery is also used as in the PDT of pancreatic cancer [60,61]. New approaches 

exploring nanoconstructs or cells themselves as sources of light are ongoing and have the 

potential of alleviating the problem of tissue penetration depth. It has been demonstrated 

that green fluorescent proteins in cells can be used as viable gain medium for optical 

amplification, creating a laser based on single live cell [62]. Upconverting nanoparticles 

(i.e. NaYF4 nanocrystals co-doped with Yb3+ and Er3+) use longer wavelength light (i.e. 
deeper penetrating near-infrared light) to generate shorter (i.e. visible) wavelengths for the 

activation of PS payloads and the photodynamic destruction of cancers [63–67]. The use 

of penetrating X-rays to trigger nanoscintillators (i.e. LaF3: Tb3+, quantum dots, Tb2O3 

covered by polysiloxane layer) for the excitation of the nanoconstruct coupled PS has been 
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demonstrated [68,69]. This modality where X-rays-activate PS via nanoscintillators can be 

combined with radiotherapy for combination treatment of diseases that are endoscopically 

in accessible. Finally, the use of PS fluorescence to detect cancers, guide surgical resection 

of tumors, and to personalize PDT dose parameters is an ongoing and exciting area of 

research [2,70]. While several challenges remain, advances in optical technologies combined 

with actively targeted nanoconstructs containing ’theranostic’ PS offer the potential for 

personalized photodynamic therapy and combinations for treatment of cancer and other 

diseases.
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Figure 1: 
Targeted, multi-compartment nanoconstruct (blue) co-delivers photosensitizer (PS) and drug 

to the cell. (1) Surface modification with stabilizers and targeting moieties improves stability 

and selectively of the nanoconstructs. (2) Upon light irradiation (hv), the (3) fluorescence 

signal generated from the excited PS can be used for imaging. (4) Light activation of PS 

results in reactive molecular species production for PDT, and (5) facilitates PS and drug 

release, allowing for an interactive combination therapy.
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