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Abstract

The main focus of this work is a novel framework for the joint reconstruction and segmentation of 

parallel MRI (PMRI) brain data. We introduce an image domain deep network for calibrationless 

recovery of undersampled PMRI data. The proposed approach is the deep-learning (DL) based 

generalization of local low-rank based approaches for uncalibrated PMRI recovery including 

CLEAR [6]. Since the image domain approach exploits additional annihilation relations compared 

to k-space based approaches, we expect it to offer improved performance. To minimize 

segmentation errors resulting from undersampling artifacts, we combined the proposed scheme 

with a segmentation network and trained it in an end-to-end fashion. In addition to reducing 

segmentation errors, this approach also offers improved reconstruction performance by reducing 

overfitting; the reconstructed images exhibit reduced blurring and sharper edges than 

independently trained reconstruction network.

Index Terms—

Parallel MRI; calibrationless; CNN

1. INTRODUCTION

The segmentation of MR images is vital for the quantification of disease progression. For 

instance, the atrophy of important brain regions (e.g. hippocampal sub-regions, cortical 

thickness) are established biomarkers for progression in Alzhiemers disease; the volume 

estimates of these regions play important roles in the early diagnosis and prognosis of 

dementia subjects. Several segmentation methods, including classical k-means clustering 

algorithms, deformable templates, and state of the art convolutional neural networks are 

available. These methods exploit the coherence of image intensities within similar tissues 

(e.g. gray matter, white matter) as well as edges between tissue boundaries to obtain good 

segmentation. Clearly, the ability to accurately resolve the small sub-regions depend on the 

spatial resolution of the images.

A challenge with the acquisition of high resolution MRI data is the long scan time, which is 

especially challenging for older adults. Long acquisition times are also associated with 
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extensive motion artifacts. Modern MRI methods often rely on acceleration methods 

including PMRI and compressive sensing to reduce the scan time. Calibrated methods such 

as SENSE/GRAPPA [1, 2] as well as recent calibrationless structured low-rank methods [3, 

4] have been introduced to recover the images from undersampled measurements. Our recent 

work has shown that linear relations between their k-space measurements can be capitalized 

using k-space DL strategies [5], which are more computationally efficient than classical 

methods. Despite the great progress made in image reconstruction, undersampling artifacts 

and blurring of image edges are inevitable at high acceleration factors; these artifacts can 

deteriorate the performance of segmentation algorithms that exploit the edges and the 

coherence of image intensities within regions that would be impacted by undersampling.

We introduce a novel framework for deep-learning based calibration-free MRI 

reconstruction and segmentation. The main contributions of this work are (1) the 

development of a novel image domain deep structured low-rank framework for calibration-

free PMRI, motivated by locally low-rank methods used for PMRI [6] and (2) the 

development of a joint segmentation-reconstruction framework to minimize segmentation 

errors introduced by undersampling artifacts and to improve reconstruction quality. The 

CLEAR formulation exploits the low-rank structure of image patches from sensitivity 

weighted images [6]. The low-rank structure results in inter and intra patch annihilation 

relations on the sensitivity weighted images. The annihilation relations vary spatially, 

depending on the coil sensitivities. An iterative reweighted formulation of the nuclear norm 

minimization algorithm in CLEAR as in [5] results in an alternating scheme; the algorithm 

alternates between data consistency steps and denoising/projection using a spatially varying 

filterbank. Motivated by [5], we propose to replace the filterbank with an image domain 

CNN module [5]. In this work, we propose to use a UNET for the image domain CNN. We 

pre-learn the parameters of the unrolled algorithm, where the CNN parameters are shared 

across iterations, from exemplar data. The main distinction of this work with [5] is the 

formulation in the image domain; the increased number of annihilation relations between 

multi-channel images in the image domain compared to k-space that is exploited by [2, 3, 4, 

5] translate to improved performance.

To reduce the sensitivity of the segmentation algorithm to undersampling artifacts, we 

consider the end-to-end training of a cascade of the proposed reconstruction network with a 

segmentation network. We use a loss-metric, which is the sum of the mean square image 

reconstruction error and segmentation error to train the cascade network. The end-to-end 

training is expected to reduce segmentation errors compared to the straightforward cascade 

of individual algorithm. Because the loss metric is a combination of reconstruction and 

segmentation errors, one would expect the quality of the training images recovered by the 

reconstruction network to be inferior to the one trained with only the reconstruction loss. 

However, we conjecture that the segmentation loss term further reduces the generalization 

error, thus improving the mean square error on the test data. Specifically, the end-to-end 

optimization strategy ensures that the reconstructed images preserve edges and exhibit good 

coherence between regions with similar anatomical properties, and preserve edges, which 

will ensure good segmentation. In this work, we propose to use a UNET for segmentation; 

as in the case with the reconstruction, any segmentation network can be used within the 

proposed framework. In this work, we consider a simple segmentation setting, where we 
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consider the segmentation of MR images to gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF) regions.

2. METHODS

2.1. Image Domain Deep-SLR for PMRI

The forward model for PMRI recovery can be defined as,

bi = Sℱ
A

γi + ni, i = 1…N
(1)

where bi are noisy Fourier coefficients of ith coil image γi corrupted by Gaussian noise ni, N 
is the total number of coils, ℱ is the Fourier operator and S denotes the sampling operator. 

The CLEAR formulation makes the locally-low rank assumption; it assumes that matrix 

composed of patches of γi(s) are low-rank. Specifically, if we assume Ps0 to be a patch 

extraction operator that extracts M × M patches centered at s0, the matrices

Γs = Ps γ1 | … |Ps γN (2)

are low-rank. The CLEAR approach solves for Γ = [γ1, .., γN] as the nuclear norm 

minimization problem

Γ = arg min
Γ

∥ A(Γ) − B ∥2 + λ∑
s

‖Γs‖* (3)

If we assume the rank of Γs to be r < N, this implies that there exists N − r null-space vectors 

us,j and vs,j such that us,jΓs = 0 and Γsvs,j = 0. If we consider the vertical concatenation of 

the patches denoted by the vector ps, we can express the above relations compactly as

us, j … 0
⋮ ⋮ ⋮
0 0 us, j

vs, j(1)e0 ⋯ vs, j M2 e0
⋮ ⋮ ⋮

vs, j(1)eM2 ⋯ vs, j M2 eM2

Qs

Ps γ1
⋮

Ps γN
ps

= 0
(4)

Here, ei denotes the canonical basis vectors of the patches. We note that the inner-products 

of the patches with the M2 + N row vectors in (4) can be viewed as the convolution of the 

multichannel volume Γ by flipped filters of size M ×M ×N, evaluated at s. Hence, (4) can be 

compactly expressed as

qs * Γ (s) = 0, (5)
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where (qs * Γ) (s)denotes the output of a multichannel filter bank qs evaluated at s. We note 

that the image domain formulation has more annihilation relations than the corresponding k-

space approaches [2, 3, 4, 5]. Specifically, any local filter than annihilates ρ (e.g wavelet 

filters that vanish in smooth regions) will annihilate all of the multichannel patches. We 

expect the ability of the formulation to exploit intra and inter channel annihilation relations 

to translate to improved performance.

Using the iterative reweighted formulation in [5] to minimize the nuclear norm minimization 

problem (3), we alternate between

Γ = arg min
Γ

∥ A(Γ) − B ∥2 + λ∑
s

‖ qs * Γ (s)‖2, (6)

and the derivation of the qs matrices as in [5, 4]. We note that qs is a spatially varying 

filterbank that is derived from the signal patches Γs itself. Motivated by [5], we replace the 

spatially varying and signal-dependent filterbank by a deep CNN; we note that CNNs can 

closely approximate spatial variations in the linear filterbank structure. The proposed 

algorithm is formulated as

Γ = arg min
Γ

∥ A(Γ) − B ∥2 + λ‖NI(Γ)‖2, (7)

where NI = ℐ − DI denotes a residual multichannel CNN; the input to the filterbank has N 

channels corresponding to the coil sensitivity weighted images. Here, DI is a spatial domain 

CNN. We choose DI as a 2D spatial domain

Xn = DI Γn (8)

Γn + 1 = AHA + λI −1 AHB + λXn (9)

We propose to learn the parameters of the CNN in the unrolled algorithm from exemplar 

data using an end-to-end optimization strategy. The loss of the supervised training is chosen 

as ℒrecon = ‖Γ − Γgs‖2, where Γ is the output of the unrolled CNN and Γgs is the gold 

standard multicoil data obtained from fully sampled measurements. The Adam optimizer is 

used to minimize training loss at a learning rate of 10−4 for all the experiments. It is named 

as Image Domain Deep-SLR (I-DSLR).

I-DSLR eliminates the need for calibration data for estimating the coil sensitivities or linear 

filters Qs. Moreover, this approach eliminates the need for singular value decompositions at 

each iterations that contributes heavily to the computational complexity of CLEAR [6]. 

Similar to MoDL [7] and [5], we share the parameters of the CNN block across iterations.

3. JOINT RECONSTRUCTION & SEGMENTATION

As discussed previously, the straightforward cascade of reconstruction and segmentation 

algorithms can result in the propagation of error, thus downgrading segmentation quality. 
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Specifically, the residual alias artifacts as well as blurring caused by undersampling can 

result in segmentation errors. To minimize this issue, we propose a multi-task deep network 

as shown in Fig. 1. The reconstruction network is I-DSLR (described in Section 2) with 

shared weights across iterations. A segmentation network is attached to the final iteration of 

the I-DSLR. The combined network is trained end-to-end.

We use a weighted linear combination of normalized mean squared error ℒrecon and pixel-

wise multi-label cross entropy ℒseg = − ∑pϕp
gs ln ϕp error for training. For each pixel p, ϕgs 

is the gold standard segmentation on the sum-of-squares image obtained from Γgs and ϕ is 

the segmentation CNN output.

ℒtotal  = ℒrecon + βℒseg (10)

The proposed multi-task network is initialized with weights obtained from pre-trained 

reconstruction and segmentation networks for training. Specifically, the segmentation UNET 

is pre-trained with fully sampled images. The reconstruction network is trained with 

undersampled k-space measurements. The pre-training for both the tasks were done with the 

brain images described in section 4. β = 1 is chosen to equally weigh both the losses.

4. EXPERIMENTS AND RESULTS

We perform experiments on the publicly available Calgary Campinas Dataset (CCP) [8]. It 

consists of 12-channel raw k-space data of T1-weighted brain MRI scans from a Discovery 

MR750 3T scanner for 67 subjects. The slice dimensions are 208 × 170 for axial view of the 

brain. Ground truth segmentations for the slices were generated using the FAST software 

which uses the standard k-means clustering technique for segmentation. Forty subjects (40 × 

256 = 10240 slices) were used for training, 7 for validation and the remaining 20 for testing 

purposes. 2D non-uniform cartesian variable density undersampling masks with different 

acceleration factors were used for experiments; readout direction is orthogonal to axial 

slices.

The proposed image domain Deep-SLR approach with segmentation algorithms pre-trained 

using fully sampled data (I-DSLR-SEG) is compared against k-space Deep-SLR method(K-

DSLR-SEG), total variation (TV-SEG) and undersampled (US-SEG) in the same setting. We 

also show the benefit of end-to-end training by comparing the above methods against I-

DSLR-SEG-E2E, which is a cascade of I-DSLR and UNET Segmentation networks trained 

end-to-end (E2E). I-DSLR-SEG is the direct cascade of pre-trained I-DSLR and UNET-

based segmentation networks. In TV-SEG, the segmentation network is trained and tested on 

images reconstructed using TV. Similarly, for US, the segmentation network is trained and 

tested on undersampled datasets.

A comparison of the methods is recorded and shown in Table 1 and Fig. 2 respectively. The 

I-DSLR reconstructions have sharper edges with more information preserved compared to 

US, TV and K-DSLR. The corresponding segmentation performance improves with increase 

in reconstruction quality. The end-to-end training strategy in I-DSLR-SEG-E2E further 

improves quality over I-DSLR-SEG. Its improved reconstruction can be attributed to the 
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regularization by the segmentation network and vice-versa. I-DSLR-SEG-E2E alleviates 

errors propagated from reconstruction to segmentation unlike K-DSLR-SEG and I-DSLR-

SEG settings.

5. CONCLUSION

We introduced a novel image domain model-based DL approach for calibrationless PMRI 

recovery. It is a non-linear extension of locally low rank methods for calibrationless parallel 

MRI. The experiments show that additional annihilation relations exploited by I-DSLR 

approach offers better performance over k-space approach K-DSLR [5]. We introduce a 

multi-task framework where I-DSLR is cascaded with a segmentation dedicated DL network 

which is trained end-to-end. The networks regularize each other, thereby reducing the errors 

caused from undersampling artifacts. Experiments show that the segmentation accuracy 

depends on the reconstruction quality. I-DSLR-SEG-E2E reduces the propagation of errors 

from reconstruction to segmentation, this outperforming methods that cascade independently 

trained networks.
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Fig. 1. 
Proposed I-DSLR-SEG-E2E network architecture. A K-iteration I-DSLR network is 

cascaded with a CNN for segmentation. It is trained end-to-end.
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Fig. 2. 
Comparison of reconstruction and segmentation quality of various methods on 6-fold 

undersampled k-space measurements. Reconstruction SNR in dB along with dice 

coefficients for CSF, GM and WM are reported for the particular slice. The methods in red 

box typically cascade separately trained tasks and the blue one is the proposed end-to-end 

training approach.
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Table 1.

Quantitative comparisons of reconstruction (SNR in dB) and segmentation (dice coefficients) quality for 

different methods. The metrics are averaged over 20 subjects.

8-Fold Accelerated Reconstruction and Segmentation

Methods SNR Dice CSF Dice GM Dice WM

US-SEG 10.21 0.658 0.745 0.763

TV-SEG 16.13 0.701 0.772 0.803

K-DSLR-SEG 17.82 0.749 0.781 0.835

I-DSLR-SEG 19.28 0.763 0.799 0.856

I-DSLR-SEG-E2E 19.85 0.802 0.862 0.907
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