Skip to main content
. 2021 Jul 18;1(1):e26769. doi: 10.2196/26769

Table 2.

User-level performance (%) using different features.

Featuresa Accuracy F1 AUCb
VADERc 54.9 61.7 54.6
Demographics 58.7 56.0 61.4
Engagement 58.7 62.3 61.7
Personality 64.8 67.8 72.4
LIWCd 70.6 70.8 76.0
V + D + E + P + Le 71.5 72.0 78.3
XLNet 78.1 77.9 84.9
All (random forest) 78.4 78.1 84.9
All (logistic regression) 78.3 78.5 86.4 f
All (SVMg) 78.9 79.2 86.1

aWe used SVM for classifying individual features.

bAUC: area under the receiver operating characteristic curve.

cVADER: Valence Aware Dictionary and Sentiment Reasoner.

dLIWC: Linguistic Inquiry and Word Count.

eV + D + E + P + L: VADER + demographics + engagement + personality + LIWC.

fItalics indicate the best performing model in each column.

gSVM: support vector machine.