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Abstract

It is important to study the genetics of complex traits in diverse populations. Here, we introduce covariate-adjusted linkage
disequilibrium (LD) score regression (cov-LDSC), a method to estimate SNP-heritability (h2

g) and its enrichment in
homogenous and admixed populations with summary statistics and in-sample LD estimates. In-sample LD can be
estimated from a subset of the genome-wide association studies samples, allowing our method to be applied efficiently to
very large cohorts. In simulations, we show that unadjusted LDSC underestimates h2

g by 10–60% in admixed populations; in
contrast, cov-LDSC is robustly accurate. We apply cov-LDSC to genotyping data from 8124 individuals, mostly of admixed
ancestry, from the Slim Initiative in Genomic Medicine for the Americas study, and to approximately 161 000 Latino-ancestry
individuals, 47 000 African American-ancestry individuals and 135 000 European-ancestry individuals, as classified by
23andMe. We estimate h2

g and detect heritability enrichment in three quantitative and five dichotomous phenotypes,
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making this, to our knowledge, the most comprehensive heritability-based analysis of admixed individuals to date. Most
traits have high concordance of h2

g and consistent tissue-specific heritability enrichment among different populations.

However, for age at menarche, we observe population-specific heritability estimates of h2
g . We observe consistent patterns of

tissue-specific heritability enrichment across populations; for example, in the limbic system for BMI, the
per-standardized-annotation effect size τ∗ is 0.16 ± 0.04, 0.28 ± 0.11 and 0.18 ± 0.03 in the Latino-, African American- and
European-ancestry populations, respectively. Our approach is a powerful way to analyze genetic data for complex traits from
admixed populations.

Introduction
It is important for human geneticists to study how genetic vari-
ants that influence phenotypic variability act in different pop-
ulations worldwide (1,2). However, to date, most genome-wide
association studies (GWAS) have been conducted in populations
of European ancestry (3). Non-European ancestry populations,
particularly those with largely admixed ancestry such as African
American and Latino populations, have been underrepresented
in genetic studies. Many statistical methods to analyze genetic
data assume homogeneous ancestry, for example by assuming
negligible long-range linkage disequilibrium. In order to ensure
that the benefits of GWAS are shared beyond individuals of
homogeneous ancestry, statistical methods for admixed popu-
lations are needed (4).

Among methods to analyze polygenic complex traits in
populations of homogeneous ancestry, summary statistics-
based methods such as linkage disequilibrium score regression
(5,6) (LDSC) and its extensions (7–9) have become particularly
popular due to their computational efficiency, relative ease
of application and their applicability without raw genotyp-
ing data (10). These methods can be used to estimate the
proportion of phenotypic variance explained by genotyped
variants (SNP-heritability) (7,11,12), distinguish polygenicity
from confounding (5), establish relationships between complex
phenotypes (7) and model genome-wide polygenic signals to
identify key cell types and regulatory mechanisms of human
diseases (6,9).

Summary statistics-based methods for polygenic analysis
frequently rely on linkage disequilibrium (LD) calculations.
For LD score regression, the LD information needed is the
LD score for each SNP, defined to be the sum of its pairwise
correlations (r2) with all other SNPs. For many populations with
homogeneous ancestry, there is a reference panel of individuals
with close-enough matching ancestry that can be used to
approximate the in-sample LD. For studies with heterogeneous
or admixed ancestry, however, even when reference panels
are available, they may not be representative of the precise
populations used in the genetic study. For example, Latino
populations in different regions worldwide may share the same
ancestral continental populations, but with dramatic differences
in subcontinental ancestry, admixture proportions and timing of
the admixture event (13). A generic reference panel cannot easily
capture these differences and hence cannot produce accurate
LD scores that can be widely used for all Latino populations.
Moreover, the structure of LD in heterogeneous and admixed
populations is complex and includes longer range correlations
that are absent or negligible in homogeneous populations. Thus,
while LD scores computed from a matching reference panel
reflect the appropriate matching LD for summary statistics
computed in many populations of homogeneous ancestry, it
has not been clear what the appropriate matching LD is for
summary statistics computed in a heterogenous or admixed

population, and so LDSC has only been recommended to be
applied in populations of homogeneous ancestry.

Here, we evaluate the heritability estimates using LDSC in
admixed populations and observe systematic underestimation.
We then introduce covariate-adjusted LD score regression (cov-
LDSC) to estimate heritability and partitioned heritability in
admixed populations. We apply our approach to 8124 partic-
ipants from the SIGMA study (14) and to 161 894 participants
classified by 23andMe (15) as having Latino genetic ancestry,
46 844 classified as having African American genetic ancestry
and 134 999 classified as having European genetic ancestry. We
analyze three quantitative phenotypes (body mass index (BMI),
height and age at menarche), and five dichotomous pheno-
types (type 2 diabetes – T2D (available in the SIGMA cohort
only), left handedness, morning person, motion sickness and
nearsightedness).

One powerful component of LDSC is that it can be used
to test whether a particular genome annotation—for example,
sets of genes that are specifically expressed within a candidate
tissue or cell type—capture more heritability than expected by
chance (9,16). We demonstrate that cov-LDSC can be applied
in the same way to identify trait-relevant tissue and cell types
in admixed and homogenous populations with well-calibrated
type I error. We examine height, BMI and morning person since
these traits had sufficient statistical power for cell-type enrich-
ment analyses in the 23andMe cohort. We observe a high level of
consistency among enriched tissue types, highlighting that the
underlying biological processes are shared among studied pop-
ulations. This heritability enrichment analysis of hundreds of
genome annotations in cohorts of over 100 000 individuals would
have been challenging with existing genotype-based methods
(17–19).

Results
Overview of methods

In this work, we extended the LDSC-based methods to hetero-
geneous and admixed populations by introducing cov-LDSC. We
first showed through derivations that the appropriate matching
LD for summary statistics computed in a heterogeneous or
admixed population is in-sample LD computed on genotypes
that have been adjusted for the same covariates (e.g. principal
components) included in the summary statistics (Supplemen-
tary Material, Appendix A). In cov-LDSC, we computed these
covariate-adjusted LD scores and then used LDSC to estimate
heritability and its enrichment (see Materials and Methods). We
showed that, unlike LDSC, cov-LDSC produces accurate esti-
mates of heritability with summary statistics from admixed pop-
ulations (see Materials and Methods, Fig. 1). Furthermore, heri-
tability can be partitioned to identify key gene sets that have dis-
proportionately high heritability. While access to the genotype
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Figure 1. Overview of the covariate-adjusted LD score regression. (a) As input, cov-LDSC takes raw genotypes of collected GWAS samples and their global principal

components. (b) cov-LDSC regresses out the ancestral components based on global principal components from the LD score calculation and corrects for long-range

admixture LD. Black and red lines indicate estimates before and after covariate adjustments, respectively. (c) Adjusted heritability estimation based on GWAS association

statistics (measured by χ2) and covariate-adjusted LD scores. (d) Estimation of heritability enrichment in tissue-specific gene sets.

data of the GWAS samples is required to compute the covariate-
adjusted LD scores, LD can be estimated on a random subset of
the individuals, preserving the computational efficiency of LDSC
and allowing for its application to very large studies. Individual
cohorts can also release the in-sample covariate-adjusted LD
scores as well as the summary statistics to avoid privacy con-
cerns associated with genotype-level information to facilitate
future studies.

Robustness of LD score estimation

To demonstrate the effect of admixture on the stability of LD
score estimates, we first calculated LD scores with genomic
window sizes ranging from 0 to 50 cM in both European (EUR,
N = 503) and admixed American (AMR, N = 347) populations from
the 1000 Genomes Project (20). As window size increases, we
expect the mean LD score to plateau because LD should be
negligible for large enough distance. If the mean LD score does
not plateau, but continues to rise with increasing window size,
then one of two possibilities may apply: first, the window is too
small to capture all of the LD; second, the LD scores are capturing
long-range pairwise SNP correlations arising from admixture. If
this increase is non-linear then there is non-negligible distance-
dependent LD, violating LDSC assumptions. Examining unad-
justed LD scores, we observed that in the EUR population (5),
the mean LD score estimates plateaued at windows beyond 1
cM in size, as previously reported. However, in the AMR pop-
ulation the mean LD score estimates continued to increase
concavely with increasing window size. In contrast, when we
applied cov-LDSC with 10 PCs to calculate covariate-adjusted
LD scores, we observed that LD score estimates plateaued for
both EUR and AMR at a 1 and 20 cM window size, respectively
(<1% increase per cM, Supplementary Material, Table S1). This

suggested that cov-LDSC was able to correct the long-range LD
due to admixture and yielded stable estimates of LD scores (see
Materials and Methods, Supplementary Material, Fig. S1), and
also that cov-LDSC was applicable in homogeneous populations
(Supplementary Material, Table S1). The larger window size for
the AMR population was needed due to residual LD caused by
recent admixture. We next tested the sensitivity of the LD score
estimates with regard to the number of PCs included in the cov-
LDSC. We observed that in the AMR panel, LD score estimates
were unaffected by adding PCs and by increasing window sizes
above 20 cM (Supplementary Material, Fig. S2). In practice, we
recommend using a 20-cM genomic window and including 10
PCs when estimating LD scores.

Simulation with simulated genotypes

To assess whether cov-LDSC produces less biased estimates
of h2

g, we simulated genotypes from two admixed populations,
based on published demographic models for African Ameri-
can and Latino populations (21,22) (see Methods). We simulated
genotypes of 10 000 unrelated diploid admixed individuals for
∼400 000 common SNPs on chromosome 2 in a coalescent frame-
work using msprime (23) (see Methods). First, we tested LDSC
and cov-LDSC with different admixture proportions between
two ancestral populations, and a quantitative phenotype with a
h2

g of 0.4 using an additive model (see Methods). We observed that

as the proportion of admixture increased, ĥ2
g for LDSC increas-

ingly underestimated true h2
g by as much as 18.6%. In marked

contrast, cov-LDSC produced consistently less biased estimates
regardless of admixture proportion for both the simulated Latino
(Supplementary Material, Fig. S3a) and African American (Sup-
plementary Material, Fig. S4) populations. Since we saw con-
sistent results in the two simulated admixed populations, we
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performed the subsequent simulations in the simulated Latino
population only.

Second, we varied the percentage of causal variants from
0.01 to 50% in a polygenic quantitative trait with h2

g = 0.4 in a
population with a fixed admixture proportion of 50%. LDSC again
consistently underestimated h2

g by 12–18.6%. In contrast, cov-
LDSC yielded less biased estimates regardless of the percentage
of causal variants (Supplementary Material, Fig. S3b).

Third, we assessed the robustness of LDSC and cov-LDSC for
different assumed total h2

g (0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). At each
h2

g value, LDSC underestimated by 11.5–19.6%. For cov-LDSC, we
observed that the standard error increased with h2

g, but point
estimates remained less biased (Supplementary Material, Fig.
S3c).

Fourth, we included an environmental stratification compo-
nent aligned with the first PC of the genotype data (see Methods),
and concluded that cov-LDSC was also robust to confounding
(Supplementary Material, Fig. S3d).

Finally, to assess the performance of cov-LDSC in polygenic
binary phenotypes, we simulated genotype data for a binary trait
with a prevalence of 0.1 assuming a liability threshold model (see
Methods). Compared with quantitative traits, cov-LDSC provided
slightly more biased results for binary phenotypes. Regardless,
we showed that cov-LDSC consistently provided less biased
estimates compared with LDSC in the same four simulation
scenarios (Supplementary Material, Fig. S5).

Simulation results with real genotypes

We next examined the performance of both unadjusted LDSC
and cov-LDSC on real genotypes of individuals from admixed
populations. We used genotype data from the SIGMA cohort, a
T2D study conducted in Mexico (14). Using ADMIXTURE (24) and
populations from the 1000 Genomes Project (20) as reference
panels, we observed that each individual in the SIGMA cohort
had different admixture proportions (Supplementary Material,
Fig. S6), with a distribution of inferred ancestry proportions
similar to the 1000 Genomes AMR population. As in the AMR
panel, we observed that using a 20-cM window, LD score esti-
mates plateaued in the SIGMA cohort (Supplementary Material,
Fig. S7, Table S2), and were unaffected by different numbers
of PCs (Supplementary Material, Fig. S8). When we simulated
phenotypes using a non-infinitesimal, additive model with 1% of
all SNPs to be causal and h2

g = 0.4, we observed that cov-LDSC h2
g

estimates produced less biased estimates using a 20-cM window
with 10 PCs (Supplementary Material, Fig. S9). We subsequently
used a 20-cM window and 10 PCs in all simulations.

We observed that cov-LDSC yielded less biased h2
g estimates

in simulated traits where we varied the number of causal vari-
ants and total heritability compared with the original LDSC
(Fig. 2a and b). In contrast, LDSC underestimated heritability by
as much as 62.5%. To examine the performance of cov-LDSC in
the presence of environmental confounding factors, we simu-
lated an environmental stratification component aligned with
the first PC of the genotype data, representing European versus
Native American ancestry. In this simulation scenario, cov-LDSC
still provided less biased h2

g estimates (Fig. 2c). Intercepts of all
the simulation scenarios were less than the genomic control
(GC) inflation factor, suggesting that polygenicity accounts for
a majority of the increase in the mean χ2 statistic compared
with potential confounding biases (Supplementary Material, Fig.
S10a–c, Table S3).

Thus far, we have used cov-LDSC by calculating LD scores on
the same set of samples that were used for association studies

(in-sample LD scores). In practical applications, computing LD
scores on the whole data set can be computationally expensive
and difficult to obtain, so we investigated computing LD scores
on a subset of samples. To investigate the minimum number
of samples required to obtain accurate in-sample LD scores,
we computed LD scores on subsamples of 100, 500, 1000 and
5000 individuals from a GWAS of 10 000 simulated genotypes
(Supplementary Material, Fig. S11). We repeated these analyses
in simulated phenotypes in the SIGMA cohort. We subsampled
the SIGMA cohort, and obtained unbiased estimates when using
as few as 1000 samples (Fig. 2d). We therefore recommend com-
puting in-sample LD scores on a randomly chosen subset of at
least 1000 individuals from a GWAS in our approach.

Assessing power and bias in tissue
type specific analysis

Following Finucane et al. (9), we extended cov-LDSC so that
we can assess enrichment in and around sets of genes that
are specifically expressed in tissue and cell-types (cov-LDSC-
SEG). To test whether cov-LDSC can produce robust results with
properly controlled type I error, we calculated the in-sample LD
scores using LDSC and cov-LDSC, respectively, using a 20-cM
window and 10 PCs in cov-LDSC for all 53 baseline and limbic
system annotations in the SIGMA cohort. We used PLINK2 (25) for
association test and performed tissue type specific enrichment
analysis using both LDSC and cov-LDSC for limbic system condi-
tioning on all 53 baseline annotations. We reported the number
of significant tests out of 1000 simulations in each scenario. We
observed no inflation in false-positive rate (FPR) at 0.05 for both
LDSC and cov-LDSC under null (i.e. no enrichment). The greatest
gains in power were observed in cases where there was modest
enrichment (< 2×). We showed that cov-LDSC-SEG was better
powered to detect tissue type specific signals compared with
LDSC-SEG (Supplementary Material, Fig. S12).

Heritability estimation in the SIGMA and 23andMe
cohorts

We next used cov-LDSC to estimate h2
g of height, BMI and T2D

phenotypes, measured within the SIGMA cohort (see Methods,
Table 1). We estimated h2

g of height, BMI and T2D to be 0.38 ± 0.08,
0.25 ± 0.06 and 0.26 ± 0.07, respectively. These results were simi-
lar to reported values from UK Biobank (26,27) and other stud-
ies (17,28) of European populations. Although estimates dif-
fered in different studies (see Methods), we noted that without
cov-LDSC, we would have obtained severely deflated estimates
(Table 1). To confirm that our reported heritability estimates
were robust under different model assumptions, we applied an
alternative approach based on restricted maximum likelihood
estimation (REML) in the linear mixed model framework imple-
mented in GCTA (17). To avoid biases introduced from calculating
genetic relatedness matrices (GRMs) in admixed individuals,
we obtained a GRM based on an admixture-aware relatedness
estimation method REAP (29) (see Methods). GCTA-based results
were similar to reported h2

g estimates from cov-LDSC, indicating
our method was able to provide reliable h2

g estimates in admixed
populations (Table 1). We noted, however, that the GCTA-based
results would be computationally expensive to obtain on the
much larger datasets, for example the 23andMe cohort described
below.

We next applied both LDSC and cov-LDSC to a dataset from
23andMe which included 161 894 participants classified by their
local ancestry analysis (15) as having Latino genetic ancestry,
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Figure 2. Estimates of heritability (h2
g ) under different simulation scenarios using the SIGMA cohort. LDSC (orange) underestimated h2

g and cov-LDSC (blue) yielded robust

h2
g estimates under all settings. Each boxplot represents the mean LD score estimate from 100 simulated phenotypes using the genotypes of 8214 unrelated individuals

from the SIGMA cohort. We used a window size of 20 cM in both LDSC and cov-LDSC, and 10 PCs were included in cov-LDSC in all scenarios. A true polygenic quantitative

trait with h2
g = 0.4 is assumed for scenarios (a), (c) and (d) and 1% causal variants are assumed for scenarios (b)–(d). (a) h2

g estimation with varying proportions of causal

variants (0.01 − 30%). (b) h2
g estimation with varying heritabilities (0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). (c) h2

g estimation when an environmental stratification component

aligned with the first PC of the genotype data was included in the phenotype simulation. (d) h2
g estimation when using a subset of the cohort to obtain LD score

estimates and using out-of-sample LD score estimates obtained from admixed American individuals included in the 1000 Genomes Project.

Table 1. Heritability estimates of height, BMI and T2D using different estimation methods. Reported values are estimates of h2
g (with standard

deviations in brackets) from LDSC using a 20 cM window, cov-LDSC using a 20 cM window and 10 PCs, and GCTA using REAP to obtain the
genetic relationship matrix with adjustment by 10 PCs. The final column provides reported h2

g estimates in European populations from various
studies (11,24,25)

LDSC (baseline) cov-LDSC (baseline) GCTA (REAP) Public

Height 0.159 (0.037) 0.379 (0.079) 0.450 (0.042) 0.450–0.685 (11,24)
BMI 0.113 (0.030) 0.248 (0.061) 0.235 (0.041) 0.246–0.270 (24)
T2D 0.121 (0.035) 0.263 (0.073) 0.376 (0.046) 0.139–0.414 (24,25)

46 844 classified as having African American genetic ances-
try, and 134 999 classified as having European genetic ancestry.

We analyzed three quantitative and four dichotomous pheno-
types (see ***Methods, Supplementary Material, Table S4). In
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this setting, we noted that if new samples were recruited or
different individuals were included in different traits of interests,
one would need to re-compute the GRM for each trait when
using genotype-based methods such as GCTA (17) or BOLT-REML
(19). Whereas for cov-LDSC we do not require complete sample
overlap between LD reference panel and summary statistics
generation. We used a 20-cM window and 10 PCs in LD score cal-
culations for all three populations (Supplementary Material, Fig.
S13, Table S5). LDSC and cov-LDSC produced similar heritability
estimates in the European ancestry population, whereas in the
admixed populations, LDSC consistently provided low estimates
of h2

g (Supplementary Material, Table S6). For each phenotype,
we estimated h2

g using the same population-specific in-sample
LD scores. Intercepts of all the traits were substantially less
than the genomic control inflation factor (λgc), suggesting that
polygenicity accounts for a majority of the increase in the mean
χ2 statistics (Supplementary Material, Table S7). To test for het-
erogeneity of the reported h2

g among the three populations, we
performed both pairwise t-test between each pair of populations,
and the Q statistic for all three populations (Fig. 3, Supplemen-
tary Material, Table S8). Among seven tested traits, only age at
menarche showed statistically significant differences between
different ancestry populations (two-sample t-test P = 7.1 × 10−3

between Latino and European populations, Phet = 0.01). It has
been long established that there is population variation in the
timing of menarche (30–32). Early menarche might influence the
genetic basis of other medically relevant traits since early age at
menarche is associated with a variety of chronic diseases such
as childhood obesity, coronary heart disease and breast cancer
(33,34). These results highlighted the importance of including
diverse populations in genetic studies in order to enhance our
understanding of complex traits that show differences in their
genetic heritability.

Tissue type specific analysis in the 23andMe cohort

We applied stratified cov-LDSC to sets of specifically expressed
genes (9) (SEG) to identify trait-relevant tissue and cell types in
traits included in the 23andMe cohort in the European-, Latino-
, and African American-ancestry populations. We only tested
height, BMI and morning person, which were the three traits
that had heritability z-scores larger than seven (6) in at least
two populations (Supplementary Material, Table S9). We also
performed inverse-variance weighting meta-analysis across the
three populations (Supplementary Material, Table S10).

Across different populations, BMI showed consistent enrich-
ment in central nervous system gene sets. In the European
ancestry population, most of the enrichments recapitulated the
results from a previous analysis using UK Biobank (9,26). We
found similar but fewer enrichments in the Latino- and African
American-ancestry populations, most likely due to smaller
sample sizes. The most significantly enriched tissue types for
BMI in all three populations were limbic system (τ∗

EUR = 0.18,
τ∗

LAT = 0.16, τ∗
AA = 0.28, τ∗

meta = 0.18, Phet = 0.63), entorhinal cortex
(τ∗

EUR = 0.18, τ∗
LAT = 0.15, τ∗

AA = 0.24, τ∗
meta = 0.17, Phet = 0.80) and

cerebral cortex (τ∗
EUR = 0.16, τ∗

LAT = 0.14, τ∗
AA = 0.15, τ∗

meta = 0.15,
Phet = 0.98); none of the three effects were significantly different
across populations, suggesting key tissue types for BMI are
shared among different ancestry populations. When we
compared the enrichment for all of the tissues between
population pairs, we observed that they have significant
non-zero concordance correlation coefficient (ρEUR-LAT = 0.78
(95% CI: 0.72–0.83), ρEUR-AA = 0.32 (95% CI: 0.21–0.42)) (Fig. 4a–e,
Supplementary Material, Table S11). The sizes of these three

brain structures have been shown to be correlated with BMI
using magnetic resonance imaging data (35). The midbrain and
the limbic system are highly involved in the food rewarding
signals through dopamine releasing pathway (36). Furthermore,
the hypothalamus in the limbic system releases hormones that
regulate appetite, energy homeostasis and metabolisms, like
leptin, insulin and ghrelin (36,37).

For height, we also identified previously reported enrich-
ments in the gene sets derived from musculoskeletal and
connective tissues (9). In the meta-analysis, the three most
significant enrichments were cartilage (τ∗

EUR = 0.21, τ∗
LAT = 0.19,

τ∗
AA = 0.24, τ∗

meta = 0.20, Phet = 0.84), chondrocytes (τ∗
EUR = 0.21,

τ∗
LAT = 0.15, τ∗

AA = 0.11, τ∗
meta = 0.17, Phet = 0.40) and uterus

(τ∗
EUR = 0.17, τ∗

LAT = 0.15, τ∗
AA = 0.16, τ∗

meta = 0.16, Phet = 0.93).
A heterogeneity test revealed no difference across three
populations (I2 < 70% and Phet > 0.05), suggesting again that the
key tissue types for height are shared among different ancestry
populations. The concordance correlation coefficients were
ρEUR-LAT = 0.91 (95% CI: 0.89–0.93) between European- and Latino-
ancestry populations; ρEUR-LAT = 0.60 (95% CI: 0.50–0.68) between
European- and African American ancestry populations (Fig. 4f–j,
Supplementary Material, Table S11). The importance of these
tissues and their roles in height have been addressed in the
previous pathway analysis, expression quantitative trait loci
(eQTLs) and epigenetic profiling (38,39). Previous studies have
shown that the longitudinal growth of bones is partly controlled
by the number and proliferation rate of chondrocytes on the
growth plate, which is a disk of cartilages (40).

For the morning person phenotype, we found enrichments
in many brain tissues in the European ancestry population,
concordant with a previous study (41). Entorhinal cortex
(τ∗

EUR = 0.16, τ∗
LAT = 0.22, τ∗

meta = 0.18, Phet = 0.40), cerebral cortex
(τ∗

EUR = 0.15, τ∗
LAT = 0.22, τ∗

meta = 0.18, Phet = 0.34), and brain
(τ∗

EUR = 0.17, τ∗
LAT = 0.19, τ∗

meta = 0.18, Phet = 0.82) were enriched
in both the Latino- and European-ancestry populations.
Evidence showed that circadian rhythm was controlled by the
suprachiasmatic nucleus, the master clock in our brain, and also
the circadian oscillator that resides in neurons of the cerebral
cortex (42–44). We also found unique enrichments of esophagus
muscularis and the esophagus gastroesophageal junction in the
Latino populations, but the heterogeneity test showed that the
difference is not significant (I2 = 49% and 50%; Phet = 0.16 and
0.16, for esophagus gastroesophageal junction and muscularis,
respectively). We observed that the concordance correlation
coefficient across gene sets was ρEUR-LAT = 0.63 (95% CI: 0.51–
0.68) between the Latino- and European-ancestry populations
(Fig. 4k–n, Supplementary Material, Table S11). Compared
with the original LDSC-SEG, cov-LDSC-SEG appeared to have
increased statistical power in detecting tissue type specific
enrichment in the African American- and Latino-ancestry
population (Supplementary Material, Figs S12–S16).

Discussion
As we expand genetic studies to explore admixed populations
around the world, extending statistical genetics methods to
make inferences within admixed populations is crucial. This
is particularly true for methods based on summary statistics,
which are dependent on the use of LD scores that we showed
to be problematic in admixed populations. In this study, we con-
firmed that LDSC, originally designed for populations of homo-
geneous ancestry, should not be applied to admixed populations.
We introduced cov-LDSC, which regresses out global PCs on indi-
vidual genotypes during the LD score calculation, and showed
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Figure 3. Estimates of heritability (h2
g ) of three quantitative and four dichotomous traits in two admixed populations in the 23andMe research cohort. For seven

selected non-disease phenotypes (BMI, height, age at menarche, left handedness, morning person, motion sickness and nearsightedness) in the 23andMe cohort, we

reported their estimated genetic heritability and intercepts (and their standard errors) using the baseline model. LD scores were calculated using 134 999 individuals

with European ancestry, 161 894 with Latino ancestry, and 46 844 individuals with African American ancestry from the 23andMe cohort, respectively. For each trait, we

reported the sample size in obtained summary statistics used in cov-LDSC. For BMI and height, we also reported the h2
g estimates from the SIGMA cohort.

it can yield less biased LD scores and estimates of heritability
and its enrichments, including trait-relevant cell and tissue type
enrichments, in homogenous and admixed populations.

We applied cov-LDSC to approximately 344 000 individuals
classified by 23andMe as having European, African American,
and Latin American ancestry, and we observed mostly consis-
tent results across the three populations. For age at menarche,
though, we observed evidence of heritability differences across
different populations. Differences in environmental exposures
and allele frequencies can both contribute to the observed dif-
ferences in genetic heritability across populations. These differ-
ences highlight the importance of studying diverse populations.

We next extended cov-LDSC to partition heritability by dif-
ferent cell type- and tissue-specific annotations to investigate
trait-relevant tissue and cell types. We detected a broad range of
enrichments that recapitulate known biology in height, BMI and
morning person. Our results demonstrated that although there
are some cases of nominal heterogeneity across ancestry pop-
ulations among tested tissue-types, most of the tissue-specific
enrichments are consistent among the populations studied here.
This is consistent with the previous findings that show strong
correspondence in functional and cell type enrichment between

European and East Asian ancestry populations (45,46). Seeing the
same tissue-type for a single trait emerge in multiple popula-
tions can give us more confidence that this tissue may account
for polygenic heritability. Larger sample sizes are needed to
increase the power of our current analyses and to enhance our
understanding of how genetic variants that are responsible for
heritable phenotypic variability are similar and different among
ancestry populations.

Although our work provides a novel, efficient approach to
estimate genetic heritability and to identify trait-relevant cell
and tissue types using summary statistics in admixed popula-
tions, it has a few limitations.

First, covariates included in the summary statistics should
match the covariates included in the covariate-adjusted LD score
calculations (Supplementary Material, Appendix A). To demon-
strate this, we simulated the phenotypes using real genotypes
included in the SIGMA cohort. We performed cov-LDSC to mea-
sure total heritability and its enrichment with a varied number
of PCs included in summary statistics and in LD score calcu-
lation. As the differences between the number of PCs included
in the summary statistics and LD score calculation increase, we
observed an increase in bias of the total heritability estimation
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Figure 4. Results of multiple-tissue analysis for height, BMI and morning person. Each point represents a tissue type from either the GTEx data set or the Franke lab

data set as defined in Finucane et al. (9). From top to bottom, (a–d) show multiple-tissue analysis for BMI in the cross-population meta-analysis and in European-, Latino-

and African American-ancestry, respectively. (e) shows the scatter plot of the estimated per-standardized-annotation effect size τ∗, which represents the proportional

change of averaged per-SNP heritability for one standard deviation increase in value of the annotation of each cell type, conditional on other 53 non-cell type specific

baseline annotations, in the three populations for all tested tissue types (see Methods). The x-axis shows the τ∗ in European population and the y-axis shows either τ∗
in Latino (blue) or in African American (orange) population. We reported the slope and P-value when we regress Latino (blue) and African American (orange) population

τ∗ on European population τ∗ for all tissue types. Error bars indicate standard errors of τ∗. Similarly, the results are shown in (f)–(j) for height and (k)–(n) for morning

person. The significance threshold in plots (a)-(d), (f-i) and (k-m) is defined by the FDR < 5% cutoff, −log10(P) = 2.75. Numerical results are reported in Supplementary

Material, Table S10.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab130#supplementary-data


Human Molecular Genetics, 2021, Vol. 30, No. 16 1529

(Supplementary Material, Fig. S17) and a loss in power when
detecting tissue-specific enrichment (Supplementary Material,
Fig. S18).

Second, h2
g estimates and their enrichment in admixed pop-

ulations are more sensitive to potentially unmatched LD ref-
erence panels. Unmatched reference panels are likely to pro-
duce biased estimates and under-powered enrichment analysis
(47,48) (Supplementary Material, Table S12, Figs S19–S21). We
examined the performance of using an out-of-sample refer-
ence panel in admixed populations (Supplementary Material,
Appendix B) and caution that when using 1000 Genomes Project
(20) or any out-of-sample reference panels for a specific admixed
cohort, users should ensure that the demographic histories are
shared between the reference and the study cohort (Supplemen-
tary Material, Figs S22 and S23). Large sequencing projects such
as TOPMed (49) that include large numbers (N > 1000) of admixed
samples can potentially serve as out-of-sample LD reference
panels, although further investigations are needed to study their
properties. We therefore advise to compute in-sample LD scores
from the full or a random subset of data (N > 1000) used to gen-
erate the admixed GWAS summary statistics when possible. We
have released open-source software implementing our approach
based on all genome annotations derived previously (URLs). We
strongly encourage cohorts to release their summary statistics
and in-sample covariate-adjusted LD scores at the same time to
facilitate future studies.

Third, in our work, we chose to report the genetic heritability
tagged by common (minor allele frequency – MAF ≥ 5%)
HapMap3 variants, including tagged causal effects of both
common and low-frequency variants (see Methods). We noted
this quantity is different from the heritability casually explained
by all common SNPs excluding tagged causal effects of low-
frequency variants as reported in the original LDSC (5,50)).
Recent studies have shown that heritability estimates can be
sensitive to the choice of the LD- and frequency-dependent
heritability model (12,16,50–52). However, as mentioned above,
we do not currently have data necessary to estimate MAF-
stratified heritability due to the lack of a sequencing reference
panel. Regardless, our approach provides a good foundation
for addressing the question of how to incorporate ancestry-
dependent frequencies in the LD-dependent annotations, and
to understand frequency-dependent heritability architecture in
the future (Methods).

Fourth, as a generalized form of LDSC, cov-LDSC shares
some of the same limitations and properties as LDSC. For
example, when a trait is less polygenic (proportion of causal
variants is <0.01%), cov-LDSC may yield biased h2

g estimates
(Supplementary Material, Fig. S3b). Moreover, recent work has
shown that LDSC can provide biased estimates in the presence
of extreme ascertainment for dichotomous phenotypes (53).
Adapting cov-LDSC into case–control studies under strong
binary effects remains a potential avenue for future work.

Fifth, summary statistics derived from linear mixed models
cannot currently be used for cov-LDSC analysis (Supplementary
Material, Fig. S24). This is due to the fact that, just as the LD needs
to be adjusted for the same covariates included in the summary
statistics (Supplementary Material, Appendix A), it also needs
to be corrected appropriately for the random effect. We leave
efficient computation of random effect-adjusted LD scores to
future work.

Despite these limitations, in comparison with other meth-
ods, such as those based on REML (17,19) with an admixture-
aware GRM (29), for estimating h2

g in heterogeneous or admixed
populations, cov-LDSC has a number of attractive properties.

First, covariate-adjusted in-sample LD scores can be obtained
with a subset of samples, enabling analysis of much larger
cohorts than was previously possible (Supplementary Material,
Fig. S25). Second, LD scores only need to be calculated once
per cohort; this is particularly useful in large cohorts such as
23andMe and UK Biobank (26), where multiple phenotypes have
been collected per individual and per-trait heritability and its
enrichment can be estimated based on the same LD scores.
Third, as a generalized form of LDSC, it is robust to population
stratification and cryptic relatedness in both homogenous and
admixed populations (Supplementary Material, Fig. S26). Fourth,
similar to the original LDSC methods, cov-LDSC can be extended
to perform analyses such as estimating genetic correlations
(Supplementary Material, Fig. S27), partitioning h2

g by functional
annotations, identifying disease-relevant tissue and cell types
and multi-trait analysis (6,9,54,55).

Finally, we would like to note that ‘African American’ and
‘Latino’ are both terms with many definitions and, while self-
identified African American and Latino individuals often have
admixed ancestry, neither group can be defined in purely genetic
terms. Here, we have analyzed sets of individuals that were clas-
sified by 23andMe as having African American or Latino ancestry
based on local ancestry inference, but because these groups were
defined based on genetics, they may not have perfect agree-
ment with the more common definitions of ‘African American’
and ‘Latino.’ Moreover, there is a great deal of genetic diversity
within self-identified African American and Latino populations;
analysis of sub-populations within these broad populations is a
direction for future work.

As the number of admixed and other diverse GWAS and
biobank data become readily available (1, 49, 56), our approach
provides a powerful way to study admixed populations.

Materials and Methods
Mathematical framework of cov-LDSC

Details of the mathematical derivation of cov-LDSC are pre-
sented in Supplementary Material, Appendix A. Briefly, in the
standard polygenic model on which LDSC is based, x1, . . . , xN are
the length- M genotype vectors for the N individuals, where M is
the number of SNPs. We model the phenotypes yi.

yi = xiβ + εi,where ε1, . . . , εN∼iidN(0, σ2
e) and β ∈ RM is a vector

of per-normalized-genotype effect sizes, which we model as
random with mean zero. In standard LDSC, the variance of βj,
var(βj), is the per-SNP heritability of SNP j, that is, the total SNP-
heritability h2

g divided by the total number of SNPs M (hg
2
/M). In

stratified LD score regression the variance of βj depends on a set
of genome annotations.

Let χj
2 denote the chi-square statistic for the jth SNP, approx-

imately equal to (Xj
TY)

2
/N, where Xj = (x1j, . . . , xNj)

T and Y =
(y1, . . . , yN)T. The main equation on which LDSC is based is:

E
[
χ2

j

]
≈ 1 + Na + Nh2

g

M
l(j), (1)

where a is a constant that reflects population structure and
other sources of confounding, and the LD score, l(j), is: l(j) =∑

R2
jk.Rjk

2 is the correlation between SNPs j and k in the under-
lying population. A new derivation for this equation is given in
Supplementary Material, Appendix A. We estimate the total SNP-
heritability h2

g via weighted regression of χ2
j on our estimates of

l(j), evaluating significance with a block jackknife across SNPs (6).
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In the absence of covariates, the LD scores can be estimated
from an external reference panel such as 1000 Genomes, as long
as the correlation structure in the reference panel matches the
correlation structure of the sample. In most homogeneous popu-
lations, we can also assume that the true underlying correlation
is negligible outside of a 1-cM window.

In the presence of covariates, we let C denote the N × K matrix
of covariates, each column centered to mean zero, and let ci be
the ith row of C. Equation (1) can then be replaced with yi = xiβ +
ciβcov + εi,where βcov is a vector of effect sizes of covariates. We
can project the covariates out of this equation by multiplying by
P = I – C (CT C)–1CT on the left to get

∼
Y = ∼

Xβ + ∼
ε, (2)

where
∼
Y = PY,

∼
X = PX and

∼
ε = Pε (if the covariates are genotype

principal components, then P = I − CCT). Under this model, an
equation identical to Equation (2) can be derived, but where both
summary statistics and LD are adjusted for the same covariates
(Supplementary Material, Appendix A).

If X is a homogeneous population, then the covariate-
adjusted LD will be similar to the non-covariate-adjusted LD
and well-approximated by a reference panel. However, if X is the
genotype matrix from an admixed or heterogeneous population
and the covariates include PCs, then the covariate-adjusted
LD is no longer well-approximated by either non-covariate-
adjusted LD or by a reference panel. Thus, in cov-LDSC, we
compute LD scores directly from the covariate-adjusted in-
sample genotypes or a random subsample thereof. We call them
the covariate-adjusted LD scores.

Using genotype data to compute LD scores means that the
model being fit is based on the joint effects of a sparser set of
SNPs, e.g. the genotyped SNPs, than when sequence data are
used to compute LD scores. For estimating total SNP-heritability,
this means that cov-LDSC estimates the same estimand as GCTA
(h2

g) and not the usual estimand of LDSC (h2
common; see below).

For partitioned heritability, the density of reference panel SNPs
can be important because the joint effect of a SNP in an anno-
tation can include the tagged effect of an untyped SNP that is
not in the annotation, deflating estimates of enrichment. Thus,
we recommend using cov-LDSC only on annotations made of
large contiguous regions, such as gene sets. Moreover, we urge
caution when interpreting quantitative estimates of heritability
enrichment. Here, we look at the significance of the condi-
tional enrichment (i.e. regression coefficient) of gene sets for our
tissue-specific analysis (see below).

Window size and number of PCs in LD score
calculations

In addition to computing LD from the covariate-adjusted geno-
types, we also investigate the appropriate window size for esti-
mating LD scores. To do this, we examine the effect of varying the
genomic window size for both simulated and real data sets. We
determine that LD score estimates were robust to the choice of
window size if the increase in the mean LD score estimates was
less than 1% per cM beyond a given window. Using this criterion,
we use window sizes of 5 and 20 cM for the simulated and real
genotypes, respectively (Supplementary Material, Tables S13, S2
and S5). We also calculate the squared correlations between LD
score estimates using the chosen window size and other LD
score estimates with window sizes larger than the chosen win-
dow. The Pearson’s squared correlations were greater than 0.99

in all cases (Supplementary Material, Tables S14–S16) indicating
the LD score estimates were robust at the chosen window sizes.

Similarly, to determine the number of PCs needed to be
included in the GWAS association tests and cov-LDSC calcula-
tions, we examine the effect of varying the genomic window
size using different numbers of PCs. The number of PCs that
needed to be included for covariate adjustment depended on the
population structure for different datasets.

Genotype simulations

We evaluate the performance of LDSC and cov-LDSC with sim-
ulated phenotypes and both simulated and real genotypes. For
the simulated genotypes, we used msprime version 0.6.1 (23) to
simulate population structure with mutation rate 2 × 10−8 and
recombination maps from the HapMap Project (57). We adapt
the demographic model from Mexican migration history (21) for
Latino population and the out of Africa model (22) for African
American population using parameters that were previously
inferred from the 1000 Genomes Project (20). We assume the
admixture event happened ∼500 years and 200 years ago for
Latino and African American populations, respectively. We set
different admixture proportions to reflect different admixed
populations. In each population, we simulate 10 000 individuals
after removing second degree related samples (kinship > 0.125)
using KING (58).

Slim Initiative in Genomic Medicine for the Americas
Type 2 Diabetes cohort

We analyzed 8214 samples that are genotyped with the Illumina
HumanOmni2.5 array. We further filter the genotyped data to
be MAF ≥ 5%. Prior to the PC analysis, we pruned all SNPs in LD
(r2 > 0.2) and removed all the SNPs in the high LD regions (such as
the MHC region) because these can overly influence the principal
components model (59). After QC, a total of 8214 individuals and
943 244 SNPs remain. We estimate the in-sample LD score with
a 20-cM window and 10 PCs in all scenarios.

We use these genotypes for simulations. We also analyze
three phenotypes from the SIGMA cohort: height, BMI and T2D.
For T2D, we assume a reported prevalence in Mexico of 0.144 (14).
For each phenotype, we include age, sex, and the first 10 PCs as
fixed effects in the association analyses.

Phenotype simulations

We simulate phenotypes with two different polygenic genetic
architectures, given by GCTA (17) and the baseline model (6),
respectively. In the GCTA model, all variants are equally likely
to be causal independent of their functional or MAF structure,
and the standardized causal effect size variance is constant,
i.e. var(βj) = h2

g/M. In contrast, the baseline model incorpo-
rates functionally dependent architectures. Briefly, it includes
53 overlapping genome-wide functional annotations (e.g. coding,
conserved, regulatory). It models var(βj) = ∑

Cαc(j)τc, where αc(j)
is the value of annotation αc at variant j and τc represents the
per-variant contribution, of one unit of the annotation αc, to
heritability. We generate all causal variants among common
observed variants with MAF ≥ 5% (∼40 000 SNPs in simulated
genotypes and 943 244 SNPs in the SIGMA cohort). To represent
environmental stratification, similar to previously described (5),
we add 0.2× standardized first principal component to the stan-
dardized phenotypes.
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We simulate both quantitative and case–control traits with
both GCTA and baseline model genetic architectures, using both
simulated and real genotypes, varying the number of causal vari-
ants, the true heritability and environmental stratification. For
case–control simulations, we adopt a liability threshold model
with disease prevalence 0.1. We simulated 50 000 admixed indi-
viduals and simulated continuous liability scores. We extracted
individuals with top 10% liability as cases and randomly selected
5000 individuals from the rest as control samples for each sim-
ulation scenario.

To obtain summary statistics for the simulated traits, we
apply single-variant linear models for quantitative traits and
logistic models for binary trait both with 10 PCs as covariates
in association analyses using PLINK2 (25).

23andMe cohort

All participants were drawn from the customer base of
23andMe, Inc., a direct to consumer genetics company. Par-
ticipants provided informed consent and participated in the
research online, under a protocol approved by the external
AAHRPP-accredited IRB, Ethical & Independent Review Services
(www.eandireview.com). Samples from 23andMe are then
chosen from consented individuals who were genotyped
successfully on an Illumina Infinium Global Screening Array
(∼640 000 SNPs) supplemented with ∼50 000 SNPs of custom
content. We restrict participants to those who have European,
African American or Latino ancestry determined through an
analysis of local ancestry (15).

To compute LD scores in each ancestry population, we use
both genotyped and imputed SNPs. We filter genotyped variants
with a genotype call rate ≤ 90% non-zero self-chain score, strong
evidence of Hardy Weinberg disequilibrium (P > 10−20 to accom-
modate large sample sizes included for detecting deviations),
and failing a parent-offspring transmission test. For imputed
variants, we use a reference panel that combined the May 2015
release of the 1000 Genomes Phase 3 haplotypes with the UK10K
imputation reference panel (60). Imputed dosages are rounded
to the nearest integer (0, 1, 2) for downstream analysis. We filter
variants with imputation r2 ≤ 0.9. We also filter genotyped and
imputed variants for batch effects (if an F-test from an ANOVA of
the SNP dosages against a factor dividing genotyping date into
20 roughly equal-sized buckets has a P-value less than 10−50)
and sex-dependent effects (if the r-squared of the SNP is greater
than 0.01 after fitting a linear regression against the gender). To
minimize rounding inaccuracies, we prioritize genotyped SNPs
over imputed SNPs in the merged SNP set. We restrict the merged
SNP set to HapMap3 variants with MAF ≥ 5%. We measure LD
scores in a subset of African American (N = 61 021) and Latino
individuals (N = 9990) on chromosome 2 with different window
sizes from 1 to 50 cM (Supplementary Material, Table S5) and
squared correlation between different window sizes (Supple-
mentary Material, Table S16). We compute all LD scores with a
20 cM window.

In genome-wide association analyses, for each ancestry pop-
ulation, we choose a maximal set of unrelated individuals for
each analysis using a segmental identity-by-descent (IBD) esti-
mation algorithm (61). We define individuals to be related if they
share more than 700 cM IBD.

We perform association tests using linear regression model
for quantitative traits and logistic regression model for binary
traits assuming additive allelic effects. We include covariates
for age, sex and the top 10 PCs to account for residual popula-
tion structure in height, BMI, morning person, motion sickness,

left handedness and nearsightedness. For age at menarche, we
studied only female subjects and included age and top 10 PCs
as covariates. We list details of phenotypes and genotypes in
Supplementary Material, Table S4.

Heritability estimation

We calculate in-sample LD scores using both a non-stratified
LD score model (5) and the baseline model (6) for each studied
ancestry population. In simulated phenotypes generated with
the GCTA model, we use non-stratified LDSC to estimate heri-
tability. In simulated phenotypes generated using the baseline
model, we use LDSC-baseline to estimate heritability. We use
the 53 non-frequency dependent annotations included in the
baseline model to estimate h2

g in the 23andMe research database
and the SIGMA cohort real phenotypes. We recognize that recent
studies have shown that genetic heritability can be sensitive to
the choice of LD-dependent heritability model (8,12,16). How-
ever, understanding the LD- and MAF-dependence of complex
trait genetic architecture is an important but complex endeavor
potentially requiring both modeling of local ancestry as well as
large sequenced reference panels that are currently unavailable.
We thus leave this complexity for future work.

h2
g versus h2

common

The quantity (h2
g) we reported in the main analysis is defined as

heritability tagged by HapMap3 variants with MAF ≥ 5%, includ-
ing tagged causal effects of both low-frequency and common
variants. This quantity is different from h2

common, the heritabil-
ity casually explained by all common SNPs excluding tagged
causal effects of low-frequency variants, reported in the original
LDSC (5). In European and other homogeneous populations, it
is possible to estimate h2

common, since reference panels, such as
1000 Genomes Project (20), are available which include >99%
of the SNPs with frequency > 1%. However, in-sample sequence
data are usually not available for an admixed GWAS cohort, and
so cov-LDSC can only include genotyped SNPs in the reference
panel, and thus can only estimate the heritability tagged by
a given set of genotyped SNPs. In order to compare the same
quantity across cohorts, we use common HapMap3 SNPs (57)
(MAF ≥ 5%) for in-sample LD reference panel calculation, since
most of them should be well imputed for a genome-wide geno-
typing array. To quantify the difference between h2

g and h2
common,

we pre-phase the genotype data in the SIGMA cohort using
SHAPEIT2 (62). We use IMPUTE2 (63) to impute genotypes at
untyped genetic variants using the 1000 Genomes Project Phase
3 dataset as a reference panel. We merge genotyped SNPs and
all well imputed (INFO > 0.99) SNPs (>6.9 million) in the SIGMA
cohort as a reference panel and reported h2

common, to approximate
what the estimate of h2

common would have been with a sequenced
reference panel (Supplementary Material, Table S17).

Tissue type specific analyses

We generate the τ for 53 baseline annotations with 40% of
annotations with non-zero τ and 60% of annotations with zero
τ . We annotate the genes with the same set of tissue specific
expressed genes identified previously (9) using the genotype–
tissue expression (GTEx) project (64) and a public dataset made
available by the Franke lab (65,66). We then generate different
regression coefficients τ for the limbic system in gene sets with
different enrichment. We scale all the τ to make the total h2

g =
0.5. For each variant j, the variance of βj is the sum of the of all

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab130#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab130#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab130#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab130#supplementary-data
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the categories that the variant is in (var(βj) = τc). We randomly
draw j from a normal distribution with mean zero and variance
Σc:j∈Cc τc to simulate the phenotypes. We run 1000 simulations for
each enrichment set (ranging from no (1×) enrichment to 2.5×
enrichment). For the real traits included in the 23andMe cohort,
we calculate within-sample stratified cov-LD scores with a 20-
cM window and 10 PCs for each of these 205 gene sets and 53
baseline annotations for each ancestry population. We obtain
regression coefficients τ̂c from the model and normalize them
as

τ ∗
c =

Mh2
g
· sdc

h2
g

τ̂c, (3)

where Mh2
g

is the number of SNPs used to calculate h2
g and sdc

is the standard deviation (sd) of annotation ac. We interpret τ ∗
c

as the proportional change of averaged per-SNP heritability by
one sd increase in value of the annotation of each cell type,
conditional on other 53 non-cell type specific baseline anno-
tations. We calculate a one-tailed P-value for each coefficient
where the null hypothesis is that the coefficient is non-positive.
All the significant enrichments are reported with false discovery
rate < 5% (−log10(P) > 2.75). We perform fixed-effect inverse vari-
ance weighting meta-analysis using τ ∗

c and normalized standard
error across populations.

URLs
cov-LDSC software and tutorials, https://github.com/immunoge
nomics/cov-ldsc;

msprime, https://pypi.python.org/pypi/msprime;
GCTA, http://cnsgenomics.com/software/gcta/;
BOLT-LMM, v2.3.4, https://data.broadinstitute.org/alkesgrou

p/BOLT-LMM/;
LDSC, https://github.com/bulik/ldsc/;
PLINK2, https://www.cog-genomics.org/plink2;
REAP v1.2, http://faculty.washington.edu/tathornt/software/

REAP/download.html;
ADMIXTURE v1.3.0, http://www.genetics.ucla.edu/software/a

dmixture/download.html;

Supplementary Material
Supplementary Material is available at HMG online.
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