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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) has been declared by the World Health Organization (WHO) as a 
pandemic since March 2020. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2). The only available tools to avoid contamination and transmission of this virus are physical distancing, 
the use of N95 and surgical masks, and hand hygiene. Vaccines are another essential tool to reduce the impact of 
the pandemic, though these present challenges in terms of production and logistics, particularly in underde
veloped and developing countries. One of the critical early research findings is the interaction of the spike virus 
protein with the angiotensin-converting enzyme 2 (ACE2) human receptor. Developing strategies to block this 
interaction has therefore been identified as a way to treat this infection. Neutralizing antibodies (nAbs) have 
emerged as a therapeutic approach since the pandemic started. Infected patients may be asymptomatic or present 
with mild symptoms, and others may evolve to moderate or severe disease, leading to death. An immunological 
phenomenon known as cytokine storm has been observed in patients with severe disease characterized by a 
proinflammatory cytokine cascade response that leads to lung injury. Thus, some treatment strategies focus on 
anti-cytokine storm nAbs. This review summarizes the latest advances in research and clinical trials, challenges, 
and perspectives on antibody-based treatments (ABT) as therapies against COVID-19.   

1. Introduction 

A pandemic was declared in March 2020 by the World Health Or
ganization (WHO). Since then, coronavirus disease 2019 (COVID-19), 
caused by the severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), has intrigued researchers, medical doctors, and the general 
population. 

The first disease cases were characterized as atypical pneumonia in 
Wuhan, China, in December 2019 [1]. Coronaviruses are known to have 
caused pneumonia epidemics in humans, such as SARS-CoV (related to 
SARS-CoV-2) and Middle East Respiratory Syndrome (MERS-CoV) [2,3]. 
However, the origin of SARS-CoV-2, the most infectious coronavirus 
known, is still under investigation by the WHO. 

Since no specific treatment has been approved so far, the only 

available tools to prevent the transmission of SARS-CoV-2 are physical 
distancing, the use of N95 and surgical masks, and hand hygiene [4]. 
Besides the Regeneron antibody cocktail, which has been approved by 
the US Food and Drug Administration (FDA) [5], emergency FDA 
approval has also been issued for an antibody cocktail from Eli Lilly and 
is now revoked [6]. An equine hyperimmune serum in Argentina has 
also received emergency approval from the Argentinian regulatory 
agency [7]. However, these treatments currently lack both usage data 
and scalability and are not being used for prevention. Currently, health 
practitioners rely on strategies known to work against other infections, 
such as dexamethasone [8], oxygen therapy, anti-coagulation drugs, and 
intensive care unit interventions like tracheostomy and mechanical 
respiration [9]. 

Vaccines are another essential tool to reduce the impact of the 
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pandemic. As a result of the global race for a vaccine [10], the rate of 
vaccine development has been the fastest in human history. Some have 
already been approved, bringing hope for an end to the pandemic. 
However, vaccinating billions of people represents a production and 
logistics challenge, particularly in underdeveloped and developing 
countries, which have the less economic power to purchase vaccine 
doses [11]. In addition, anti-vaccine and anti-science movements 
represent a critical risk to the success of vaccination campaigns, as do 
the denialist positions that some leaders and their followers support 
[12]. These challenges highlight the ongoing importance of research on 
COVID-19 in order to save lives, especially in severe cases. 

One of the critical early research findings is the interaction of spike 
virus protein with angiotensin-converting enzyme 2 (ACE2) human re
ceptor, which is more robust against SARS-CoV-2 than SARS-CoV [13]. 
This characteristic is responsible for SARS-CoV-2 being more infectious 
and transmissible [13]. Thus, developing strategies to block this inter
action can help treat infections. Neutralizing antibodies (nAbs) have 
therefore emerged as a therapeutic approach since the beginning of the 
pandemic, and their use continues to the present date. 

As of July 27, 2021, COVID-19 was present in 192 countries, with 
194,909,258 total cases and 4,171,772 total deaths [14]. Patients 
infected with SARS-CoV-2 can be asymptomatic or present with mild 
symptoms, though these may also progress to moderate or severe dis
ease, potentially leading to death [15]. Some severely ill patients 
experience an immunological phenomenon known as cytokine storm, 
characterized by a proinflammatory cytokine cascade response that 
leads to lung injury [16]. Some treatment strategies have therefore 
focused specifically on anti-cytokine storm nAbs [16–21]. 

This review summarizes new developments in research and clinical 
trials, challenges, and perspectives on antibody-based treatments (ABT) 
as therapies against COVID-19. We separate this review into four major 
parts: 1) spike virus glycoprotein/ACE2 human receptor interaction 
nAbs; 2) cytokine storm nAbs; 3) challenges; 4) perspectives. 

2. SARS-CoV-2 and the COVID-19 pandemic: A brief 
characterization 

SARS-CoV-2, the etiological agent of COVID-19, belongs to the sub
family of β-coronaviruses that infect humans and may cause severe 
disease and lead to death [22]. This genome is approximately 80% 
identical to SARS-CoV, the first coronavirus outbreak in China in 2002 
[2], which killed 774 people. 

SARS-CoV-2 is 87.23% identical to the corona-like bat virus bat-SL- 
CoVZXC21, and 87.99% identical to bat-SLCoVZC45, which has led to 
speculation SARS-CoV-2 originated in bats [23], though its zoonotic 
origins have yet to be determined. There is evidence that pangolins are 
an intermediate host, which could have initially transmitted the disease 
to humans at an open seafood market in Wuhan, China [24]. However, 
the WHO is still investigating the origins of transmission. Determining 
the outbreak’s origin has proven challenging as some of the first patients 
did not go to the market. 

In terms of clinical presentations, 80% of COVID-19 patients have 
asymptomatic to mild symptoms (fever, head and body pain, loss of 
smell and taste, diarrhea), and 20% have moderate to severe symptoms 
(pneumonia, dyspnea, secondary infections, renal or cardiac failures, 
and coagulation), which can lead to death [15]. The majority of the virus 
contamination occurs by aerial transmission, which has been docu
mented more recently, but it also may occur less frequently by fomite 
droplets and contaminated surfaces [15]. 

A recent study by Flora and collaborators (2021) [25] at Bauru 
hospital in Brazil has provided insights into the differential protein 
expression during each stage of SARS-CoV-2 infection. The authors 
identified changes in plasma proteins related to complement activation, 
blood coagulation, antimicrobial humoral response, acute inflamma
tory, and endopeptidase inhibitor activity. Specifically, patients with 
mild symptoms had higher levels of the Iron-responsive element-binding 

protein 2 (IREB2), Gelsolin (GELS), DNA-directed RNA polymerase III 
subunit RPC 4 (POLR3D), Serum paraoxonase/arylesterase 1 (PON1), 
and UL16-binding protein 6 (ULBP6) proteins. Increased expression of 
Galectin-10 (Gal-10) was found in critical and severe patients [25]. In 
another robust genomic study in 208 intensive care units (ICUs) in the 
United Kingdom, called the Genetics of Mortality in Critical Care 
(GenOMICC), by Pairo-Castineira and collaborators (2021) [26], 
discovered susceptibility markers to severe COVID-19 development: low 
expression of the interferon receptor gene IFNAR2 and high expression 
of tyrosine kinase 2 (TYK2), as well as increased expression of the 
monocyte/macrophage chemotactic receptor CCR2 in the lung [26]. 
Such studies are critical to new pharmaceutical research and develop
ment related to SARS-CoV-2 since they help inform therapies that can 
target these genetic/blood markers. 

In terms of structure and organization, SARS-CoV-2 follows the 
structural protein forms of coronaviruses: envelope, spike (S) glyco
protein and membrane, and the non-structural nucleocapsid protein plus 
RNA-positive genome (26.2 to 31.7 kilobases) from the ribonucleocap
sid complex (RNP), which are encapsulated in the envelope (Fig. 1) [22]. 

3. Interaction of the human receptor ACE2 with the virus spike 
glycoprotein for SARS-CoV-2 virus entry as the primary 
therapeutic target for neutralizing antibodies (nAbs) 

As thoroughly described in the literature, the virus S glycoprotein of 
SARS-CoV-2 is responsible for host cell entry after interacting with the 
human receptor ACE2 (Fig. 2A) [13,27–29]. Nevertheless, it is essential 
to know that inside the S1 monomer, a receptor-binding domain (RBD) 
is responsible for receptor interaction [26]. More specifically, the 
receptor-binding motif (RBM) contains the residues that actively bind to 
ACE2 [29], as in Fig. 2A. Structurally, the spike protein has two 
conformational states: “up” and “down” [5]. Significantly, the RBD only 
interacts with and binds to ACE2 when the spike protein is in the “up” 
conformation state (Fig. 2A) [5]. 

The interaction of SARS-CoV-2 with ACE-2 is stronger than that of 
SARS-CoV due to mutations in RBM, such as the insertion of Gly-Val- 
Glu-Gly (GVEG) in residues 482–485 [13]. Outside of the RBD 
domain, a Pro-Arg-Arg-Ala-Arg (PRRAR) insertion, a second additional 
site for protease action and S2 monomer assembly for virus or RNA 
internalization, is a furin protease site that is another critical difference 
between SARS-CoV-2 and SARS-CoV and is involved in the increased 
pathogenesis [30]. Both mutations contribute to the greater trans
missibility of SARS-CoV-2 and can be used as targets for treatments. 

At the onset of the pandemic, the predominant strategies involved 
using available medicines to treat or even prevent infection. This strat
egy had a misleading success at the beginning, as some chemical com
pounds tested in vitro and in vivo presented evidence of early treatment 
and prophylaxis [31], such as the promising and novel use of clofazi
mine [32] and molnupiravir [33], as well as compounds that have 
already used for similar applications, such as chloroquine (CLO), 
hydroxychloroquine (HCLO), ivermectin, azithromycin and some others 
[8], including ABT [34–38]. 

However, in human clinical randomized studies, CLO, HCLO, and 
ivermectin present a risk of substantial collateral effects such as toxic 
hepatitis, which has been another pandemic burden. Indeed, the phar
maceutical producer of ivermectin, Merck, published a note concluding 
that the drug should not be used to prevent or treat COVID-19 [39]. 
Another risk of ivermectin usage is the false sense of protection, which 
leads people to avoid prevention actions of contamination. Meanwhile, 
the use of azithromycin can lead to microbial resistance and, ultimately, 
sepsis [40]. Furthermore, these medicines were found to offer no clinical 
benefits in randomized studies [41]. 

The amount of time necessary for widespread, global vaccination and 
the possibility of spreading novel variants highlights the need for 
continued research on therapeutic methods. Thus, ABT, which is spe
cific, more manageable, safer, and faster to produce and use, has 
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emerged as a possible alternative against SARS-CoV-2 [35]. 
ABT passive immunotherapy is based on nAbs to keep pathogens 

from entering the host cell. ABT can be divided into five categories: 
convalescent plasma (CP), intravenous immunoglobulin (IVIG), intra
venous hyperimmune immunoglobulin (IVHI), monoclonal antibodies 
(mAbs) – alone or in cocktails – and nanobodies [34–38]. Major nAbs 
against SARS-CoV-2 act against the S glycoprotein RBD [42]. As 
postulated by the literature, five possible groups could be used based on 
the targeting region and mechanism of neutralization [42], as follows: 1) 
nAbs bind to RBM, avoiding interaction with ACE2 and resulting in no 
entry and no infection; 2) nAbs bind to other S glycoprotein domains, 
such as N-terminal binding domain (NTD) and S2, with multiple 
mechanisms of action or with mechanisms of action that remain un
known; 3) nAbs bind to RBD (not RBM) and do not compete with ACE2 
binding, with multiple mechanisms of action or with mechanisms of 
action that remain unknown; 4) nAbs bind to RBD (not RBM) and 
compete with ACE2 binding, resulting in no entry and no infection; 5) 
nAbs bind to two or more regions (cocktails and polyclonal antibodies), 
resulting in no entry and no infection (Fig. 2B). 

Three classes were mentioned in another more recent classification 
by Finkelstein and collaborators (2020) [34] of SARS-CoV-2 nAbs that 
mediate RBM biding to ACE2 by epitope blocking: class I, the largest 
structurally characterized mAbs, which are direct ACE2 competitors that 
bind only to “up” RBD; class II, which binds to “up” and “down” RBD, 
and may stabilize spike in a conformation that prevents ACE2 binding; 

class III, which blocks ACE2 with quaternary epitopes (NTD, non-RBM) 
by potentially locking the spike in a closed conformation, thus pre
venting access to the ACE2 binding site [34]. 

Hence, advances in the technology used to produce nAbs for HIV 
treatment, such as structural characterization of the host receptor-virus 
ligand and production of mAbs to block this ligation, allowed the fastest 
discovery of ABT for SARS-CoV and SARS-CoV-2 in science history [43]. 

4. Anti-SARS-CoV-2 neutralizing antibodies (nAbs) as a 
therapeutic approach against COVID-19 

4.1. SARS-CoV and SARS-CoV-2 cross-reacted nAbs 

Due to their genomic proximity and the similar virus entry mecha
nism (spike ×ACE2 interaction) in SARS-CoV and SARS-CoV-2, one of 
the first strategies involving ABT to treat SARS-CoV-2 was the usage of 
mAbs (detailed below) and nAbs against SARS-CoV. As previously 
reviewed [42], many SARS-CoV nAbs were tested against SARS-CoV-2, 
both in vitro and in vivo [44–46]. In these studies, cross-reaction and 
little or weak neutralization were observed [44–46]. The best result was 
for VIR-7831, derived from the non-RBM S309 (clinical trial 
NCT04545060, Vir Biotechnology, and GlaxoSmithKline (GSK) Inc. 
collaboration, USA), which is currently at the clinical trial stage 
(Table 1), alone [47] or combination with other antibodies. This anti
body is currently awaiting FDA emergency approval after showing 85% 

Fig. 1. General SARS-CoV-2 proteins and genomic RNA from an infected human. After coughing in the air, the virus droplets can infect another person. The 
figure shows the general ultrastructural protein and genomic RNA of SARS-CoV-2, including the nucleocapsid (N), envelope (E), membrane (M), spike (S), and 
genomic + RNA, respectively. The figure was generated using BioRender software. 

Fig. 2. SARS-CoV-2 spike (S) glycoprotein inter
action with ACE2 host receptor and antibodies 
against S protein can prevent virus entry. A) 
Spike has two conformational states: “up” and 
“down.” RDB only interacts and binds to ACE2 when 
spike is in the “up” conformation. B) Types of 
antibody-mediated blockage of virus entry: 1) nAbs 
bind to RBM, avoiding interaction with ACE2 and 
resulting in no entry and no infection; 2) nAbs bind 
to other spike domains, such as the N-terminal 
domain (NTD) and S2, with multiple mechanisms of 
action or with mechanisms of action that remain 
unknown; 3) nAbs bind to RBD (not RBM) and do 
not compete with ACE2 binding, with multiple 
mechanisms of action or with mechanisms of action 
that remain unknown; 4) nAbs bind to RBD (not 
RBM) and compete with ACE2 binding, resulting in 
no entry and no infection; and 5) nAbs bind to two 
or more regions (cocktails and polyclonal anti
bodies), resulting in no entry and no infection. The 
figure was generated using BioRender software.   
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efficacy in clinical studies. One accepted explanation of the unsuccessful 
use of SARS-CoV nAbs against SARS-CoV-2 is the structural differences 
between the spike and ACE2 interaction. 

4.2. SARS-CoV-2 convalescent plasma, purified IgGs and mAbs/nAbs 

The use of CP from recovered COVID-19 patients has emerged as a 
fast and safe treatment strategy due to the presence of nAbs against the 
spike glycoprotein [48]. The FDA has approved the emergency admin
istration of CP to study its efficacy [49]. Some concerns have to be 
considered with respect to CP, such as 1) CP nAbs titles should be a 
minimum of 1:80 [50]; 2) randomized clinical trials should be under
taken to determine CP efficacy [51]; 3) pre-existing infections or dis
eases in donors should be documented, as well as the time to recover 
from COVID-19 [52]; 4) clinical structures and specialized nursing staff 
are required to stock and apply CP [48]. 

As recently reviewed by Devarasetti and collaborators (2021) [53], 
few randomized clinical trials focused on the use of CP have been carried 
out [53], some with contradictory conclusions (Table 1). A recent study 
from the Indian Council of Medical Research (ICMR) indicated that the 
best results and benefits were found: 1) in the early administration 
within five days of the first symptoms; 2) no CP administration to critical 
patients; 3) when donors exhibited ideal conditions, such as high nAbs 
titers and donation within 45 days of recovery from SARS-CoV-2 in
fections [50]. More standardized and multicenter randomized clinical 
trials should be done to understand the prophylactic benefit of CP 
therapy for SARS-CoV-2 patients. 

Limitations of CP application include the difficulty in storage and 
donors’ availability. Some approaches could help, including IgG-specific 
S glycoprotein nAbs being isolated and purified from CP, termed IVIG 
nAbs (or IVHI if isolated from a concentrated pool of CPs) [54]. Due to 
higher titers, they could be used in a great number of patients. However, 
these approaches are time-consuming, expensive, and do not offer 
proinflammatory protection. Moreover, they could lead to antibody- 
dependent enhanced disease (ADE), such as dengue hemorrhagic 
fever, due to the presence of non-neutralizing antibodies [55]. As 
reviewed recently, little new research is available on IVIG or IVHI 
[51,56], and few clinical studies are currently being performed. 

mAbs and nAbs have emerged as promising alternatives that could 
solve some of the previously mentioned challenges. mAbs mostly come 
from immortalized hybridoma clones resulting from the fusion of B cell 
mAb producing cells with myeloma cancer cell lines [57]. The B cells 
could be obtained from recovered COVID-19 patients (using B cell 
isolation), phage-display libraries, or immunized animals (mouse, rab
bit, and others) [58–59]. Since the cell lines are immortalized, there is 
no need for other donors/animals. As a result of careful screening of 

nAb-specific B cell line isolation, ADE is less likely to occur. However, 
their production is more expensive than the purification of hyperim
mune IgGs. Additionally, non-human mAbs need to be humanized in Fc 
portions for the best avidity results [60]. Another concern about mAbs is 
the escape of mutant variants due to their unique epitope response, 
which could be reverted by implementing mAbs cocktails with no 
competitive epitopes [47]. 

Two mAbs cocktails recently received FDA approval or emergency 
use authorization: REGN10933 in combination with REGN10987, 
named REGNCoV 2 (Regeneron) was approved [5] and, more recently, 
LY-CoV555 in combination with LY-CoV016 (Eli Lilly, USA) received an 
emergency use authorization [6] (Table 1). However, the Eli Lilly mAbs 
emergency approval was revoked after the announcement of the loss of 
efficacy against variants. Other mAbs (alone or in combination) are in 
different clinical evaluation phases [61–63]. More long-term studies are 
needed to verify their effectiveness not only for SARS-CoV-2 but, prin
cipally, for the variants. Thus, there is a demand for platforms that could 
predict mutations and combine them through genetic engineering to 
produce more efficient mABs cocktails. 

4.3. SARS-CoV-2 camelid nanobodies and equine hyperimmune nAbs 

Other technologies to develop therapeutic antibodies could be used 
for COVID-19 therapies. Nanobodies are smaller than antibodies due to 
the absence of an Fc domain and are produced primarily in camelids 
[64]. The advantage of these molecules is the opportunity to produce 
them recombinantly in bacterial platforms, which is less costly than 
other approaches. Since they are smaller, they could be administered by 
inhalation/nebulization and be directed to the lungs [37]. Indeed, 
nanobodies against S glycoprotein of SARS-CoV-2 have been produced, 
resulting in powerful nAbs such as synthetic humanized or yeast li
braries, which block the interaction of the virus with ACE2 via distinct 
mechanisms, or camelid immunized with RBD, the epitope of which can 
recognize both “up” and “down” spike proteins and other non- 
overlapping epitopes with pico and femtomolar affinities [60,65–67]. 
In spite of their importance, the technology for producing them has only 
been recently developed. Therefore, all possible nanobodies are in dis
covery or preclinical studies at the moment (Table 1). 

Another ABT approach for SARS-CoV-2 is hyperimmune serum from 
horses, recently reviewed by Costa and collaborators (2021) from Vital 
Brazil Institute, Rio de Janeiro, Brazil [12]. The advantage of using 
equine serum lies in better production at higher volumes than with other 
species [12]. To date, four studies have been published: one in China 
[68], one in Argentina [69], one in Brazil [70], and one in Costa Rica 
[71]. They all used enzymatically digested IgG with pepsin or papain to 
obtain Fab or F(ab) 2 fractions, respectively. The nAbs production was 

Table 1 
Antibody-based treatments against SARS-CoV-2 proteins.  

ABT approach nAb name/target Stage Origin Reference 
(s) 

SARS-CoV cross-reaction 
with SARS-CoV-2 

VIR-7831/spike Clinical studies, waiting for FDA emergency 
approval 

USA [47] 

CP -/spike Clinical studies /FDA emergency approval with 
some concerns / needs additional results 

USA, UK, Italy, Spain, China, India, 
Brazil, South Africa, and others 

[48,53] 

IVIG/ IVHG -/spike Clinical studies Various [51,56] 
mAbs REGNCoV2 cocktail (Regeneron)/ 

spike 
FDA approved USA [5] 

mAbs LY-CoV555 in combination with LY- 
CoV016 (Eli Lilly)/spike 

Emergency FDA authorization revoked USA [6] 

Nanobodies -/spike Preclinical studies Various [61–63] 
Horse hyperimmune serum -/spike Preclinical studies China [68] 
Horse hyperimmune serum -/spike Awaiting ANVISA approval to initiate clinical 

studies 
Brazil [70] 

Horse hyperimmune serum -/whole inactivated virus Clinical studies Brazil [73] 
Horse hyperimmune serum -/spike Emergency Anmat authorization/ needs additional 

results 
Argentina [7,69] 

Horse hyperimmune serum -/spike and mix Preclinical studies Costa Rica [71]  
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50–150 times higher in titles than CP [68–70]. Argentina’s hyperim
mune serum has recently received emergency approval, with some ca
veats, from the country’s regulatory agency (Anmat) since clinical 
studies showed a 45% reduction in mortality [7] (Table 1). Meanwhile, 
the use of Vital Brazil’s hyperimmune serum still requires authorization 
from Brazil’s regulatory agency (ANVISA) to start clinical studies 
(Table 1). No updates from the Chinese study have been published or 
announced after the first publication, so we consider it to be in the 
preclinical stage (Table 1). Furthermore, the Butantan Institute in Brazil 
is also developing an equine serum against SARS-CoV-2 using the whole 
inactivated virus as antigen. This study received authorization from 
ANVISA to start clinical studies (Table 1) [72]. Such an approach could 
help these countries combat the disease until vaccination rates increase. 

5. SARS-CoV-2 cytokine storm and antibody-based treatments 
against key cytokines 

As recently reviewed by Sette and Crotty (2021), rapid viral clear
ance is due to T cell responses against SARS-CoV-2. An extended period 
of innate immune response is associated with severe/acute disease [73]. 
Another critical finding associated with severe/acute disease is the 
ineffective IFN I and III innate immunity, which leads to innate cell 
immunopathology and cytokine storm [74,75]. The SARS-CoV-2 cyto
kine storm, induced by macrophages and other innate immune cells, is 
characterized by high levels of key cytokines such as TNF-α, IL-1β, and 
IL-6 [13], as well as IL-7, IL-8, IL-9, IL-10, IFN-γ, TNF, MCP1, MIP1A, 
MIP1B, G-CSF, GM-CSF (Fig. 3A) [76]. The signature of these proin
flammatory cytokines is very clearly observed in COVID-19 pneumonia 
patients, with other severity-associated symptoms such as coagulation 
[16]. Furthermore, inflammations may survive for months after virus 
clearance, as observed in many recovered patients [77] as the so-called 
“post-COVID-19 syndrome”, characterized by the persistence of symp
toms such as fatigue and tiredness [78]. 

Identifying the key cytokines may therefore enable the development 
of therapies to block them. Indeed, dexamethasone, an anti- 
inflammatory corticosteroid, has been shown to significantly reduce 
mortality among patients hospitalized with or without mechanical 
ventilation [79]. ABT against cytokine storm markers such as TNF-α, IL- 
1β, and IL-6 is an essential approach at the moment to stop a proin
flammatory response to SARS-CoV-2 (Fig. 3B). 

Specific particularities of the antibodies mentioned above can be 
found in the most recent review by Yakota et al. (2021) [16]. Table 2 
shows the current clinical stages of these antibodies. Adalimumab, sar
ilumab, and infliximab are in clinical trials; canakinumab is in clinical 

trials and needs more randomized studies; and tocilizumab, the most 
promising, is approved in the UK [37] and a clinical study with 
remdesivir is ongoing with pneumonia patients in the USA (Table 2). 

6. Challenges 

SARS-CoV-2 presents a multitude of challenges, three of which are 
particularly related to the context of this review: 1) reinfection with 
SARS-CoV-2 and SARS-CoV-2 variants due to the duration or escape of 
nAbs or memory cells, respectively; 2) ADE; 3) autoantibodies. 

Reinfection, the ability of SARS-CoV-2 to infect previously infected 
patients, is a significant concern with SARS-CoV-2, as it can promote 
escape from vaccines and reduce the quality of life of re-infected people 
[86]. Asymptomatic and mildly symptomatic patients appear to be more 
susceptible to reinfection due to a lower memory B and T cell response 
and less long-term duration of nAbs. Moderate and severe patients are 
less vulnerable to reinfection due to the intermediate to long-term 
memory or duration of nAbs from 3 to 8 months [87,88]. However, 
more robust cohort studies are needed to estimate the time of memory 
and nAbs in recovered patients. 

Some SARS-CoV-2 variants that escape from nAbs/memory cells are 
an emerging issue at the moment. There are a lot of SARS-CoV-2 variants 

Fig. 3. SARS-CoV-2 alveolar pneumonia induced 
by Cytokine Storm and antibody-based treat
ments against crucial cytokines. A) SARS-CoV-2 
alveolar pneumonia induced by cytokine storm 
proinflammatory response caused by macrophages 
and other innate immune cells. The key cytokines 
are TNF-α IL-1β and IL-6. B) Antibody-based treat
ments against the key cytokines: TNF-α (adalimu
mab and infliximab), IL-1β (canakinumab), and IL-6 
receptor (tocilizumab and sarilumab). The figure 
was generated using BioRender software.   

Table 2 
Recent advances in antibody-based treatments against SARS-CoV-2 cytokine 
storm.  

Antibody Name and 
origin 

Target Stage Reference(s) 

Adalimumab/ 
Humira®, AbbVie 
Inc., USA 

TNF-α Clinical trials [16,17,80] 

Infliximab/ 
Remicade®, 
Johnson & Johnson, 
USA 

TNF-α Clinical trials [16] 

Canakinumab/ 
Ilaris®, Novartis 
International, 
Switzerland 

IL-1β Clinical trials need 
additional randomized 
studies 

[16,18] 

Tocilizumab/ 
Actemra®, Chugai 
Pharmaceutical, 
Japan 

IL-6 
receptor 

Approved in the UK; 
part of a clinical study 
with remdesivir for 
pneumonia patients in 
the USA 

[19–21,37,81–85] 

Sarilumab/ Kevzara®, 
Sanofi S.A., France 

IL-6 
receptor 

Clinical trials [16,20]  
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[89], but four are more transmissible and dangerous than the original 
SARS-CoV-2 and need more concern: B.117 from the United Kingdom 
(UK), P1 from Brazil, and 501Y.V2 (or B.1.351) from South Africa [89], 
and the most recently emerged, B.1.617.2 from India [90]. Until now, 
there has been no evidence of a loss of vaccine efficacy in response to the 
UK variant [89]. On the other hand, the South African variant could 
escape from CP [91]. The Brazilian and Indian variants are more recent 
than others, and little information is available. However, as with 
B.1.351, the Brazilian variant is highly transmissible and appears to re- 
infect people who have recovered from the original virus [92]. More 
studies are crucial to determine whether the variants are more lethal 
than the original virus and induce more reinfections and escape from 
vaccines. On May 31, 2021, WHO announced a new and more 
straightforward nomenclature for the variants, divided into “variants of 
concern” and “variants of interest”. The four above-mentioned variants 
of concern are now Alpha (former B.117 British variant), Beta (former 
B.351 South African variant), Gamma (former P1 Brazilian variant), and 
Delta (former B.1.617.2 Indian variant) [93]. 

ADE is characterized by a more potent disease after a second expo
sure to a pathogen [55]. It could be an issue in ABTs, principally those 
involving CP and hyperimmune serum, due to the presence of non- 
neutralizing antibodies together with the nAbs [55]. ADE has been 
observed in MERS and SARS-CoV [55]. However, no ADE has been 
confirmed for SARS-CoV-2, and IgG isolation, purification, mAb tech
nology, and recombinant modification in glycosylation of the Fc domain 
could help avoid ADE [56]. 

Another antibody-mediated pathogenesis in COVID-19 patients is the 
production of autoantibodies in severe/critically ill patients, as sug
gested by the observation that these patients were reported to have 
antiphospholipid and anti-β2-glycoprotein I (β2GPI) IgA, IgM, and IgG 
antibodies [94–97]. Some autoantibodies or factors related to autoim
mune rheumatic diseases have been found in COVID-19 patients without 
a disease history [95,98]. Another study showed that critically ill 
COVID-19 patients display lupus-like hallmarks, such as activating 
extrafollicular B cells [99]. These extrafollicular responses induce 
antibody-secreting cells. Thus, SARS-CoV-2 infection may lead to auto
immune disease induction by producing and amplifying autoantibodies 
[56]. 

As recently shown by Liu and collaborators (2021) [100] in a review, 
other autoantibodies have also been detected in COVID-19 patients 
[100], such as cold agglutinins, which cause hemolytic anemia and 
complicate laboratory assessment and renal replacement therapy 
[101,102]; anti-Ro/SSA antibodies, which may be associated with se
vere pneumonia [103]; anti-Caspr2 antibodies [104], anti-GD1b anti
bodies [103], anti-MOG antibodies [105], and red cell-bound 
antibodies, associated with the anemia severity [106]. In addition, the 
American Journal of Nursing published a NewsCAP (March 2021) sug
gesting that autoantibodies across a wide range of immunological tar
gets in COVID-19 patients are also related to long COVID-19 or post- 
COVID-19 syndrome [107]. More studies are needed to understand 
the risks of COVID-19 in patients with pre-existing autoimmune condi
tions or if COVID-19 disease generated this autoimmune disease. 

7. Perspectives 

Due to the challenges discussed previously, ABT for SARS-CoV-2 
treatment may be discarded. However, as treatments involving ABT 
have been simpler, faster, and safer than vaccines, ABT using variants as 
targets could be used as alternative treatment until effective vaccines 
against variants are developed. In addition, mAbs cocktails or polyclonal 
antibodies could be used to block virus ABT escape. Research advances 
in molecular biology could discard ADE induced by ABT. Furthermore, 
we propose that ABT be used not only for treatment but also for pre
vention, as reinfection and poorly understood immune responses are 
significant issues for COVID-19. ABT could also block autoantibodies in 
severe/critical patients, and more efforts could be made along these 

lines. 
In conclusion, more actions should be taken by the research com

munity and pharmaceutical industry to make ABT less expensive and 
scalable, which would allow more access to these therapies, principally 
in underdeveloped countries. This technology could be used for other 
future pandemics, as ABT could be applied to block the pathogenesis of 
infection, reinfection, cytokine storm, and autoimmune antibodies. 
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[72] FAPESP (Fundação de Amparo à Pesquisa do estado de São Paulo) research. 
Butantan equine serum notice by FAPESP. https://revistapesquisa.fapesp.br/ 
butantan-desenvolve-soro-contra-o-novo-coronavirus/ 2021 (accessed in 12 May 
2021). 

[73] Alessandro Sette, Shane Crotty, Adaptive immunity to SARS-CoV-2 and COVID- 
19, Cell 184 (4) (2021) 861–880, https://doi.org/10.1016/j.cell.2021.01.007. 

[74] Q. Zhang, P. Bastard, Z. Liu, et al. (2020). Inborn errors of type I IFN immunity in 
patients with life-threatening COVID-19. Sci. 370, eabd4570. doi: 10.1126/ 
science.abd4570. 

[75] Paul Bastard, Lindsey B. Rosen, Qian Zhang, Eleftherios Michailidis, Hans- 
Heinrich Hoffmann, Yu Zhang, Karim Dorgham, Quentin Philippot, 
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