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ABSTRACT
Over the last decade, chemotherapy treatments have dramatically shifted to outpatient ser-
vices such that nearly 90% of all infusions are now administered outpatient. This shift has
challenged oncology clinics to make chemotherapy treatment as widely available as possible
while attempting to treat all patients within a fixed period of time. Historical data from a
Veterans Affairs chemotherapy clinic in the United States and staff input informed a discrete
event simulationmodel of the clinic. The case study examines the impact of altering the current
schedule, where all patients arrive at 8:00 AM, to a schedule that assigns patients to two or
three different appointment times based on the expected length of their chemotherapy
infusion. The results identify multiple scheduling policies that could be easily implemented
with the best solutions reducing both average patient waiting time and average nurse over-
time requirements.
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1. Introduction

1.1. Background

In 1930, the United States (U.S.) Congress authorised
the President to establish the Veteran’s Administration
(VA) in order to provide care for the men and women
who served in the U.S. military (Slocum, 2014; U.S.
Department of Veterans Affairs, 2018b, 2018c). While
the VA provides a wide range of services to veterans
nationwide, its healthcare system is arguably the most
important andmost costly service. Since its creation, the
VA healthcare system has expanded from 54 hospitals
to 153 hospitals, 909 community based outpatient
clinics, and 135 nursing home clinics. VA Medical
Centers(VAMCs) provide full spectrum services, ran-
ging from routine outpatient services to emergency care
to specialised services such as oncology, neurology, and
prosthetics. Often, VA hospitals are located adjacent to
medical schools, allowing experienced physicians to
provide excellent care to veterans while training the
next generation of medical providers.

Our focus is on improving scheduling for the out-
patient chemotherapy clinic at the U.S. Veteran’s
Affairs Medical Center in Durham, North Carolina,
which provides care to over 200,000 veterans across 26
counties in the state of North Carolina (U.S.
Department of Veterans Affairs, 2018a). However,
since not all VAMCs are capable of providing oncol-
ogy services, the Durham VAMC treats patients from
states in the region, with patients often travelling from

northern South Carolina, southern Virginia, and as far
east as the North Carolina coastal counties.

The chemotherapy clinic is open 250 days a year
and administered more than 3,500 doses of che-
motherapy in 2013. The clinic is staffed with five
chemotherapy certified nurses that cycle patients
through 14 infusion chairs throughout the day. The
clinic administers over 80 different chemotherapy
regimens (regimens refer to the combination of one
or more drugs) and provides ancillary services such as
phlebotomies and blood transfusions. While some
treatments take 15 minutes, others take upwards of
six to eight hours – yet in each case, the patient is told
to arrive at 8:00 AM for treatment. This practice has
resulted in very long wait times for the patients and
significant overtime hours for the nursing staff.

1.2. Clinic overview

The daily process for the chemotherapy clinic consists
of three major phases: (1) lab work, (2) pharmacy
processing, and (3) chemotherapy infusion. When
patients arrive to the clinic, their first stop is the
phlebotomy station. The phlebotomy station is staffed
with two phlebotomists, one arriving at 6:00 AM and
the other arriving at 7:30 AM. Patients are called in to
the phlebotomy station on a first come, first served
(FCFS) basis. The phlebotomist draws multiple blood
samples, which are then escorted to the hospital’s
main lab. Lab tests are required because providers
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must ensure their patients can safely receive che-
motherapy. Chemotherapy drugs are fundamentally
toxic to the body and typically work by either destroy-
ing cells or preventing cell replication. The drugs are
unable to differentiate between good cells and cancer
cells, which are both affected during chemotherapy
treatments, so lab tests are essential for determining
whether a patient can withstand their next round of
treatment. Once the main lab completes the testing,
the patient’s doctor will review the results to ensure
the patient can tolerate treatment. If the patient is
healthy enough for treatment, the doctor will notify
the attending nurse to submit the patient’s chemother-
apy order to the pharmacy. If the patient is not a viable
candidate for treatment, the doctor will either post-
pone treatment to a later date or they may supplement
the patient with a blood transfusion, platelets, etc.

Unlike many VAMCs, the Durham clinic has
a dedicated pharmacy located next to the infusion
clinic. The pharmacy is staffed with two pharmacists
who rotate between working in the hospital’s main
pharmacy and the chemotherapy pharmacy. The phar-
macy operates as two single server processes in series.
The order starts with one pharmacist entering all of the
patient and order information and printing out drug
labels. Once data entry is complete, the second pharma-
cist will gather all of the necessary supplies to mix the
drug in the neighbouring clean room under
a ventilation hood. Once the drug has been prepared,
the pharmacy delivers the chemotherapy drugs to the
infusion clinic. The pharmacy processes drug orders on
a FCFS basis, unless one of the nurses asks the pharma-
cists to bump an order to the front of the line (typically
for patients with very long infusion times).

While the nurses wait for their patients’ lab results
and chemotherapy drugs from the pharmacy, they col-
lect vital signs and administer chemotherapy premedi-
cation drugs, which must be taken at least 30 minutes
prior to starting an infusion. Once the nurses receive
their patients’ chemotherapy drugs, the process is fairly
deterministic since they are pumped in to the patients’
blood stream at a predetermined rate. Occasionally
patients experience adverse reactions to the chemother-
apy drugs, which can delay or prematurely end
a treatment, but these instances are very rare.

VAMCs are at a significant disadvantage when it
comes to controlling their patient flow. In many cases,
patients rely on VA sponsored buses to get to the
hospital and unlike most community hospitals, some
patients will be travelling over three hours for their
appointment. As a result, VAMCs are reluctant to
enforce strict adherence to appointment times and
will generally do everything in their power to treat
patients whenever they arrive. However, by telling
every patient to arrive at 8:00 AM the chemotherapy
clinic cannot effectively control the order in which
patients are treated.

When every patient is scheduled to arrive at 8:00
AM, the clinic ensures the lab, pharmacy, and nursing
staff will be fully utilised in the morning and the staff
rarely waits on patients to arrive; however, patients
spend significantly more time in the system waiting
for service. Furthermore, this is not necessarily the
most efficient scheduling method as it creates
a longer queue at the phlebotomy station, which may
delay lab results for certain patients. When patients
with short infusions get their lab results ahead of those
patients with long infusions, the pharmacy builds
a backlog of orders that are tail heavy with long infu-
sions. Now, instead of starting a five-hour infusion at
10 AM, the nurses might not be able to start the
infusion until 12 PM.

As a population of patients, veterans with cancer
are one of the last demographics that should spend
hours waiting for service. The goal of this project
was to build a simulation of the clinic to examine
how various scheduling heuristics affected the aver-
age waiting time in the system (measured from the
time a patient checks in until the patient starts
their chemotherapy infusion) and the clinic’s
annual overtime cost. The first step was to build
a simulation that accurately models the current
system where every patient was told to arrive at 8
AM. The simulation uses a combination of histor-
ical data and anecdotal evidence from the clinic’s
staff to model various process times.
A collaborative effort from the nursing staff, phar-
macy, and doctors verified that the system is mod-
elled correctly, and historical overtime data served
to validate the simulation’s construction. Once the
base schedule simulation was built, the study exam-
ined the impact of each proposed schedule against
the current schedule.

The rest of this paper is organised as follows:
Section 2 discusses relevant literature, Section 3 pre-
sents the simulation model, Section 4 summarises key
results from the appointment policies, and Section 5
provides some final thoughts.

2. Literature review

2.1. Discrete event simulation in healthcare

Much of the discrete event simulation (DES) literature
in healthcare focuses on emergency departments (ED).
These studies often include patient-centric perfor-
mance measures such as waiting time or length of
stay along with provider-focused metrics like resource
utilisation and productivity (Abo-Hamad & Arisha,
2013). Several studies present DES-based decision
support systems to improve management of emer-
gency departments (Ordu, Demir, & Fofallis, 2019),
especially under strained or capacity constrained con-
ditions (Kadri, Chaabane, & Tahon, 2014).
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These studies cover geographically diverse clinics of
varying scales including high-volume facilities (Oh,
Novotny, Carter, Ready, & Campbell, 2016). Gul,
Guneri, and Gunal (2019) present a case study for
managing a network of EDs from five public hospitals
in Istanbul, Turkey, to evaluate preparedness for
earthquakes. The interested reader should consult
Gul and Guneri (2015) for a recent survey of ED
simulation studies for normal and disaster conditions.

DES has also supported analysis and management of
optometry clinics (Seminelli, Wilson, & McConnell,
2016) and retinal services (Demir, Southern, Verner, &
Amoaku, 2018), as well as specialised cancer treatment
clinics administering radiation (Babashov et al., 2017).

In a related study, Rohleder, Lewkonia, Bischak,
Duffy, and Hendijani (2011) use DES to improve
patient waiting time at an outpatient orthopaedic clinic
seeing 50–100 patients per day, most of whom have
scheduled appointments throughout the day which dif-
fers from our study. Another closely related study is
Richardson and Cohn (2018) which uses DES to under-
stand the impact of make-ahead chemotherapy drug
policies. Unlike Richardson and Cohn (2018), the case
study in this paper centres on appointment block sche-
duling schemes to shape demand at a VA clinic.

2.2. General scheduling

Nearly 90% of all oncology patients will be treated in
an ambulatory (outpatient) setting over the course of
their battle with cancer, which is why many profes-
sionals in the oncology and haematology field have
realised a need for improved efficiency (Williamson,
2008). Although some outpatient clinics operate
twenty-four hours a day, most mirror normal business
hours, which presents the challenge of treating every
patient within a limited period of time. Unlike the
inpatient setting, outpatient nurses cannot pass their
patient off to the next shift. Most infusion clinics tend
to front load all of their appointments in an effort to
reduce overtime hours, but this can result in long wait
times for patients. Studies show that cancer patients
tend to value quality of care above all other factors;
excessive waiting times have become the most preva-
lent source of dissatisfaction (Thomas, Glynne-Jones,
& Chait, 1997). However, quality of care and excessive
wait times are not a zero sum game, which is why
many researchers are attempting to find ways to
improve outpatient chemotherapy scheduling
techniques.

The primary goal for chemotherapy clinics is to
maximise the utilisation of its infusion chairs so that
the clinic can treat as many patients as possible in
a single day without exceeding normal business
hours. The current policy at the Durham VA clinic is
an example of the simplest block scheduling techni-
que. In this case, the number of blocks, k, equals 1, and

the number of patients assigned to that block, n, is
equal to the total number of patients scheduled on
that day. This technique is designed to minimise the
service providers’ idle times, but it typically comes at
the expense of the patient whom experiences longer
waiting times for service (Gupta & Denton, 2008). The
other end of the spectrum regarding block scheduling
is to set the number of blocks equal to the number of
patients, such that k ¼ n, and the length of time allo-
cated to each block k is equal to the expected mean
service time for each n (Welch & Bailey, 1952). This
type of schedule has several drawbacks, primarily that
it works best for a single server process (which the
chemotherapy clinic is not), and its complexity can be
very challenging for schedulers to execute.

A common practice for primary care doctors is to use
a multiple-block/fixed interval rule (Cayirli & Veral,
2003). Using this rule, clinics assign multiple patients
identical appointment times, which are spread out across
equal intervals throughout the day. For example, three
patients could be assigned appointment times at 8:30
AM, and three more patients would be assigned appoint-
ments at 9:00 AM. This works particularly well in pri-
mary care or general practice settings because the mean
service time is usually small (less than 15 minutes), but
the wide range of chemotherapy infusion times may
prohibit chemotherapy clinics from using fixed intervals.

2.3. Chemotherapy scheduling

Few outpatient services in the healthcare field are as
complex as the delivery of chemotherapy because
there are multiple ancillary processes that work
together before a patient can start their treatment.
Depending on the processing capacity and variability
of those ancillary services (phlebotomists, lab techni-
cians, and pharmacists), it can be extremely difficult to
develop an accurate appointment system. Some clinics
encourage pre-infusion appointments, allowing the
providers to review lab results 24–48 hours prior to
a patient’s chemotherapy infusion, thereby eliminat-
ing the uncertainty of those processes, but this is not
practical for VA hospitals since many of their patients
travel a great distance for treatment. Much of the
reviewed literature focused exclusively on the infusion
phase of outpatient chemotherapy clinics, which is
a significant simplification because it eliminates the
uncertainty, variability, and delays of the lab and
pharmacy phases (Chabot & Fox, 2005; Delaney,
Jalaludin, Moylan, & Barton, 2002; Hesaraki,
Dellaert, & de Kok, 2019; Turkcan, Zeng, & Lawley,
2012).

One of the most significant advances in chemother-
apy scheduling was the development of a meaningful
patient classification system: Chabot and Fox (2005)
develop acuity levels that represent a combination of
the total amount of treatment time and the nursing
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attention each patient would require based on their
prescribed chemotherapy regimen, where the acuity
value ð1; 2; . . . ; κÞ was equal to the total treatment
time divided by thirty minutes. Patients were sched-
uled using a multiple-block/variable interval system,
with each nurse treated as a single-server and intervals
were blocked off according to patient acuity levels.
Chabot and Fox (2005) recognise that acuity levels
did not eliminate the complexities involved in sche-
duling chemotherapy patients, but if clinics included
acuity levels during the scheduling process, they would
be able to better quantify a nurse’s workload.

Turkcan et al. (2012) builds on Chabot and Fox
(2005) by developing algorithms and heuristics in
a 2-stage integer program to minimise patient treat-
ment delays and staff overtime, while maximising staff
utilisation. In order to balance nurse workloads, the
integer program includes each patient’s acuity level
and for each nurse, the sum of their patient’s total
acuity was required to be less than or equal to
a predetermined value. While this study provides the
most detailed analysis of chemotherapy operations,
yielding one of the best optimisation methodologies
in its field, it only examines the infusion phase of the
outpatient chemotherapy treatment process. Without
addressing the lab and pharmacy phases, this planning
and scheduling model cannot be implemented.

There are a number of outpatient chemotherapy DES
studies in the literature (Ahmed, ElMekkawy, & Bates,
2011; Alvarado, Cotton, Ntaimo, Pérez, & Carpentier,
2018; Liang, Turkcan, Ceyhan, & Stuart, 2015; Woodall,
Gosselin, Boswell, Murr, & Denton, 2013; Yokouchi,
Aoki, Sang, Zhao, & Takakuwa, 2012). Liang et al.
(2015) use both DES and an optimisation model to
improve patient flow and scheduling in an outpatient
chemotherapy clinic, but these studies consider a clinic
where appointments are spread through the day, with
45% of appointments requiring no chemotherapy at all.
While the study considers multiple patient classes and
routings in amulti-facility setting, it is not directly applic-
able to the Durham VAMC. Yokouchi et al. (2012) also
suggests an appointment scheduling system based on
infusion times but stop short of providing a heuristic
scheduling rule. A few studies suggest ordering patients
by decreasing infusion time is a good target sequence
(Garaix, Rostami, & Xie, 2018; Suss, Bhuiyan, Demirli, &
Batist, 2017), though Garaix et al. (2018) is limited by
strong assumptions such as “the pharmacy is not
a bottleneck and drugs arrive on time,” there is no idle
time in an oncologist’s schedule, and all patients arrive
on time.

Of the few studies that have reached implementation
and tested their algorithms or models, most are too
specific to a particular clinic or hospital, thus their find-
ings cannot be replicated elsewhere (Belter et al., 2012;
Hendershot et al., 2005; Kallen, Terrell, Lewis-Patterson,
& Hwang, 2012). Several clinics have attempted to create

fast-tracking programmes that assign a higher priority to
patients with shorter infusion times or patients that
require minimal nursing attention. These are logical
strategies; however, their success is entirely dependent
on pharmacy capacity, and neither of the studies discuss
how to best schedule these appointments.

Eisenburg (2009) highlights a common issue with
many outpatient chemotherapy deliver systems, which
is particularly evident at the Durham VAMC: nurses are
involved in the scheduling appointments. Instead of
focusing solely on providing care, some nurses have an
active role establishing appointments and balancing their
patient load. But when nurses manage appointments
independently, clinics lose the ability to control patient
flow through the system.

The volume of existing research regarding outpatient
chemotherapy scheduling demonstrates the significant
need for improvement, yet the vast majority of the
research results cannot be implemented due to either an
oversimplification of the problem or the complexity of the
model. The few studies that reached implementation were
generally designed for a specific subset of patients or the
system required a resource capacity that could not be
widely replicated. A simple and easy-to-implement heur-
istic that clinics could use as a guideline for scheduling
chemotherapy appointments would be an invaluable tool.

3. Simulation model

3.1. Model definition

Patients move through the Durham VAMC chemother-
apy clinic processes according to Figure 1. In the model,
the only entities in the system are the patients. The
number of patients that enter the clinic varies from day
to day, as does the type of chemotherapy regimens admi-
nistered. The attributes that characterise each unique
patient are: (1) Arrival Time and (2) Chemotherapy
Regimen. Both of these attributes are sampled from an
appropriate distribution, which will be discussed in the
sections below. Next, there are several sub-attributes that
characterise a patient’s treatment requirements based on
his/her chemotherapy regimen: (1) Appointment Time,
(2) Infusion Length, (3) Labs required prior to infusion,
and (4) Probability of needing labs. Under the current
system, every patient’s appointment time was 8:00 AM.

The processes for this model are listed below and
their corresponding processing times will be discussed
in the following sections:

● Patient Arrivals,
● Blood Draw,
● Lab Processing,
● Wait on Chemotherapy Orders,
● Data Entry,
● Mix Chemotherapy Drugs, and
● Chemotherapy Infusion.
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The resources for this model and their associated
capacities are listed in Table 1. Notice that the lab
process does not have an assigned resource because
the clinic does not have the ability to process labs
internally. Instead, lab processing times are modelled
purely as a delay rather than a process that seizes
a resource during its delay. Similarly, the process of
waiting on chemotherapy orders is modelled purely as
a delay.

3.2. Patient arrivals

Although every patient is scheduled for an 8:00 AM
appointment, the daily variance in arrival times is
significant. Some patients try to game the system,
knowing that if they show up early they can be the
first patient in the queue, whereas other patients are
indifferent to their arrival time because they know that
their infusion will be an all-day event. It is difficult to
quantify the impact of these beliefs or to account for

them in a simulation, and it is probably unrealistic to
assume patients would display the same behaviour if
the clinic used a meaningful appointment system.
However, without having data to the contrary, all
simulations follow the same arrival time distribution,
regardless of the appointment time.

To model the patient arrival times, the simulation
uses historical check-in times from the patients at the
clinic. The earliest arrival time from the sample data is
6:30 AM and the latest is 10:20 AM. However, there
are only two patients who arrived after 10:00 AM and
occasionally nurses tell their patients with shorter
infusions to come later in the morning. Since these
two data points are significant outliers (60 minutes
greater than the next latest arrival time), it is reason-
able to assume that these patients were not instructed
to arrive at 8:00 AM, therefore they are excluded from
the sample population.

The rest of the data points are scaled by subtracting
the sample time from 6:30 AM, where 6:30 AM is the
earliest data point in the set. This step converts each
data point from a time to the number of minutes it is
from the lower bound (6:30 AM).

Based on historical arrival times, we model each
patient’s arrival time as an independent and identical
sample from a generalised Beta distribution of the form
aþ ðb� aÞ � Betaðα1; α2Þ with lowerbound a,

Figure 1. Infusion clinic patient flow diagram (does not include rare events such as unfavourable lab results or adverse reactions to
infusions).

Table 1. Clinic resources.
Resource Capacity Capacity

Phlebotomist 1–2
Data Entry Pharmacist 1
Mixing Pharmacist 1
Nurse 3–4
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upperbound b, and shape parameters α1; α2 (Kuhl et al.,
2010). Our best fit resulted in an arrival time distribution
modelled by 6:30 AM + 168� Betað3:64; 3:35Þminutes.
Goodness of fit tests and sensitivity analysis for this
choice (and others in this paper) may be found in
Slocum (2014).

3.3. Patient distribution

In looking at the average number of patients that
visited the chemotherapy clinic, a strong correlation
emerges between the number of nurses scheduled to
work on a given day and the number of patients that
were treated. As summarized in Table 2, historical
data from January- October 2013 revealed that 82.7%
of the time there were four nurses on the schedule and
17.3% of the time there were 3 nurses on the schedule.
There were three instances when the clinic operated
with two nurses; however those days were limited to
the 2nd, 3rd, and 4th of January, therefore they were
excluded from the sample population.

The number of patients who received treatment
at the clinic when there are 3 nurses on the sche-
dule is significantly different than the number of
patients who are treated when there are four nurses
on the schedule. Based on historical data which
included lower and upper bounds, we model the
number of patients treated each day, NumPatients,
according to

where INTð�Þ rounds to the nearest integer value.

3.4. Phlebotomy station

The phlebotomy station is the first queue that patients
enter when they arrive to the clinic. The clinic has two
phelobomists and under the current schedule, one
works from 6:00 AM until 2:00 PM and the other
works from 7:30 AM until 3:30 PM.

The average amount of time required to draw
a patient’s blood is 5 minutes, although some patients'
veins are more challenging than others, in which case
a phlebotomist could spend up to 10 minutes trying to
access a vein. After 10minutes of trying to find a vein, the

phlebotomist typically directs the patient to the infusion
room where a specialist will come to draw their blood.

The difficulty in modelling the phlebotomy station is
that chemotherapy patients represent less than half of
the patients that come through the station each day.
Haematology and oncology patients that are scheduled
to meet with their doctor also use the clinic’s phlebot-
omy station, and chemotherapy patients are not given
priority. From personal observations, there are rarely
two phlebotomists in the office at the same time, as one
is either absent, on break, or completing administrative
work instead of drawing blood samples.

The simulation assumes a constant service time of
10 minutes throughout the day, which is double the
average service time during these periods. Sensitivity
analysis shows the results are insensitive to this
assumption (Slocum, 2014). By using a service time
of double the average service time, the model attempts
to account for the impact non-chemotherapy patients
would have on the phlebotomy queue length and wait-
ing time.

3.5. Lab results

Each chemotherapy regimen attacks cancer cells dif-
ferently, but the general concept is that chemotherapy
drugs work by killing cells during a specific phase of
the cell cycle and are unable to differentiate between
good cells and cancer cells. Therefore, doctors require
lab tests to determine whether a patient can withstand

their next round of chemotherapy. The most common
tests prior to receiving chemotherapy are complete
blood count (CBC) tests and chemistry (Chem-7)
tests. CBC tests measure a patient’s ability to recover
from an infection or blood loss, while the Chem-7 tests
indicates whether a patient’s metabolism will be able
to clear the chemotherapy drugs adequately.

At the VA, over 95% of the regimens required both
of these tests. Historically, nurses found the Chem-7
test results generally take longer to receive than the
CBC test results. Without access to historical lab result
times, the simulation estimated the lab result waiting
times with a Beta distribution using the method
detailed in Kuhl et al. (2010) and presented below.
Define TLab as the time in minutes to receive lab
results. Anecdotal evidence from the nursing staff
suggests that the fastest they can get both test results
is 45 minutes (a), the mode (m) is 70 minutes, and the
longest amount of time they have waited is 150 min-
utes (b). The nurses also believe the average time they
spend waiting for lab results is 75 minutes (E½TLab�).

NumPatients ¼ INTð7þ 11� Betað2:42; 2:85ÞÞ 3 nurses scheduled
INTð7:5þ 14� Betað3:21; 2:97ÞÞ 4 nurses scheduled

�
(1)

Table 2. Patients treated each day based on number of nurses.

Nurses Probability
Average Number Patients

Treated
Standard
Deviation

3 17.3% 12.1 2.2
4 82.7% 14.7 2.7
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Using this information, we derive the shape para-
meters for the generalised Beta distributions below.
Let a ¼ 45;m ¼ 70; b ¼ 150, and μ ¼ E½TLab� ¼ 75
minutes; solving

ðα1 � 1Þbþ ðα2 � 1Þa
α1 þ α2 � 2

¼ m (2)

α1bþ α2a
α1 þ α2

¼ μ (3)

yields α1 ¼ 3:143 and α2 ¼ 7:857 resulting in

TLab,45þ 105� Betað3:143; 7:857Þ: (4)

3.6. Chemotherapy orders

Occasionally, a patient’s lab results will be ready but
the nursing staff does not have chemotherapy orders
to give the pharmacy. When this happens, the nurse
has to locate the patient’s provider and ask them for
chemotherapy orders. VA hospitals have not switched
to electronic orders, thus the doctor must provide
hard copy orders for every patient. This can be parti-
cularly challenging at the Durham VA hospital,
because often times its oncologists spend several days
each week at the Duke University Hospital.

The frequency of these delays is unclear, therefore
the simulation uses anecdotal evidence to capture the
process. According to the nursing staff, they have to
track down orders for 25% of their patients. The lower
bound for this delay is zero minutes, since it is possible
for the doctor to deliver orders simultaneously with
the lab results. The nurses agreed that the mode is
roughly 10 minutes and the upper bound is 120 min-
utes; however, the most common waiting time is
20 minutes. The time to locate chemotherapy orders is

TLocate,120� Betað1:6667; 8:3333Þ: (5)

3.7. Pharmacy process

The pharmacy operates as two single server queues in
series, where the first stage is the data entry phase and
the second stage is the mixing phase. The chemother-
apy clinic does not have two dedicated pharmacists,
rather the hospital rotates its 14–16 pharmacists
between the main pharmacy and the chemotherapy
pharmacy to ensure all of their employees are capable
of supporting either assignment and to limit the
amount of exposure the pharmacists have to poten-
tially harmful drugs.

Typically, the senior pharmacist in the chemother-
apy room is responsible for the data entry portion of the
process because it requires significant attention to detail
and if the pharmacy makes a mistake, it usually occurs
during data entry. For this simulation, the data entry
phase refers to the time interval starting when the

pharmacy receives the order until the time the mixing
pharmacist enters the clean room to mix the drugs.
During this phase, the pharmacist reviews the order
and dosage calculations, enters the patient information,
enters the drug data, and prepares a layout of drugs and
mixing solutions. Once all of this is complete, both
pharmacists review the layout together to verify that
the order is correct – this ends the data entry phase.
Typically, this process takes approximately 20 minutes,
with a lower bound of 15 minutes and an upper bound
of 25minutes. This process is modelled with the follow-
ing Beta distribution:

TData,15þ 10� Betað4; 4Þ: (6)

The next phase is the mixing phase, which begins
when the mixing pharmacist enters the clean room.
The mixing pharmacist carries all of the drugs to the
ventilation hood and proceeds to mix all of the drug
orders under the hood thereby reducing their expo-
sure to the drugs. While some of the drugs take longer
to dissolve in the saline solution than others, this
process takes approximately 15 minutes, with a lower
bound of 5minutes and an upper bound of 25minutes.
It is modelled with the Beta distribution below:

TMix,5þ 20� Betað4; 4Þ: (7)

3.8. Chemotherapy regimen data

Initially, one may think that the type of cancer, whether
it be colon, lung, or pancreatic would be important to
the simulation, but it turns out to be largely irrelevant.
Instead, knowing which treatment regimen a patient is
on provides much more useful information, because
the regimen dictates the expected infusion length,
probability of needing labs, and determines which
labs are required prior to treatment.

One of the ways the simulation attempts to sche-
dule patients is based on the expected length of their
infusion. The simulation breaks the various infusions
lengths into four categories: Quick, Short,
Intermediate, and Long. A quick infusion is one that
requires less than 1 hour of chair time. Quick infusions
account for 49.3% of all infusions. A short infusion is
one that takes between 1 and 2 hours. Short infusions
account for 21.4% of all infusions. Intermediate infu-
sions are those that take between 2 and 4 hours, and
account for 18% of all infusions. Long infusions are
those that take greater than 4 hours to administer and
they account for 11.3% of all infusions.

The type of chemotherapy regimen that a patient is
prescribed dictates the probability of needing labs when
they arrive for treatment. Although labs are required
prior to any patient receiving chemotherapy, labs are
only required on the first day of treatment for patients
receiving multiday infusions. For example, a patient
that is on the FCR/FC regimen will have labs drawn
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on the first day of treatment when they receive FCR,
but on days two and three the patient will come straight
back to the infusion clinic and the nurses will give the
pharmacy their chemotherapy order. In this example,
the probability of needing labs for FCR is 1 and the
probability of needing labs for FC is 0. Similarly, for
a five day treatment such as Decitabine, a patient will
only have labs drawn on 20% of their visits. Table 3
summarizes the empirical distribution of infusions and
Slocum (2014) provides the probability of labs for all
chemotherapy regimens administered in the last year.
Table 4 lists the average infusion length for each che-
motherapy regimen.

Due to patients with consecutive days of treatment,
each day is not independent from the previous day.
Since this model only simulates one day at a time, it
was important to include the probability of a patient
requiring labs in order to account for the impact
multiday patients have on the system. These patients
are typically the first to have their pharmacy orders
placed because they are able to bypass the lab phase
and their chemotherapy orders are on hand from the
previous day. If the model assumed patients always
required labs, the pharmacy would rarely receive
orders before 9:00 AM, which is unrealistic.

3.9. Verification and validation

Multiple staff members reviewed the model logic;
further, the nurses, pharmacists, and doctors all agreed
some rare occurrences should be omitted from the
model such as appointment no-shows and adverse
reactions to infusions.

We used several statistics to validate the simulation
to include number of patients treated, wait time statis-
tics, processing times, and historical overtime data.
Using 20 replications of 7,500 iterations, the model
treated an average of 13.7 patients per day which
matches the historical throughput while the minimum
(7) and maximum (21) are consistent with the clinic’s
historical records. The processing times for lab results
and the pharmacy match the anecdotal times presented
by the nursing staff and pharmacists. Personal observa-
tions of the clinic confirm the simulation’s backlog of
chemotherapy orders at the data entry process is very
indicative of true behaviour. Interested readers should
see Slocum (2014) for more validation details.

3.10. Approach

After considering several simulation software
packages, we chose to implement the simulation in
a combination of Microsoft Excel and Visual Basic
for Applications (VBA) for several reasons. The most
important factor was the administrators’ high comfort
level and familiarity with the software. Using software

they had experience with in other clinic solutions
maximised their ability to manipulate and display
simulation results themselves.

The VBA source code comprises four major
modules:

● Patient Creation,
● Base Schedule,
● Proposed Schedule, and
● Loop Construction/Main Menu.

Slocum (2014, pp. 26–30) develops the model in
detail with pseudocode snippets for various processes.
The entire source code for each module is available
from (Slocum, 2014, App. E). The simulation interface
was specifically designed to compare the baseline sche-
dule to a proposed schedule. An example of one MS
Excel output is included in the Appendix as Figure A1.

We chose to use 20 replications of 7,500 iteration
after pilot simulations of each schedule for 2,500 and
5,000 iterations provided nearly identical results but
did not sufficiently capture the tails of the patient
distribution. Further, there were concerns over com-
putation time in order to be able to work in near-real
time with stakeholders from the Durham VA clinic.
Using these settings produced results quickly on their
machines as well.

Since the clinic’s current policy (base case) is
a trivial block schedule with k ¼ 1 blocks, we first
consider a selection of reasonable two block schedules
for simulation and testing. We also assess performance
of select three block schedules. VAMC staff assisted
with developing the criteria for a “reasonable” policy
which emphasised simplicity and ease of implementa-
tion – these criteria greatly reduced the possible sche-
dules to be tested. Table 5 summarises the simulation
inputs of interest.

4. Results

Based on VAMC nursing staff inputs, this study exam-
ined two scheduling policies that met the ease of
implementation criterion. The results below were
obtained using the method of synchronised common
random numbers such that the patients who would
arrive early (late) to the first appointment block arrive
equally early (late) to the subsequent appointments
tested (Law, 2007). Each schedule was simulated for
7,500 iterations.

The first policy was a fixed-block scheduling
approach with two blocks. This would be easiest to
implement but potentially challenging to adequately
shape patient arrivals into only two appointment slots.
The second option tested was a three fixed-block pol-
icy which provides the clinic with greater flexibility
and control in assigning appointment times.
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4.1. Two appointment policies

The two appointment policy categorised patients
based on their chemotherapy regimen’s expected infu-
sion length and assigned them to one of two potential
appointment times. The first appointment time
remained at 8:00 AM. Key performance drivers were
the patient population and the appointment time.

The patient population refers to the patients (or
chemotherapy regimens) that received an alternate
appointment time. For example, if the patient popula-
tion was 60 minutes, then all patients whose infusions
are less than or equal to 60 minutes were given
the second appointment time. This second appoint-
ment time ranged from 8:00 AM to 4:00 PM. If
the second appointment time was too close to 8:00
AM, there is little change from the base schedule; if the
appointment time was too late in the afternoon, nurse
overtime increases.

The simulation tested patient population cut-offs of
30, 60, 90, and 120 minutes which comprise 32, 49, 61,
and 71 percent of the total patient population, respec-
tively. The appointment times evaluated ranged in
30 minute increments from 10:30 AM to 1:00 PM.
This results in the schedules that are combinations of
Table 6. For example, the (3–2) schedule assigns
patients with infusions 90 minutes or shorter an
11:00 AM appointment time (patients with infusions
greater than 90 minutes receive the 8:00 AM appoint-
ment). Figure 2 illustrates the average performance for
these two appointment policies.

From Figure 3 it is clear schedules 2–2 and 3–2 are
statistically indistinguishable with 3–1 being the best
schedule to minimise overtime and 2–3 best for redu-
cing patient wait times. This illustrates the tradeoff
between performance metrics and greatly simplifies
the decision space. For reference, all two appointment
schedule results are in Appendix B, Table B1.

4.2. Three appointment policies

The two appointment policy is the simplest to imple-
ment but exploring the impact of a three appointment
policy provides insights to understand the tradeoffs

Table 4. Average infusion length for each chemotherapy regimen (h:mm) based on industry standards and clinic nursing staff
input.
Regimen Infusion Time Regimen Infusion Time Regimen Infusion Time

0.45 NSS 0:30 CISPLATIN 4:00 Magnesium 1 gram 1:00
0.9 NSS 1:00 CISPLATIN > 75MG/M2 4:00 OXALI/BEVAC 3:00
1 UUNIT BLOOD 1:30 CYCLO/DOXOR 1:20 OXALI/BEVAC 1st dose 3:30
2 UNITS BLOOD 3:00 CYCLO/VELC 1:10 OXALIPLATIN 2:00
2 UNITS BLOOD + PLATELET 3:30 DECITABINE 1:00 PACLI/CARBO 3:30
5-FU 2:00 DOCET/HERCE/PETUZ 3:00 PACLITAXEL 3:00
ABVD 0:55 DOCET/ZOMET 1:15 PAMIDRONATE > 60 mm 1:30
ADO-TRASTUZUMAB EMTANSINE 0:30 DOCETAXEL 1:00 PANIT/IRINO 2:30
Ancillary Therapy 0:20 DOXORUBICIN HCL 0:20 PANITUMUMAB 3:00
AZACITADINE (Vidaza) 0:05 EOX 2:20 PEMETREXED 0:10
BENDAMUSTINE HCL 1:00 EPIRUBICIN 0:20 PLATELET 0:20
BEP 5:00 ETOPOSIDE 1:00 R-CHOP 6:00
BEVAC/CAPEC 1:30 FC 1:30 R-CVP 6:00
BEVACIZUMAB 1:30 FCR 5:00 R-EPOCH 8:00
BLEOMYCIN 1:05 FERRLECIT 1:00 R-ESHAP 6:00
CARBO/DOCET 1:30 FOLFIRI/OX 5:40 RICE 5:00
CARBO/ETOPO 1:30 FOLFOX 0:10 RITUX/BENDA 5:00
CARBO/IRINO 2:00 GEMCITABINE HCL 0:30 RITUX/CYCLOS 5:30
CARBO/PACLI 3:30 HERCEPTIN 1:00 RITUX/FLUDA/CYCLO 6:30
CARBO/PACLI/BEVAC 4:30 IFOSF/DOXOR 2:00 RITUX/VELC 1:10
CARBO/PEMET 1:10 IRINO/BEVAC 2:30 RITUXAN 4:00
CARFILZOMIB 1:40 IRINO/PANIT 4:30 VELCA/PAMID 1:35
CISPL/5-FU 4:00 IRINOTECAN HCL 1:30 VELCA/ZOMET 0:17
CISPL/DOCET 5:00 IRON DEXTRAN 7:40 VELCADE 0:05
CISPL/ETOPO 5:00 IV Medication 1:00 VENOFER 2:00
CISPL/GEMCI 4:30 IVIG-GAMMUNEX 4:00 ZOMETA 0:15
CISPL/PEMET 4:10 IXABEPLIONE 3:00

Table 5. Required inputs to simulate proposed schedule.
These were the decisions available to the chemotherapy clinic.
Simulation Inputs Description

Number of Schedule Blocks (k) Number of appointment slots to use
k Appointment Times Example (k ¼ 3): 8 AM, 10 AM, 12 PM
Patient Population (if k ¼ 2) Patients to assign to first appointment

Table 6. Two appointment schedules tested; schedules are named (i-j) for reference. Empirical distribution of
patient population provided (e.g., 67% of patients require an infusion that is 90 minutes or less).
Patient Population Index (i) Patient Population Percent of Patients Appointment Index (j) Appointment Time

1 30 minutes 32% 1 10:30 AM
2 60 minutes 49% 2 11:00 AM
3 90 minutes 67% 3 11:30 AM
4 120 minutes 71% 4 12:00 PM

5 12:30 PM
6 1:00 PM
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between scheduling complexity and key performance
metrics. From the results in Section 4.1, the best policies
shared two traits: the patient populations were evenly
distributed across the appointment times and the fixed
intervals were sufficiently spread out. Note that
although small fixed intervals continue to reduce over-
time, they unnecessarily increase patient waiting times.
The interested reader can consult (Slocum, 2014, Ch. 5)

for a more detailed discussion of fixed interval selection.
We chose to group patients into three groups based on
infusion lengths less than or equal to 30 minutes, more
than 30 but less than or equal to 120 minutes, and
longer than 120 minutes. These three groups account
for 32, 36, and 32 percent of the total population
respectively. Because Section 4.1 shows that regardless
of patient population, appointment times after 12:30

Figure 3. Comparison of best two appointment schedules (k ¼ 2) with 95% confidence intervals for mean performance.

Figure 2. (Colour online) Average performance of proposed two appointment policies. Note the different axis scales for patient
waiting time (left) and nurse overtime (right); the base case for patient waiting time is 3:05 (off chart), for nurse overtime, 2:26.

HEALTH SYSTEMS 173



PM increase average overtime in the clinic, we con-
structed the schedules in Table 7.

Figure 4 demonstrates schedules 4 and 5 are dominant.
Though statistically indistinguishable, schedule 4’s even
two hour spacing between appointment times may be
more intuitive for nurses, patients, and administrators.
Schedule 4 outperforms the best k ¼ 2 schedule by 6%
in overtime and 3% in wait time reduction. All results for
three appointment schedules are in Appendix B, Table B2.

4.3. Discussion

As an example of how these policies affect clinic per-
formance metrics, Figure 5 provides a visual summary
of a 17 patient example with their infusion times
labelled in minutes. The top example illustrates the
clinic’s current policy. Notice the various infusions

categories are widely intermixed and the longest treat-
ments were processed 9th, 10th, and 17th. By failing to
sequence these longer infusions earlier in the schedule,
the clinic worked 3.7 hours of overtime. The best two
appointment schedule from Section 4.1 makes a visible
difference to the same patient list resulting in
a schedule with zero overtime hours and the last
patient infusion concluding at 3:59 PM. After applying
the best schedule from Section 4.2, the long and inter-
mediate infusions are clearly grouped first. This sche-
dule achieves zero overtime with the final infusion
complete at 3:52 PM. Table 8 summarizes perfor-
mance measures for the example in Figure 5.

One practical solution to cope with variability in
the lab process is to stagger appointment times to
break up the massive influx of pharmacy orders
between 9:00–10:30 AM. The two and three appoint-
ment policies reduce average waiting time in the
clinic predominantly by spreading out chemotherapy
orders. In the example shown in Figure 5, the aver-
age queue length varied greatly between the three
policies. As the number of appointment blocks
increases, the average number of orders will decrease
until a lowerbound. Due to the variability in the lab
process, this lowerbound is unlikely to be zero. For
a more detailed discussion of model results, the
reader is encouraged to consult (Slocum, 2014,
Ch. 5–6).

Table 7. Three appointment schedules tested where TInfusion is
the infusion length in minutes.

1st
Appointment 2nd Appointment

3rd
Appointment

Schedule
Name

TInfusion � 120
min

30< TInfusion � 120
min

TInfusion � 30
min

1 8:00 AM 9:30 AM 11:00 AM
2 8:00 AM 9:30 AM 11:30 AM
3 8:00 AM 10:00 AM 11:30 AM
4 8:00 AM 10:00 AM 12:00 PM
5 8:00 AM 10:30 AM 12:00 PM
6 8:00 AM 10:30 AM 12:30 PM

Figure 4. Comparison of best three appointment schedules (k ¼ 3) with 95% confidence intervals for mean performance.
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5. Conclusion

This study examined two scheduling policies that can
be easily implemented at the Durham VAMC che-
motherapy clinic. The best two appointment policy
assigns all patients infusions taking less than 1 hour
an appointment time of 11:00 AM (recall the rest are
scheduled for 8:00 AM). This schedule reduced the
average waiting time in the clinic by 21% and reduced
average nurse overtime by 60%.

With three appointments, the best policy assigns
12:00 PM appointments for patients with infusion
lengths less than or equal to 30 minutes, 10:00 AM
appointments for patients with infusion lengths of
31–120 minutes, and 8:00 AM appointments for
patients with infusions longer than 120 minutes. This
schedule reduced the average waiting time in the clinic
by 24% and the average overtime by 66%.

To minimise overtime costs, the optimal scheduling
solution appears to prioritise patients according to
a Longest Infusion Time (LIT) heuristic. This may not
always be practical based on constant appointment
changes, additions, and uncertain daily patient volume
until the day of treatment. However, chemotherapy
clinics can used standardised fixed-block scheduling
techniques to shape the patient arrivals such that the
longest infusion times arrive first and the shortest infu-
sion times arrive last. Increasing the number of blocks
moves the schedule close to the LIT order but at the cost
of increased complexity.

VA and community hospitals that treat a high
volume of Medicaid or Medicare patients may have
little incentive to change their current practices
(U.S. Centers for Medicare & Medicaid Services,
2019a, 2019b). Generally speaking, they do not

have to compete for business and their monetary
compensation for treatment is low, therefore provi-
ders may be largely indifferent to patient waiting
times. But as the population of veterans from over
a decade of war, access to healthcare increases as
a result of the Affordable Care Act (U.S. 111th
Congress, 2010), and oncology treatment protocols
increase patient life expectancies, the demand for
chemotherapy services will likely outpace supply.
Administrators would be well-served by applying
cost-free solutions, like good scheduling, to reduce
operating costs and improve patient care.

Acknowledgments

This paper would not have been possible without the nurses
at the Durham VAMC infusion clinic whose patience and
willingness to share their expertise supported every aspect of
this project. The fourth author was supported by a grant from
the U.S. Army Research Office (grant # W911NF1910055).

Disclaimer

The views expressed in this paper are those of the authors
and do not reflect the official policy or position of the United
States Army, the Department of Defense, the Department of
Veterans Affairs, or the United States Government.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the US Army Research Office
[W911NF1910055].

ORCID

Herbert L. Jones http://orcid.org/0000-0003-4512-1159

Figure 5. (Colour online) Pharmacy sequences for single appointment (top), two appointments (middle), and three appointments
(bottom) with infusion times in minutes.

Table 8. Performance measures from example in Figure 5.
Number of
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Average Number of Orders in
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Average Waiting
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Appendix A. Sample Output

Figure A1. Example of Simulation Output Table for a proposed schedule (right) as compared to the base schedule (left). In this
scenario, the number of nurses, patients, and the required infusions are identical for appropriate comparison. Simulation results
include average wait time, delays at the lab and pharmacy, and the number of nurse overtime hours.
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Appendix B. Simulation Results

Table B1. Simulation results for all two appointment schedules. The mean patient wait times and nurse overtime results reported
in “hours:minutes” format. The “% Reduction” column denotes the percent reduction in customer wait time (left) and nurse
overtime (right); negative values indicate an increase. Lower and upper endpoints for the 95% confidence interval for the mean
also provided in the “hours:minutes” format.
i–j Patient Pop. (min) Appt Time Wait Time % Reduction Lower Upper Overtime % Reduction Lower Upper

Base All 8:00 3:05 2:26

1–1 30 10:30 2:33 17.30% 2:32 2:33 1:14 49.32% 1:12 1:17
1–2 30 11:00 2:30 18.40% 2:29 2:30 1:14 49.32% 1:12 1:17
1–3 30 11:30 2:28 20.00% 2:28 2:29 1:13 50.00% 1:11 1:16
1–4 30 12:00 2:28 19.53% 2:27 2:28 1:17 47.26% 1:14 1:19
1–5 30 12:30 2:27 20.54% 2:27 2:28 1:26 41.10% 1:24 1:29
1–6 30 13:00 2:27 20.54% 2:27 2:28 1:43 29.45% 1:41 1:45

2–1 60 10:30 2:31 18.11% 2:30 2:32 1:02 57.53% 1:00 1:04
2–2 60 11:00 2:26 21.08% 2:26 2:27 0:58 60.27% 0.56 1:00
2–3 60 11:30 2:23 22.70% 2:22 2:23 1:02 57.53% 1.00 1:04
2–4 60 12:00 2:22 23.24% 2:21 2:22 1:14 48.88% 1:12 1:16
2–5 60 12:30 2:21 23.78% 2:21 2:21 1:36 33.80% 1:33 1:38
2–6 60 13:00 2:21 23.78% 2:21 2:22 2:12 9.59% 2:10 2:14

3–1 90 10:30 2:32 17.84% 2:31 2:32 0:57 60.96% 0:54 0:59
3–2 90 11:00 2:26 21.00% 2:25 2:26 0:59 59.59% 0.57 1:01
3–3 90 11:30 2:22 23.24% 2:22 2:23 1:10 52.05% 1.08 1:12
3–4 90 12:00 2:22 22.80% 2:21 2:22 1:36 34.25% 1:34 1:38
3–5 90 12:30 2:21 23.78% 2:21 2:22 2:13 8.90% 2:11 2:15
3–6 90 13:00 2:21 23.78% 2:21 2:22 3:01 � 23.97% 2:58 3:03

4–1 120 10:30 2:32 17.84% 2:32 2:33 1:03 56.85% 1:01 1:05
4–2 120 11:00 2:28 19.67% 2:28 2:29 1:23 43.15% 1:21 1:25
4–3 120 11:30 2:27 20.54% 2:26 2:27 1:54 21.92% 1.52 1:56
4–4 120 12:00 2:26 20.86% 2:25 2:26 2:35 � 6.16% 2:33 2:38
4–5 120 12:30 2:26 20.80% 2:26 2:26 3:29 � 43.15% 3:26 3:31
4–6 120 13:00 2:25 21.62% 2:25 2:26 4:22 � 79.45% 4:19 4:24

Table B2. Simulation results for all three appointment schedules. The mean patient wait times and nurse overtime results reported
in “hours:minutes” format. The “% Reduction” column denotes the percent reduction in customer wait time (left) and nurse
overtime (right); negative values indicate an increase. Lower and upper endpoints for the 95% confidence interval for the mean
also provided in the “hours:minutes” format.

1st Appt 2nd Appt 3rd Appt Wait Time % Reduction Lower Upper Overtime % Reduction Lower Upper

Base 8:00 n/a n/a 3:05 2:26

1 8:00 09:30 11:30 2:28 19.71% 2:28 2:29 0:53 63.67% 0:50 0:55
2 8:00 09:30 11:30 2:24 21.98% 2:23 2:24 0:51 64.93% 0:49 0:53
3 8:00 10:00 11:30 2:23 22.43% 2:23 2:23 0:49 66.05% 0:47 0:51
4 8:00 10:00 12:00 2:20 24.25% 2:19 2:20 0:49 66.01% 0:47 0:51
5 8:00 10:30 12:00 2:19 24.64% 2:19 2:19 0:49 66.00% 0:47 0:51
6 8:00 10:30 12:30 2:16 26.39% 2:15 2:16 0:56 61.47% 0:54 0:58
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