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Abstract

In addition to mutations or aberrant expression in the protein coding genes, mutations and 

misregulation of non-coding RNAs, in particular long noncoding RNAs (lncRNA), appear to play 

major roles in cancer. Genome-wide association studies (GWAS) of tumor samples have identified 

a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA 

expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit 

tumor suppressive and promoting (oncogenic) functions. Due to their genome-wide expression 

patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold 

strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have 

reviewed the emerging functions and association of lncRNAs in different types of cancer and 

discussed their potential implications in cancer diagnosis and therapy.

Keywords

Non-coding RNA; Long noncoding RNA; lncRNA; Cancer; Epigenetics; Biomarker; Therapeutics

2. Introduction

Cancer is a complex disease associated with a variety of genetic mutations, epigenetic 

alterations, chromosomal translocations, deletions, and amplification (1). Non-coding RNAs 

(ncRNAs) are an emerging class of transcripts which are coded by the genome but are 

mostly not translated into proteins (2). Though not translated, ncRNAs are crucial players in 

a variety of cellular and physiological functions (3). In particular, long non-coding RNAs 

(ncRNAs that are >200 nt long) play key roles in regulating chromatin dynamics, gene 

expression, growth, differentiation, and development (4). It is now well-recognized that 

more than 75% of the human genome is functional and encodes large numbers of ncRNAs 

(5). Based on the ENCODE project, it is estimated that the human genome encodes more 

than 28,000 distinct long noncoding RNAs (lncRNAs) many of which are still being 

discovered and are yet to be annotated (6). While understanding the functions of so many 

lncRNAs and their detailed characterization are challenging tasks, analysis of transcriptome 

profiles using next-generation sequencing in the last few years has revealed that thousands of 

lncRNAs are aberrantly expressed or mutated in various cancers (7).
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Although lncRNAs are emerging as a major class of noncoding transcripts, the discovery of 

tremendously large numbers of lncRNAs and their diverse functions and complexity pose a 

major challenge to effectively classify them in different categories. At this point, lncRNAs 

are broadly classified based on their genomic localization, modes of action, and function. 

Intronic lncRNAs originate from the introns of protein coding genes; intergenic lncRNAs 

(lincRNAs) originate from the region between two protein-coding genes; enhancer lncRNAs 

(elncRNAs) originate from the promoter enhancer regions; bidirectional lncRNAs are 

localized within the vicinity of a coding transcript of the opposite strand; sense-overlapping 

lncRNAs overlap with one or more introns and exons of different protein coding genes in the 

sense strand of the DNA; antisense-transcripts originate from the antisense-strands of the 

DNA, and they may or may not be complementary to protein coding sequences in the sense-

strand (7,8). Functionally, lncRNAs are classified as signaling, decoy, guide, and scaffold 

lncRNAs (9). Signaling lncRNAs are associated with specific signaling pathways and their 

expression indicates an active signaling event, irrespective of their roles (direct/indirect) in 

the signaling process (9). For example, the expression of XIST signals X-inactivation in 

females (10). Decoy lncRNAs act like molecular sinks for transcription factors and 

repressors. They interact with and titrate away transcription factors from binding to the 

target gene promoters facilitating gene activation or silencing (9). Examples of decoy 

lncRNAs include GAS5 (growth arrest specific 5), TERRA (telomeric repeat-containing 

RNAs), and others. (9). Guide lncRNAs bind to the regulatory or enzymatically active 

protein complexes and direct them to specific target gene promoters or genomic loci 

regulating downstream signaling events and gene expressions. Examples of guide lncRNAs 

include AIR, CCND1 (cyclin D promoter associated lncRNA), lincRNA-p21, and others 

(8,9). Scaffold lncRNAs act as a central platform to which various protein complexes tether 

and get directed to specific genomic location or target gene promoter regulating gene 

expression and chromosomal dynamics. Examples of scaffold lncRNAs are HOTAIR, 

TERC, and others.

Beyond traditional ncRNAs, circular RNAs (circRNAs) are also emerging as a novel class of 

endogenous noncoding RNAs that form covalently-closed continuous loops instead of 

traditional linear forms. CircRNAs are conserved across species and are found to be 

associated with a variety of important biological processes and human diseases including 

cancer. CircRNAs appear to function as microRNA (miRNA) sponges and are involved in 

the regulation of mRNA splicing, transcription, and gene expression (11,12). Generally, 

circRNAs are classified as exonic, intronic, and retained-intronic circRNAs. They may be 

derived from exons, introns, untranslated regions, antisense transcripts, and intergenic 

regions. CircRNA biogenesis has been explained by various models, incorporating a range 

of spliceosomes and RNA binding proteins. The most accepted model suggests that circRNA 

biogenesis involves joining of a 5’ splice site and a 3’ splice site as the result of back 

splicing (13,14). Because of their unique structure, circRNAs are resistant to nucleases and 

are stable with a relatively long half-life. They may exist in tissues, serum, and urine, 

indicating their potential as novel biomarkers for human cancer. CircRNAs are implicated in 

a variety of cancers including laryngeal cancer, gastric cancer, hepatocellular cancer, bladder 

cancer, and esophageal cancer, among others (11,15,16). For example, circular RNA ciRS-7, 

which acts as a sponge for miR-7, is involved in promoting colorectal cancer through 
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inhibiting the repression of oncogenes such as YY1 by tumor suppressor miR-7 (15). 

CiRS-7 is an endogenous circular RNA highly expressed in the brain and transcribed 

antisense to the CDR1 (cerebellum degeneration-related antigen 1) gene (12). CircRNAs 

such as circ-ITCH, hsa_circ_002059 and hsa_circ_0001649 are downregulated in colorectal 

cancer, gastric cancer, and hepatocellular cancer, whereas circ-VCAN, circTCF25, and circ-

KLDGC10 are upregulated in glioma, bladder cancer, and hepatocellular cancer (11,12,16–

18). CircRNAs such as ci-ankrd52 and circular -ANRIL are examples of circular lncRNAs 

(19,20). Similar to lncRNAs, many circRNAs display aberrant expression in various cancers 

and possess strong promise toward development of novel biomarkers and therapeutics.

Thus, in addition to protein coding genes, ncRNAs, in particular lncRNAs, are rapidly 

emerging as a novel class of transcripts associated with a variety of cellular and biological 

processes including gene regulation and chromatin dynamics. They are abundantly 

expressed and widely associated with a variety of cancers, and the aberrant expression and 

mutations are closely linked to tumorigenesis, metastasis, and tumor stage (21–23). 

Moreover, they are specifically expressed in certain types of cancer and detected in 

circulating blood and/or urine (24–26). LncRNAs are a novel class of potential biomarkers 

and therapeutic targets for the treatment of cancer. In this article, we have reviewed the 

functions of various lncRNAs in different types of cancer and discussed their potential 

implications in diagnosis and therapy (Figure 1).

3. LncRNAs in prostate cancer

Prostate cancer is the most common cancer and the second leading cause of cancer deaths in 

American men. The American Cancer Society estimates about 181,000 new cases of prostate 

cancer and 26,000 deaths from prostate cancer in the US in 2016. There is an urgent need to 

develop novel diagnostic biomarkers and effective therapies for prostate cancer. Genome-

wide RNA-Seq analyses identified many lncRNAs that are up- or down-regulated in prostate 

cancer (27). Several lncRNAs such as PCA3, PCGEM1, and PCAT-1 are highly specific to 

prostate cancer (28) (Figure 1, Table 1).

PCA3

PCA3 (Prostate Cancer Antigen 3) (a.k.a. DD3), a steroid receptor-regulated lncRNA 

transcribed from 9q21.22, is overexpressed in 95% of prostate cancer cases and is detected 

with high specificity in the urine of patients with malignant and benign prostate cancer (29) 

(30,31)(Figure 1, Tables 1 and 2). PCA3 and Hedgehog receptor PTCH (also implicated in 

prostate cancer) are highly upregulated in the circulating prostate cancer cells of androgen 

refractory patients (32–34). Prune2 (a tumor suppressor and a target of PCA3) and PCA3 

expressions are inversely correlated in prostate cancer (34). PCA3 binds to PRUNE2-pre-

mRNA to form a double-stranded RNA duplex that recruits adenosine deaminase (ADA), 

inducing RNA editing through acting on RNA (ADAR) proteins (34).

PCGEM1

PCGEM1 (Prostate Cancer Gene Expression Marker 1) is a 1.6 kb long lncRNA from the 

2q32 locus. It is a highly prostate tissue-specific and androgen-regulated lncRNA that is 
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overexpressed in prostate cancer and promotes cell proliferation and colony formation (35–

37) (Figure 1 and Table 1). PCGEM1 expression inhibits doxorubicin-induced apoptosis and 

promotes chemo-resistance via inhibition of PARP (poly-ADP-ribose polymerase) cleavage 

and delaying the induction of tumor suppressors p53 and p21 (36). Another lncRNA 

PRNCR1 (prostate cancer noncoding RNA1), in conjunction with PCGEM1, regulates gene 

expression by promoting epigenetic modifications (36). PRNCR1 binds to acetylated 

androgen receptor (AR) at the enhancer, and recruits histone H3K79 methyltransferase 

DOT1L (disruptor of telomeric silencing 1-like) which methylates AR that aids in the 

recruitment of PCGEM1 to the AR N-terminal and modulates target gene expression (35). 

Similarly, PCGEM1 recruits the Pygopus family PHD finger 2 (PYGO2) to the enhancer-

promoter regions of AR gene and regulates AR-induced gene expression (38).

PCAT-1

PCAT-1 (Prostate Cancer-Associated ncRNA Transcript 1) is a 7.8 kb long intergenic 

lncRNA (originating from 8q24 locus) that is overexpressed in and highly specific to high-

grade localized and metastatic prostate cancer (28,38,39) (Figure 1, Tables 1 and 2). It is 

independent of chromosome 8q24 amplification that is often observed in other cancers. 

There is a converse correlation between the expression of PCAT-1 and EZH2 (a histone 

H3K27-specific methyltransferase and interacting component of polycomb repressive 

complex 2 (PRC2)) (27). EZH2 (enhancer of zeste homolog 2) knockdown upregulates 

PCAT-1 (27). PRC2 binds the PCAT-1 promoter and suppresses PCAT-1 expression (27). 

PCAT-1 induces cell proliferation and downregulates the expression of genes including 

tumor suppressor gene BRCA2. PCAT-1 sensitizes prostate cancer cells towards PARP 1 

inhibitors. PCAT-1 post-transcriptionally upregulates c-Myc that promotes prostate cancer 

cell proliferation (28,38).

Various other lncRNAs including MALAT1, GAS5, PCAT-18, CTBP1-AS, ANRIL, PVT1, 

and SCHLAP1 are also linked to prostate cancer (28,38) (Table 1). PCAT-18 is a highly 

prostate-specific transcript upregulated in prostate cancer and regulated by AR (28). CTBP1-

AS is an androgen-responsive lncRNA and an antisense transcript of the CTBP1 gene (40). 

Overexpression of CTBP1-AS inhibits the expression of cell cycle regulators such as p53 

and Smad3 in prostate cancer cells, resulting in cell proliferation (41,42).

4. Breast cancer

Breast cancer is the most common and the second deadliest cancer among women. It is 

estimated that 246,660 new cases and 40,450 deaths occurred from breast cancer in the US 

in 2016. LncRNAs implicated in breast cancer include HOTAIR, ANRIL, ZFAS1, 

HOTAIRM1, PVT1, MALAT1, and LNP1, among others (43,44) (Figure 1, Tables 1 and 2).

HOTAIR

HOTAIR (HOX Transcript Antisense Intergenic RNA) is one of the most well-studied 

lncRNAs that is overexpressed in a variety of cancers including breast, colorectal, 

hepatocellular, gastrointestinal, and non-small cell lung carcinomas (4,45–51) (Table 1). 

HOTAIR, a 2.2 kb antisense lncRNA, interacts with two major gene silencing factors: PRC2 
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and LSD1 (lysine specific demethylase 1). PRC2 is a multiprotein complex comprised of 

EZH2 (H3K27-methylase), SUZ12, EED, and RbAp46/48 (52–54). LSD1 interacts with co-

repressors REST and CoREST (54,55). H3K27-methylation by EZH2 and H3K4-

demethylation by LSD1 are both critical to gene silencing (54). HOTAIR recruits PRC2 and 

LSD1 at the target gene, inducing gene silencing via H3K27-methylation and H3K4-

demethylation (54,56). BRCA1, a critical player in DNA damage response and breast 

cancer, also interacts with EZH2 which in turn interacts with HOTAIR (54,57,58). Thus, 

BRCA1 and HOTAIR are both interacting partners of EZH2 and may have competitive roles 

in gene expression and DNA damage response (59). HOTAIR is also implicated in 

assembling E3-ubiquitin ligases during protein degradation (4,7,53). HOTAIR, EZH2, and 

LSD1 are all highly expressed in breast and other cancers. HOTAIR represses tumor 

suppressors such as PGR (Progesterone Receptor), PCDH10 (Protocadherin10), PCDHB5 

(Protocadherin Beta 5), and JAM2 (Junctional Adhesion Molecule 2) (52). Post-translational 

functions of the HOTAIR have also been identified. HOTAIR induces ubiquitin-mediated 

proteolysis via interaction with E3 ubiquitin ligases Dzip3 and Mex3b, along with their 

respective ubiquitination substrates Ataxin-1 and Snurportin-1 (60). This leads to the 

degradation of Ataxin-1 and Snurportin-1 (60). Being an oncogenic lncRNA, its expression 

is correlated to tumor invasiveness and metastasis (53). HOTAIR serves as a diagnostic and 

prognostic marker for multiple cancers. HOTAIR also regulates the expression of miRNAs 

such as miR-130a (in gallbladder cancer cells) and others (4). Studies from our lab show that 

HOTAIR is required for the viability of breast cancer cells and its expression is 

transcriptionally regulated by estradiol via coordination of estrogen receptors (ERs) and ER-

coregulators such as the MLL (mixed lineage leukemia)-family of histone 

methyltransferases and CBP/p300 (45,61–65). HOTAIR is also a target of endocrine 

disruption by estrogenic endocrine disruptors such as bisphenol-A (BPA) and 

diethylstilbestrol (DES) that may contribute to cancer (45,61,62).

ANRIL

ANRIL (Antisense Noncoding RNA) (a.k.a. CDKN2B-AS) is encoded in the chromosome 

9p21 region at the INK4 locus (Tables 1 and 2) (66–78). Polymorphisms in the INK4 locus 

serve as a hotspot for a variety of diseases including cardiovascular disease, cancer, and 

diabetes. ANRIL is an antisense transcript of the CDKN2B gene (cyclin-dependent kinase 

inhibitor 2B) and controls cell proliferation and senescence via regulating its neighboring 

tumor suppressors CDKN2A/B by epigenetic mechanisms. This occurs through interacting 

with CBX7 (a PRC1 component) and SUZ12 (a PRC2 component) to induce gene silencing 

at the INK4b-ARF-INK4a locus (66). It also represses tumor suppressor p15. ANRIL is 

overexpressed in a variety of cancers including leukemia, breast cancer, and prostate cancer 

where CDKN2A/B show opposite patterns of expression (79).

5. Lung cancer

Lung cancer is the leading cause of cancer deaths and the second most common cancer in 

both men and women. Deaths caused by lung cancer exceed those of prostate, breast, and 

colon cancer combined. LncRNAs implicated in lung cancer include MALAT1, CCAT2, 

HOTAIR, AK126698, MEG3, SOX2-OT, HNF1A-AS1, ANRIL, H19, CARLo-5, MVIH, 
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PVT1, EVADR, SPRY4-IT1, PANDAR, GAS5, BANCR, TUG1, and others (Figure 1 and 

Table 1) (80–82).

MALAT1

MALAT1 (Metastasis Associated Lung Adenocarcinoma Transcript) (a.k.a. NEAT2 Nuclear 

Enriched Abundant Transcript 2), a 7.5 kb long lncRNA, was originally found to be 

overexpressed in primary non-small cell lung cancers (83–91). MALAT1 is expressed in 

many tissues and is evolutionarily conserved among mammals. MALAT1 undergoes post-

transcriptional processing to produce a short RNA (cytoplasmic mascRNA, MALAT1-

associated small cytoplasmic RNA) and a long MALAT1 transcript that are localized to 

nuclear speckles and influence the level of phosphorylated splicing-associated SR (Serine 

Arginine) proteins. MALAT1 is also overexpressed in other cancers including bladder 

carcinoma, breast cancer, prostate cancer, and ovarian cancer, and is a potential biomarker 

and therapeutic target (85,91). Genome-wide analyses identified multiple mutations in the 

SRSF1-binding sites of MALAT1 in breast cancer, suggesting an alternation in the splicing 

pattern in these cancers (91).

Similar to NEAT2, NEAT1 transcripts are also associated with nuclear paraspeckles and are 

involved in transcriptional and post-transcriptional regulation of the expression of genes 

such as ADARB2 (Adenosine Deaminase, RNA Specific B2) (92–96). NEAT1 has two 

isoforms: a 3.7 kb (NEAT-1-1) and a 23 kb (NEAT-1-2) long isoform that are widely 

expressed in several tissues and overexpressed in breast cancer and acute myeloid leukemia. 

NEAT1 knockdown affects the viability and morphology of Burkitts lymphoma cells (97).

6. Colorectal cancer

Colorectal cancer (CRC) is currently the third most common malignancy worldwide. 

LncRNAs associated with colorectal cancer include H19, KCNQ1OT1, HOTAIR, MALAT1, 

ZFAS1, CCAT1, CCAT2, OCC-1, CCAT1-L, CRNDE, T-UCR, and others (98–100) (Figure 

1 and Table 1).

H19

H19 (2.7 kb) is one of the first lncRNAs discovered and a pivotal player in embryonic 

development and tumorigenesis (1,101–117). It is a maternally expressed and paternally 

imprinted gene located near the telomeric region of chromosome 11p15.5 adjacent to IGF2 
(Insulin like Growth Factor 2) gene. H19 is conserved between rodents and humans. 

MiR-675, a highly conserved miRNA that regulates a variety of transcripts, resides within 

exon-1 of the H19 gene (104). H19 acts as a decoy for miRNAs, modulating their 

availability and activity. It interacts with transcription-repressors such as EZH2 and MBD1 

(methyl-CpG–binding domain protein 1) and induces repression by recruiting them to target 

genes (including H19’s reciprocally imprinted gene IGF2) (104). H19 is an oncogenic RNA 

associated with tumorigenesis starting from the early stages to metastasis (101,102,107,115, 

118, 119). Tumor suppressor p53 and H19 are mutually counter-regulated (59). P53 

represses the H19 gene and the H19-derived miR-675 inhibits p53 and p53-dependent 

protein expression (116). The p53-H19 interplay appears to play major roles in 
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tumorigenesis and metastasis (102,103). H19 expression is induced by hypoxic stress and 

linked with epithelial to mesenchymal transition (EMT), and its overexpression leads to the 

activation of genes involved in angiogenesis, cell survival, and proliferation, triggering 

malignancies such as liver, breast, colorectal, esophageal, lung, pancreatic, gastric, bladder, 

and cervical carcinomas (101,102,108).

KCNQ1OT1

KCNQ1OT1 (KCNQ1 Overlapping Transcript 1) is a 91 kb nuclear antisense lncRNA that is 

imprinted from the paternal allele and originates from intron 11 of the KCNQ1 gene 

(potassium voltage-gated channel subfamily Q member 1) (120–125). The KCNQ1OT1 

domain is regulated by a functionally independent imprinting control region (ICR) located in 

an intron of KCNQ1 (125). The promoter of the KCNQ1OT1 gene, located within the ICR 

locus, undergoes methylation on the maternally-inherited chromosome and demethylation on 

the paternally-inherited chromosome. Therefore, it preferentially allows the KCNQ1OT1 
gene expression from the paternal allele (123,125). It interacts with chromatin modifying 

enzymes like PRC1, PRC2, and G9a and regulates the silencing of KCNQ1 via induction of 

histone and DNA methylation (123,125). The aberration in KCNQ1OT1 is associated with 

Beckwith-Wiedemann syndrome, colorectal, hepatocellular, and pediatric adrenocortical 

tumors (125,126).

T-UCRs

T-UCR lncRNAs are about 200 to 779 nt in length and are generated from ultraconserved 

regions (UCRs) and show tissue-specific expression patterns (127,128). T-UCR lncRNAs are 

altered in a variety of cancers including colorectal carcinoma, chronic lymphocytic 

leukemia, neuroblastomas, hepatocellular carcinoma, and prostate cancer (128). They play a 

key role in the suppression of miRNAs such as miR-596 and miR-193b involved in 

carcinogenesis and apoptosis, respectively (129–132). Modulation of T-UCR expression 

promotes colorectal carcinoma progression (4,7,133). Notably, the CpG island 

hypermethylation-induced epigenetic silencing of tumor suppressor miRNAs appears to be 

closely associated with a variety of cancers. Recent studies also demonstrate that in addition 

to miRNAs, various lncRNAs such as T-UCRs are silenced via CpG island 

hypermethylation, which is a common feature of many tumor types (133,134). Further, the 

CpG island methylation-induced silencing of protein coding and noncoding sequences in the 

sense strand as well as antisense-transcripts (many antisense lncRNA) are closely associated 

with human tumors. For example antisense lncRNA VIM-AS1 (vimentin antisense 1), which 

is regulated via R-loop (three-stranded RNA-DNA hybrid) formation, is silenced in 

colorectal cancer through CpG island hypermethylation (135).

CCAT1

CCAT1 (Colon Cancer-Associated Transcript-1) (a.k.a. CARLo-5) is an oncogenic lncRNA 

located at 8q24.21. CCAT1 expression is induced by c-Myc that binds to its promoter. 

CCAT1 epigenetically downregulates c-Myc by acting as a competing endogenous RNA 

(ceRNA) for miR-155 that represses c-Myc expression. It is also involved in the regulation 

of HOXB13 and SPRY4 (136–138). CCAT1 has been implicated in acute myeloid leukemia 

(AML), colorectal, esophageal, lung, and other cancers (139).
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7. Liver cancer

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths with an incidence that 

has tripled since 1980. Although many lncRNAs are implicated in HCC, the most studied 

are MALAT1, HULC, HEIH, and HOTAIR that are known to be upregulated in HCC 

(140,141). Other lncRNAs implicated in liver cancer are lncTCF7, CCAT1, MEG3, CUDR, 

LALR1, and others (142) (Figure 1 and Table 1).

HULC

HULC (Highly Up-regulated in Liver Cancer), a 1.6kb oncogenic lncRNA, is overexpressed 

in HCC (100) (143,144). Augmented levels of the HULC transcript are observed in 

metastatic liver nodules from colon cancer. HULC is upregulated in both tumors and plasma 

of HCC patients, and is a potential biomarker for HCC. The SNP (single nucleotide 

polymorphism) in HULC is associated with HCC susceptibility in HBV (Hepatitis B Virus) 

carriers (145). HULC might function to downregulate the activity of miR-372 by acting as 

an endogenous sponge (146). Suppression of miR-372 by HULC represses the translational 

inhibition of miR-372 target genes. HULC promoter possesses a binding site for 

transcription factor cAMP response element binding (CREB) and its expression is 

potentially regulated by CREB phosphorylation (146).

HEIH

HEIH (High Expression in HCC), a 1.6 kb SP1-regulated long lncRNA located in the 5q34.3 

locus, is differentially expressed in HCC, closely associated with HCC recurrence, and a 

prognostic factor for HCC (141,147,148). HEIH interacts with EZH2 and regulates EZH2 

target genes including cell-cycle regulatory genes p15, p16, p21, and p57 (147). Knockdown 

of HEIH reduces cell proliferation and suppresses tumor growth (147).

Other lncRNAs implicated in liver cancer are DILC, H19, TCF7, HOTTIP, and ZFAS1 

(141,149). DILC (downregulated in liver cancer) is a tumor suppressor whose expression is 

inversely related to those of EpCAM (epithelial cell adhesion molecule), CD24, and CD90 

in hepatoma spheroids (150). HOTTIP (HOXA Transcript at the distal Tip) upregulation is 

associated with liver cancer metastasis (151,152). HOTTIP, in conjunction with the 

WDR5/MLL complex, mediates the trimethylation of H3K4 and HOXA gene expression 

(141,153,154).

8. Bladder cancer

Bladder cancer is the tenth most common malignancy in women and the fourth most 

common in men. LncRNAs implicated in bladder cancer are TUG1, UCA1, MALAT1, 

MEG3, H19, linc-UBC1, and others (155) (Figure 1 and Table 1).

UCA1

UCA1 (Urothelial Cancer Associated-1), transcribed from 19p13.12, was originally cloned 

from the human bladder cell line, and is overexpressed in embryonic tissues, bladder 

cancers, and other cancers (156) (157,158). It promotes chemoresistance through promoting 
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the expression of wingless-type MMTV integration site family member 6 (Wnt6) (157). It 

also plays a role in β-catenin translocation into the nucleus and TCF7 regulation via 

interaction with SWI/SNF (switch/sucrose non-fermentable) in other types of cancer (159). 

UCA1 is a potential urine biomarker for noninvasive diagnosis of bladder cancer. MALAT1 

associates with SUZ12 and regulates N-cadherin and E-cadherin expression, promotes tumor 

growth and metastasis, and forms a fusion gene in renal carcinoma (155).

9. Leukemia

Defects in hematopoietic stem cell differentiation and proliferation cause leukemia. A 

variety of lncRNAs are implicated in leukemia that include DLEU1, DLEU2, LUNAR1, 

HOTAIRM1, MALAT1, CCAT1, CCDC26, BGL3, NEAT1, NALT, UCA1, and others (160) 

(Figure 1 and Table 1). LncRNA mutations such as internal tandem duplications in the FLT3 

(FMS-like tyrosine kinase 3) gene (FLT3-ITD) and mutations in the NPM1, CEBPA, IDH2, 

ASXL1, and RUNX1 genes are also linked to recurrent leukemia (161,162).

DLEU1 and DLEU2

LncRNAs DLEU1 and DLEU2 (Deleted in lymphocytic Leukemia 1 and 2), originating 

from the 13q14.3 region, are often deleted in solid tumors and hematopoietic malignancies 

like chronic lymphocytic leukemia (CLL) and lymphomas (163). DLEU1 and DLEU2 

regulate NF-kB activity by regulating genes that affect NF-kB activity. The promoter regions 

of DLEU1 and DLEU2 exhibit demethylation or activation marks in CLL (163). DLEU2 

acts as a precursor for various miRNAs such as miR-15a and miR-16-1 that are involved in 

CLL (164).

LUNAR1

LUNAR1 (Leukemia-induced Non-coding Activator RNA-1), derived from 15q26.3, is a 

NOTCH-regulated oncogenic lncRNA in T-cell acute lymphoblastic leukemia (T-ALL), and 

it promotes T-ALL cell growth by enhancing IGF1R expression and IGF1 signaling. 

LUNAR1 recruits the mediator complex on the IGF1R promoter and regulates its 

transcription. Abnormal NOTCH1 signaling is closely associated with human T-ALL 

(165,166).

BGL3

BGL3 (Beta Globin Locus transcript 3) is a 3.6 kb lncRNA derived from chromosome 

11p15.4. BGL3 expression in leukemic cells is negatively regulated by Bcr-Abl through c-

Myc-mediated DNA methylation (167). Conversely, BGL3 regulates Bcr-Abl through 

sequestering miR-17, miR-93, miR-20a, miR-20b, miR-106a, and miR-106b (167). These 

miRNAs are known to repress the expression of phosphatase and tensin homolog (PTEN) 

(168).

HOTAIRM1

HOTAIRM1 (HOTAIR Myeloid-specific 1), a 483 bp lncRNA transcribed from the HOXA 

cluster, is expressed in the myeloid lineage. Inhibition of HOTAIRM1 downregulates 

numerous HOXA genes critical for hematopoiesis (169–171). HOTAIRM1 has a similar 
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expression pattern as that of HOXA1 and HOXA2 in thymus, muscle, colon, lung, kidney, 

spleen, etc. (172). HOTAIRM1 is induced by all trans retinoic acid (RA) and is involved in 

RA-induced myeloid differentiation. HOTAIRM1 regulates myeloid differentiation genes 

CD11b and CD18, and also interacts with chromatin modifying enzymes including PRC1, 

PRC2, and CBX1 (171).

XIST

XIST (X-Inactive Specific Transcript) induces X-inactivation and is aberrantly expressed in 

leukemia (161). Homozygous and heterozygous deletion of XIST in hematopoietic stem 

cells leads to the development of blood cancers, suggesting that aberrant X inactivation 

promotes carcinogenesis (161). It regulates genes in various other cancers via interaction 

with PRC1, PRC2, YY1, and CTCF, among others (129,149) (173,174). UCA1 knockdown 

negatively affects the proliferation of acute myeloid leukemia (AML) cells in vitro 
(149,175).

10. Other cancers

A large number of lncRNAs are identified in various other types of cancers, however, their 

detailed functions and specificity remain elusive (7) (Figure 1, Tables 1 and 2). For 

examples, pancreatic cancer, which accounts for 7% of cancer deaths worldwide, is 

associated with lncRNAs HOTAIR, HOTTIP, H19, PVT1, MALAT1, linc-RoR and others 

(176–178). Ovarian cancer, being the fifth deadliest cancer in women, is associated with 

abnormal expression of lncRNAs such as CCAT2, NEAT1, UCA1, HOTAIR, MEG3, 

HOST2, PVT1, and others (179,180). The lncRNAs implicated in renal cancer include 

HOTAIR, H19, GAS5, CADM-AS1, RCCRT1, NBAT1, MEG3, SPRY-IT1, MALAT1, and 

others (181,182). The lncRNAs implicated in gastric cancer include TUG1, MRUL, 

HOTAIR, MALAT1, CCAT1, H19, MEG3, HULC, PVT1, ANRIL, GAS5, and others (183–

185). The expression of lncRNAs H19, MALAT1, CRNDE, and POU3F3 is positively 

correlated with malignant glioma (186). MEG3 is a tumor suppressor lncRNA that is highly 

expressed in normal brain tissue and downregulated in gliomas (187). FER1L4 (Fer-1-Like 

Protein 4) is a tumor suppressor lncRNA involved in the regulation of PTEN and inhibition 

of Akt phosphorylation in endometrial cancer (188). NBAT1 (Neuroblastoma-Associated 

Transcript 1) represses the expression of neuronal-specific transcription factor NRSF/REST 

through association with PRC2 (189,190).

GAS5

(Growth Arrest Specific 5) and SRA (Steroid receptor RNA Activator) are two lncRNAs 

implicated in hormone signaling (191–194). GAS5 produces two splice variant lncRNAs, 

and its introns also give rise to several snoRNAs (small nucleolar RNA) involved in the 

biosynthesis of ribosomal RNA from its introns. GAS5 interacts with glucocorticoid 

receptor (GR) and suppresses the expression of GR-regulated genes (195). It causes growth 

arrest and apoptosis and induces PTEN via inhibiting miR-103 (191). GAS5 acts as a tumor 

suppressor and its misregulation and genetic aberrations are associated with breast cancer, 

prostate cancer, leukemia, gastric cancer, and others (196). The lncRNA SRA interacts with 
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various steroid hormone receptors and stimulates transcriptional activation, and is associated 

with breast, uterine, ovarian, and prostate cancers (197).

TERRA

TERRA (Telomeric Repeat-containing RNAs) is a set of lncRNAs (ranging in size from 100 

bp–9 kb) transcribed from telomeres. LncRNAs containing UUAGGG repeats are generally 

called TERRA (198–201). TERRA interacts with telomere-associated TRF1 and TRF2 

(telomere repeat factors 1 and 2), subunits of the origin recognition complex (ORC), 

heterochromatin protein 1 (HP1), H3K9-methylated histone, and facilitates heterochromatin 

formation at telomeres. TERRA is known to negatively regulate telomerase and act as a 

tumor suppressor (200,201).

ZFAS1

ZFAS1 (ZNFX1 Antisense RNA 1) is a spliced and polyadenylated lncRNA transcribed 

from the 5’ end of ZNFX1. It is derived from chromosome 20q13.13, and is implicated in 

different types of cancer including gastric cancer, colorectal cancer, and hepatocellular 

cancer, among others. It interacts with CDK1 and cyclin B to control p53-dependent cell 

cycle regulation (202). In addition, it promotes cell proliferation by recruiting EZH2 and 

LSD1/CoREST to the promoters of genes including KLF2 (Kruppel like factor 2) and 

NKD2 (naked cuticle 2) to regulate their expression (203). It also acts as a sponge for tumor 

suppressor miR-150 (204). Knockdown of ZFAS1 results in the repression of cell 

proliferation, migration and colony formation (203,205).

PVT1

PVT1 (Plasmacytoma Variant Translocation 1) is an oncogenic, intergenic lncRNA derived 

from 8q24.21 with multiple splice isoforms (206–208). It is upregulated in different types of 

cancer such as ovarian cancer, cervical cancer, and pancreatic cancer, among others. It 

suppresses the phosphorylation of Myc, thereby enhancing its stability (209). Further, it 

promotes proliferation via interaction with NOP2 (nucleolar protein 2 homolog) with the 

help of TGFβ (transforming growth factor β) (206). PVT1 promotes cell proliferation and 

invasion in gastric cancer by recruiting EZH2 to repress the expression of tumor suppressor 

genes p15 and p16 (207). It associates with a multifunctional DNA and RNA binding protein 

called nucleolin involved in oncogene expression and ribosomal biogenesis, among other 

activities (210).

MEG3

MEG3 (Maternally Expressed 3) is an imprinted, tumor suppressive lncRNA transcribed 

from chromosome 14q32.2 (211–214). It is a polyadenylated lncRNA overexpressed in 

human pituitary, but downregulated in cancer cells (212). Overexpression of MEG3 in 

bladder cancer cells has been shown to induce autophagy and increase cell proliferation 

(215). MEG3 is involved in the accumulation of tumor suppressor p53 and regulation of 

TGF-β pathway genes involved in cell invasion, immune regulation, etc. It also interacts 

with PRC2 to repress MDM2 (murine double minute 2) which contributes to p53 

accumulation (214,216).
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11. LncRNAs as biomarkers and in gene therapy

Numerous lncRNAs are aberrantly expressed in various tumors and some appear to be 

cancer-specific. Many lncRNAs (or their processed fragments) are stable in body fluids and 

detectable in the plasma and urine of cancer patients (24,217). Their levels are indicative of 

the severity of the disease. All these factors render lncRNAs an attractive choice for their 

applications as non-invasive biomarkers and therapeutic targets for the treatment of cancer 

(Table 2) (28,30,92,145,205,218–247). LncRNAs differ from protein-coding genes in many 

respects. First, due to their greater abundance than protein coding genes, a modulation in 

larger number of lncRNA expression may be observed in a given subtype of cancer, which 

provides a larger window for the detection of subtype-specific lncRNA-based biomarker. 

Subtype/tissue-specific lncRNA expressions are crucial for developing novel diagnostic 

biomarker and personalized therapy (43,238). LncRNAs, being large in size, may fold into 

complex secondary/tertiary structures and scaffolds through which they may interact with 

various proteins, transcriptional regulators, mRNA (complementary), and DNA sequences, 

which may aid in cancer initiation and progression. The presence of a large number of 

regulatory interaction sites in lncRNAs provides a wider platform for developing novel 

structure-based cancer drugs. Furthermore, given their participation in diverse cell signaling 

pathways and tissue-specific expression, lncRNAs can be utilized to formulate novel 

strategies for specific cancer subtype diagnosis and targeting (248,249).

Few lncRNAs are already implicated as biomarkers and some of them are in clinical trials 

(223,250) (Table 2). For example, lncRNA PCA3 which is highly upregulated and specific 

to prostate cancer is detectable in urine with levels that correspond to the severity of prostate 

cancer (30,31,218). Since it can be detected in urine, PCA3 has advantages over the widely-

used serum-based prostate cancer biomarker PSA (prostate-specific antigen) for noninvasive 

diagnosis of prostate cancer (251). Additionally, PCAT-1, PRNCR1, PCGEM, PlncRNA1, 

and PCAT-18 are highly expressed in prostate tumors and are potential diagnostic markers 

(Table 2) (44,252). Circulating HOTAIR may also be used to diagnose breast cancer (221). 

ZFAS1, HIF1a-AS2, and others are also implicated as biomarkers for breast cancer (Table 

2). Similarly, MALAT1, UCA1, ANRIL, and NEAT1 can be used to predict early stage as 

well as metastatic lung cancers (Table 2) (85). The expression of HOTAIR, CCAT1, 

FER1L4, and others is linked to colorectal cancer (CRC) (Table 2). CpG-island methylation 

of T-UCR promoter is also linked to CRC diagnosis. LncRNAs H19, HULC, HEIH, 

linc00152, and MVIH are highly upregulated in hepatocellular cancer (HCC) and are 

valuable HCC biomarkers (Table 2) (253). HULC expression correlates with histological 

grade and oncoprotein hepatitis B Virus X (HBx) (254). Hepatitis B virus (HBV)-positive 

hepatocellular cancer can be detected using lncRNAs uc001ncr and AX800134. Uc001ncr 

and AX800134 have a 100% detection rate in HCC patients (145). HOTAIR overexpression 

may be used to predict the recurrence of HCC and is highly expressed in 65.7% of 

recurrence HCC patients (140,255). UCA1, H19 and HOTAIR expression may be used as a 

biomarker to detect bladder cancer (Table 2) (175). CRNDE is expressed in the APL (acute 

promyelocytic leukemia) subtype of AML ten times more than the other subtypes. This 

makes CRNDE a suitable biomarker to detect the APL subtype of AML (238). LET, PVT1, 

PANDAR, and PTENP1 expression is linked to renal cancer (Table 2). Thus, lncRNAs 
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appear to be promising novel diagnostic and prognostic markers for a variety of cancers 

(Table 2), however, there are still many challenges and validations required for their clinical 

applications.

As lncRNA expressions are differentially modulated in different types of cancer and their 

expression levels correlate with tumorigenesis, tumor aggressiveness, and stages, they are 

potential targets for cancer therapy. There are several ways by which lncRNAs may be 

targeted to modulate their expression: a) LncRNA transcript degradation/destabilization by 

using lncRNA-specific siRNAs, antisense oligonucleotide (ASO), gapmers, and ribozymes; 

b) Modulating lncRNA transcription by altering the lncRNA-coded promoter activity (e.g., 

via inhibition of transcription factors binding to respective promoters); c) Blocking 

interactions between lncRNAs and regulatory factors - small synthetic molecules/peptides 

can be developed that are designed to block the binding of lncRNAs with protein, DNA, 

RNA, or other interacting complexes by associating with specific binding pockets; and d) 

Functional disruption of lncRNAs using aptamers that can be selected to bind at specific 

structural regions to target lncRNAs and antagonize their association with their binding 

partners (256,257). For example, siRNA-mediated downregulation of HOTAIR expression 

leads to reduced tumor cell viability and invasiveness and induction of apoptosis in breast 

tumors (221). CCAT2 is upregulated in colorectal cancer and has been targeted by specific 

miRNAs to suppress colorectal cancer growth (258–260). Antisense-mediated silencing of 

MALAT1 prevents in vivo lung cancer metastasis (85). Breast cancer progression can be 

hindered through systemic knockdown of MALAT1 using antisense oligonucleotide 

(85,91,194). Antisense-mediated lncRNA targeting has shown to be promising in the 

treatment of other disorders like Angelman’s syndrome through silencing lncRNA UBE3A-

AS (261,262). Oncogenic lncRNA H19 is overexpressed in a variety of cancers such as 

pancreatic tumors. The H19 promoter has been used to express diphtheria toxin (DTA) in 

pancreatic cancer cells (118,119,263). Administration of pancreatic tumors with a H19-DTA 

plasmid construct resulted in a significant decrease in tumor size and metastasis. The H19 

(and IGF2) regulatory sequences can be used to inhibit the growth and metastasis of CRC. 

Overall, lncRNA-based targeted cancer therapies are promising, however, at present, they 

are at their infancy and require further development of experimental strategies, siRNA/

antisense delivery strategies, screening novel small molecules libraries, and many clinical 

trials prior to their success in targeted, lncRNA-based gene therapy.

Apart from evaluating the direct significance of lncRNAs in cancer diagnosis and therapy, 

they can also be considered for improving therapeutic efficacy and development of 

combination therapy. Therapeutic resistance (such as chemo- or radio-resistance) is a major 

challenge in cancer treatment; however, this could be improved by increasing the therapeutic 

sensitivity of tumors by modulating a critical cell signaling pathway that confers resistance. 

As lncRNAs are closely associated with many cell signaling processes, the modulation of 

their expression could be done to improve the therapeutic sensitivity of tumors. One 

approach is to resensitize chemoresistant cells by modulating factors associated with DNA 

damage response pathways. For example, knockdown of HOTAIR enhances the sensitivity 

of cancer cells to chemotherapeutic agents like cisplatin and doxorubicin (264–266). 

Cisplatin-mediated upregulation of HOTAIR in human lung adenocarcinoma cells 

suppressed p21 (WAF1/CIP1) signaling pathway and caused a G0/G1 arrest by modulating 
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the p53 expression and HOXA1 methylation (157,267). LncRNA TUG1 (Taurine 

Upregulated Gene 1, (2,3,268–270)) overexpression is responsible for the chemoresistance 

of lung cancer cells. TUG1 regulates the expression of LIM-kinase 2b and other cell cycled-

associated genes through recruiting EZH2 to its promoter. TUG1 knockdown has been 

shown to enhance chemosensitivity in lung cancer (271). Silencing CRNDE results in the 

suppression of cell proliferation and chemoresistance in colorectal cancer. CRNDE inhibits 

the expression of miR-181a-5p, which in turn silences Wnt/β-catenin signaling (272). 

Similarly, HOTTIP promotes chemoresistance via activation of Wnt/β-catenin signaling 

(273). GAS5 modulates chemoresistance in gastric cancer by acting as a sponge for miR-23a 

that inhibits the expression of metallothionein 2A (MT2A) (274). In a similar role, CCAT1 

sponges let-7c-mediated release of Bcl-xL. This involves EMT and resistance to docetaxel 

(137). MALAT1 knockdown causes re-sensitization of glioblastoma multiforme cells to 

temozolomide. The MALAT1-mediated chemoresistance in glioblastoma multiforme cells is 

made possible via inhibition of miR-203, thereby activating the expression of thymidylate 

synthase (275). Other lncRNAs that may be targeted to increase the chemosensitivity of 

tumors include HULC (gastric cancer), H19 (breast cancer), ODRUL (osteosarcoma), 

OMRUL (lung cancer), and PVT1 (pancreatic cancer) (209,276–278). Thus, it is evident that 

the modulation of lncRNA expression can be exploited to improve the therapeutic sensitivity 

of tumors and may also be used for combination therapy.

12. Conclusions

LncRNAs are emerging stars in cancer, diagnosis, and therapy (279). The discovery of huge 

numbers of lncRNA, their wide-range of expression patterns in various types of cancer, their 

tumor-specificity, and their stability in circulating body fluids (plasma and urine) provide a 

new foundation for developing diagnosis and therapies for cancer. LncRNA expression may 

also be used to predict the cancer prognosis and patients outcome. LncRNAs are major 

regulators of chromatin dynamics and gene regulation, associated with a variety of cell 

signaling pathways, and their expressions are influenced by a variety of factors including 

hormones, nutrients, age, and sex (161,280–283). Aberrant expression, mutations and SNPs 

of lncRNAs are associated with tumorigenesis and metastasis. Some lncRNAs act as 

oncogenes, whereas others act as tumor suppressors (284). Oncogenic lncRNAs include 

PCA3, PCGEM1, PCAT1, PCAT18, CTBP-AS, SCHLAP1, HOTAIR, ANRIL, MALAT1, 

NEAT1, H19, KCNQ1OT1, lncTCF-7, HOTTIP, HULC, HEIH, TUG1, UCA1, PVT1, and 

LSINCT5 (279). Tumor suppressor lncRNAs include GAS5, MEG3, DILC, NBAT-1, 

DLEU1, DLEU2, TERRA, BGL3, and others. Novel lncRNAs are still being discovered 

(285). Thus, lncRNAs holds strong promise towards the discovery of novel diagnostics and 

therapeutics for cancer. However, there are still many challenges. First, given the large 

number of lncRNAs and their up- or down-regulation in various cancers, it is crucial to 

identify the most important lncRNAs associated with a specific types/subtype of cancer. 

Second, the field of lncRNAs is at its infancy at this point; the structural and functional 

information on most lncRNAs remain uncharacterized. Without detailed understanding on 

the structure and functions of lncRNAs, developing lncRNA-based therapies is like 

“shooting in the dark”. Additionally, unlike protein-coding genes, lncRNAs are poorly 

conserved across different species; therefore, the structural and functional information as 
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well as the promising therapeutic strategies developed using in vitro and animal models may 

not be easily extended to immediate human application and may need detailed clinical 

studies. To fully explore the potential of lncRNAs in cancer diagnosis and targeted therapy, 

it is important to characterize each lncRNA in detail, identify their cellular functions, roles 

in diseases, and SNPs. The cause-effect relationships of each lncRNA need to be established 

for determining their tissue-specificity and linking them to tumor stage. The future studies 

on the use of lncRNAs as biomarkers and therapeutics should focus not only on their 

identification and functional characterization, but also on optimizing isolation procedures, 

characterizing variations by internal and external factors using large numbers of statistically 

significant patient cohorts, and development of proper animal models for testing and 

validations, prior to clinical trials. Development of technologies for efficient detection of 

lncRNAs and their tissue-specific delivery methods are critical to the success of the 

diagnostics and therapeutics. Recent advancements in CRISPR/Cas9 technologies for gene 

knockout, knock-in, and point mutations may facilitate understanding the biological roles of 

lncRNAs and aid in the development of lncRNA-based targeted cancer therapy. 

Nevertheless, discovering novel lncRNAs, identifying their function and association with 

various cancer subtypes, developing novel lncRNA-based strategies for diagnosis and 

targeted therapies appear very promising, bring a new paradigm in cancer research, and may 

emerge as a major therapeutic strategy for the treatment of cancer in the near future.
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Figure 1. 
LncRNAs associated with various types of cancer
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Table 1

LncRNAs: their mechanism of action and significance in cancer

LncRNA Cancer type Mechanism of action and function Refs

PCA3 (a.k.a. 
DD3)

Prostate Steroid receptor-regulated lncRNA; Induces RNA editing via interaction 
with PRUNE2-pre-mRNA to form a double-stranded RNA duplex and 
ADAR proteins; Knockdown results in reduced cell growth and survival 
and induction of apoptotic cells; (↑)

(29,31,33,34,251)

PCGEM1 Prostate Promotes colony formation, cell proliferation; promotes chemo-
resistance via inhibition of PARP cleavage and delaying the induction of 
tumor suppressors p53 and p21; Regulates AR target genes expression, 
in conjunction with lncRNA PRNCR1, AR, histone methylase DOT1L; 
and Pygopus family PHD finger 2 (PYGO2); Knockdown results in 
reduced proliferation and increased apoptosis; (↑)

(35–37)

PCAT-1 Prostate Promotes cell proliferation, downregulates genes and tumor suppressor 
genes; sensitizes prostate cancer cells towards PARP 1 inhibitors; post-
transcriptionally upregulates c-Myc; (↑)

(27,39)

HOTAIR Breast, hepatocellular, 
colorectal, pancreatic, 
lung, ovarian, liver

Scaffolding lncRNA, silences genes via interaction with PRC2 and 
LSD1, aids in protein degradation via interaction with E3 ubiquitin 
ligases; Knockdown reduces tumor invasiveness, disrupts of EMT; (↑)

(45–53,57,58,255)

ANRIL Breast, gastric, lung, liver Controls cell proliferation and senescence via regulating tumor 
suppressors CDKN2A/B; Represses the INK4A locus via interaction 
with CBX7 and PRC2; Knockdown lowers multidrug resistance, 
reduces proliferation, and invasiveness; (↑)

(66–78)

MALAT1 
(a.k.a. NEAT2)

Lung, prostate, breast, 
colorectal, liver, gastric, 
leukemia, brain, renal

Undergoes processing to produce a short and long RNA transcript; 
localized into nuclear speckles; influences SR-protein phosphorylation 
and modulates alternative splicing; regulates of EMT gene expression; 
associates with SUZ12 and regulates N-cadherin and E-cadherin 
expression. Knockdown reduces cell growth, invasion, and migration, 
and differentiation into cystic tumors; (↑)

(83–90)

NEAT1 Leukemia, ovarian Regulates ADARB2 expression via protein sequestration into 
paraspeckles; Knockdown results in inhibition of cell growth; (↑)

(95,96)

H19 Bladder, brain, gastric, 
renal, lung, ovarian, 
colorectal, pancreatic

Pivotal in embryonic development and tumorigenesis; maternally 
expressed and paternally imprinted; precursor of miRNAs (miR-675), 
P53 represses the H19 gene and the H19-derived miR-675 inhibits p53; 
Interacts with EZH2, MBD1 and induces gene repression; Knockdown 
reduces tumor size and metastasis; (↑)

(1,101–117)

KCNQ1OT1 Colorectal, hepatocellular, 
pediatric adrenocortical; 
Beckwith-Wiedemann 
syndrome.

Paternally imprinted; interacts with PRC1, PRC2, and G9a and silences 
KCNQ1 via induction in histone and DNA methylation. Imprinting 
disruption of the CDKN1C/KCNQ1OT1 domain is involved in the 
development of both BWS and cancer. Knockdown results in loss of 
imprinting in the 5’-domain of KCNQ1OT1; (↑)

(120–124)

T-UCRs Colorectal, Barrett's 
adenocarcinoma, bladder, 
liver

CpG-island hypermethylation induced T-UCR silencing is common in 
many tumors; Inhibits miR-596 via interaction with YY1, inhibits 
miR-193b; Overexpression inhibits migration and invasion; (↑)

(129–131)

CCAT1 Colorectal, leukemia, 
gastric, Lung, esophageal 
squamous cell carcinoma

Acts as a sponge for let-7 and miR-155, regulates c-Myc, HOXB13, 
SPRY4; Knockdown reduces cell proliferation and migration; (↑)

(136,138)

HULC Hepatocellular, pancreatic Acts as a microRNA sponge and sequesters miR-372; potential 
biomarker for HCC; Knockdown inhibits cell proliferation and increases 
chemosensitivity; (↑)

(143,144)

HEIH Hepatocellular Linked with hepatitis-B-virus associated HCC recurrence; Regulates 
cell cycle regulatory genes p15, p16, p21 via interaction with EZH2; 
Knockdown reduces cell proliferation and suppresses tumor growth (↑)

(141,147,148)

HOTTIP Prostate, liver, pancreatic Controls the HOXA locus via interaction with WDR5/MLL; 
Knockdown suppresses chemoresistance, and mesenchymal 
characteristics; (↑)

(152–154)

UCA1 Bladder, leukemia, 
ovarian, breast

Potential urine biomarker; promotes chemoresistance; Recruits 
SWI/SNF to the TCF7 promoter, induces Wnt/β-catenin signaling and 

(157,158)
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LncRNA Cancer type Mechanism of action and function Refs

ER redistribution; Knockdown increases chemo-sensitivity, reduces cell 
migration and tumor size; (↑)

DLEU1, 
DLEU2

Leukemia Deleted in lymphocytic Leukemia; regulate NF-kB activity, acts as a 
precursor for miR-15a and miR-16-1 in leukemia; (↓)

(163,164)

LUNAR1 Leukemia, B-cell 
lymphoma

Promotes T-ALL growth by inducing IGF1R expression, regulates 
IGF1R via interaction with mediator complex; Knockdown reduces cell 
proliferation and viability; (↑)

(165,166)

BGL3 Leukemia Regulates Bcr-Abl through sponging miRNAs (miR-17, miR-93, 
miR-20a, miR-20b, miR-106a, and miR-106b) and via c-Myc-
dependent DNA methylation; (↓)

(167)

HOTAIRM1 Breast, leukemia, 
colorectal

Controls myeloid autophagy and maturation via interaction with PRC2 
and UTX/MLL; Knockdown results in retardation of myeloid cell 
differentiation; (↑)

(169–171)

XIST Ovarian, leukemia Inactivates X chromosome via coating and interaction with PRC1/2, 
YY1, CTCF, etc.; Knockdown results in enhanced sensitivity to Taxol; 
(↑)

(173,174)

FER1L4 Gastric, endometrial Regulates PTEN and the PI3K-AKT pathway by behaving as a ceRNA 
for miR-106a-5p; Overexpression reduces cell growth and colony 
formation; (↓)

(168,188)

NBAT1 Renal, neuroblastoma Silences neuronal-specific NRSF/REST through association with PRC2; 
Overexpression results in differentiation of neuronal precursors; (↓)

(189,190)

GAS5 Breast, renal, prostate, 
endometrial

Acts as decoy for glucocorticoid receptor (GR), inhibits transcriptional 
induction by GR, causes growth arrest and apoptosis, induces PTEN via 
inhibiting miR-103; (↓)

(191–193)

TERRA Pancreatic, cervical, 
gastric, breast

Facilitates heterochromatin formation via interaction with TRF1 and 
TRF2, aids in telomerase function by providing a RNA template; (↓)

(198–200)

ZFAS1 Breast, colorectal, gastric, 
liver

Interacts with CDK1/cyclin B, EZH2, LSD1/CoREST, acts as a sponge 
for miR-150, promotes cell proliferation; Knockdown results in 
inhibition of cell proliferation, migration, and colony formation; (↑)

(202–204)

PVT1 Breast, pancreatic, 
ovarian, gastric, lung

Promote proliferation via interaction with NOP2 with the aid of TGFβ1, 
enhances c-Myc stability via inhibiting its phosphorylation; Knockdown 
results in reduced cell proliferation and chemoresistance; (↑)

(206–208)

MEG3 Renal, gastric, ovarian, 
liver, lung, brain, bladder

Represses MDM2, aids in p53 accumulation, represses genomic loci of 
genes associated with transforming growth factor-β (TGF-β) pathway 
via cooperating with PRC2; Overexpression results in apoptosis and 
inhibition of proliferation; (↓)

(211–214)

TUG1 Bladder, gastric, lung Silences cell cycle associated genes via interaction with PRC2; 
Knockdown results in inhibition of cell proliferation, invasion, and 
colony formation; (↑)

(2,3,268–270)

Linc-RoR Breast, ,pancreatic, 
hepatocellular, 
endometrial, 
nasopharyngeal

Induces epithelial-mesenchymal transition, drug resistance and 
invasiveness of cancer cells; promotes invasion, metastasis and tumor 
growth through activating ZEB1 pathway; (↑)

(178)

(↑) Upregulated in cancer (oncogenic); (↓) Downregulated in cancer (tumor suppressor)
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Table 2

LncRNAs as cancer biomarkers

Cancer LncRNA Biomarker Potential Implications Site of Detection Refs

Prostate cancer

PCA3 Detection; Prognosis Urine; Tumor (30,218)

LincRNA-p21 Detection; Stratification Urine (192)

PCAT-18 Metastasis Plasma (28)

MALAT1 Risk of tumorigenesis; Detection Urine; Plasma (233,234)

PVT1 Aggressiveness
Tumor

(219)

TRPM2 Early identification; aggressiveness (220)

Breast cancer

ZFAS1 Detection Tumor (205)

HOTAIR Detection
Serum

(221)

RP11-445H22.4 Detection (235)

HIF1A-AS2; AK124454 Recurrence Tumor (222,223)

Lung cancer

MALAT1 Early detection; Risk of metastasis Whole blood; Tumor (87,224,225)

SPRY4-IT1; ANRIL; NEAT1 Early detection Plasma (92)

UCA1 Detection Plasma; Tumor (226)

Colorectal cancer

HOTAIR Risk of tumorigenesis Tumor (227)

HOTAIR; CCAT1; CCAT2 Detection Serum (228)

FER1L4 Recurrence; Metastasis

Plasma

(229)

XLOC_006844; LOC152578; 
XLOC_000303 Risk of tumorigenesis (230)

Hepatocellular cancer

HOTAIR Recurrence after transplant Tumor (51)

uc001ncr; AX800134 Detection (especially early-stage) Serum (145)

HULC; Linc00152 Detection; Metastasis

Plasma

(231)

RP11-160H22.5; XLOC014172; 
LOC149086, HEIH

Risk of tumorigenesis, prognostic 
factor for recurrence and survival (232)

XLOC014172; LOC149086 Risk of metastasis (232)

Bladder cancer

UCA1 Detection Urine (236)

H19 Early recurrence
Tumor

(101)

HOTAIR Overall survival (237)

Leukemia CRNDE Identification of subtypes of AML 
(acute myeloid leukemia) (M2 or M3)

Bone marrow, Lymph 
nodes (238)

Ovarian cancer NEAT1 Invasiveness; Prognosis Tumor (239)

Renal cancer LET; PVT1; PANDAR; 
PTENP1; LINC00963 Early detection Serum (240)

Cervical cancer HOTAIR Prognosis; Recurrence Serum (241)

Esophageal cancer POU3F3; HNF1A-AS1; 
SPRY4-IT1 Early screening Plasma (242)

Gastric cancer

H19 Early screening Plasma (243)

LINC00152 Detection; Invasion
Gastric juice; Tumor

(244)

UCA1 Early detection; Prognosis prediction (245)

CUDR; LSINCT-5; PTENP1 Detection Serum (246)
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Cancer LncRNA Biomarker Potential Implications Site of Detection Refs

AA174084 Early diagnosis Tumor; Plasma; 
Gastric juice (247)
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