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Abstract

Multilevel random-effects models have become a popular method in the analysis of clustered data. 

Such analyses enable researchers to quantify within-cluster and between-cluster variations of an 

outcome and to separate individual-level and cluster-level effects of covariates by taking advantage 

of the hierarchical structure of clustered data. The tutorial article by Austin and Merlo1 was a 

timely effort intended to provide a comprehensive and up-to-date review of the tools and 

approaches. However, we feel that some important ideas and concepts described in this article 

need clarification.

1 ∣ INDIVIDUAL-LEVEL COVARIATE EFFECTS VS WITHIN-CLUSTER 

EFFECTS AND COVARIATE CENTERING

The authors stated in their case study that odds ratios estimated from their fitted multilevel 

logistic models are conditional cluster-specific measures of association or intracluster 

measures of association, and therefore, they may be interpreted as odds ratios for within-

cluster comparisons. This statement can be problematic because, as the authors noted, it 

leads to difficulty with the interpretation of the effects of cluster-level covariates. 

Conditional likelihood methods are known to yield estimates of within-cluster effects of 

individual-level covariates but not of cluster-level covariates because the values of cluster-

level covariates do not vary within clusters. Intuitively, one would consider the within-

cluster effects of cluster-level covariates to be zero. Before further discussing this, we note 

that even the estimated effects of individual-level covariates are not necessarily identical 

with their within-cluster effects.

Consider the illustrative case of estimating the effect of patient age on the probability of 

hospitalization. For simplicity, we describe multilevel models that include only 1 patient-

level covariate, age. The following models can be specified for a patient i within hospital j 
with a binary outcome yij, death, because of any cause within 1 year of hospital admission,
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logit P yij = 1 = α0 + α0j + α1
∗ageij (1)

logit P yij = 1 = α0 + α0j + α1
∗ageij + α2

∗agej (2)

logit P yij = 1 = α0 + α0j + α1
∗ ageij − agej (3)

logit P yij = 1 = α0 + α0j + α1
∗ ageij − agej + α2

∗agej (4)

where α0j is the random hospital effect and agej is the hospital mean of age.

Models of these forms have been used to examine the potential bias in the estimated effect of 

an individual-level covariate by Neuhaus and Kalbfleisch,2 Berlin et al,3 Begg and Parides4, 

and Delong et al.5 They found that models (2) to (4) yielded nearly identical estimates of 

individual-level effect, α1, which also equaled the estimated within-cluster effect by using 

the conditional likelihood method, but model (1) yielded a different estimate, which was 

confounded by the effect of the cluster-level mean. These results are important, particularly 

in health services research where exposure or intervention rate often varies across hospitals, 

but were not adequately described in this tutorial.

Because the case study was primarily based on fitted models that included the age covariate 

centered to its grand mean, we can specify an additional model,

logit P yij = 1 = α0 + α0j + α1
∗ ageij − age (5)

where age is the grand mean among all patients. This model and model (1) have the same 

slope α1 and are different only in the intercept α0. Therefore, the estimated α1 from model 

(5) can similarly be confounded by the effect of cluster-level mean, and one should be 

cautious when interpreting it as a within-hospital effect.

Centering the covariates is often thought to be a trivial issue and is typically done for the 

purpose of facilitating statistical computation or interpretation. Surprisingly, it can lead to 

substantially different results in multilevel modeling analysis. Strictly speaking, centering a 

covariate to its grand mean does not provide adjustment for the confounding effect of its 

cluster-level mean and thus does not yield a within-cluster effect estimate. On the other 

hand, there are various situations under which the confounding effect of a cluster-level mean 

becomes inconsequential. It can be easily seen that the estimated age effect from model (1) 

should be close to its within-cluster effect when the hospital mean effect in model (2) is 

zero, when the hospital mean varies little in model (3) and is close to the grand mean in 

model (5), or when the patient age effect equals the hospital mean effect in model (4).

We noted that the authors also fitted a model similar to model (4) in the last section of their 

illustration. The estimated odds ratio for the within-hospital effect was 1.08 per year 

increase in age (95% CI: 1.07-1.08), or 2.16 per 10-year increase, very close to the original 
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estimate of 2.12, and the hospital mean effect was of similar magnitude with an odds ratio of 

1.11 (95% CI: 1.09-1.13) per year increase in age. Therefore, the estimated odds ratio for the 

within-hospital effect of age was 2.16 and was slightly underestimated without adjusting for 

the hospital-level effect of age. Despite a very small difference, it may not be viewed as a 

negligible difference by a clinician because the estimated effects of patient age and hospital 

mean of age were both statistically significant.

2 ∣ CLUSTER-LEVEL COVARIATE EFFECTS VS CONTEXTUAL EFFECTS

Now we return to the issue of interpreting cluster-level effects. The study of contextual 

effects was introduced as an important feature of the multilevel modeling analysis in this 

article. Indeed, the nature of hierarchically structured data provides a unique opportunity for 

exploring the influences of organization or environment. The cluster-level covariates are 

often included in multilevel models for the reason of their potential contextual effects on 

individual-level outcomes. The authors introduced 3 alternative measures of cluster-level 

effects, the approximated marginal effects, the interval odds ratio, and the proportion of 

opposed odds ratios, to get around the difficulty with the within-cluster interpretation of 

these effects, but did not describe how the contextual effects should be estimated and are 

related to these alternative measures.

The contextual effects are commonly defined as the cluster-level effects adjusted for 

individual-level characteristics. To facilitate the estimation of contextual effects, it helps to 

write a multilevel model in the form of regression models at multiple levels. Taking the 

model specified by the authors in their case study as an example and for simplicity keeping 

only 1 individual-level covariate of age and 1 hospital-level covariate of hospital volume 

(hvolj), we can specify 2 models as follows.

Patient−level model:logit P yij = 1 = γ0j + α1∗ ageij − age (6)

Hospital−level model:γ0j = α0 + α0j + α2∗ℎvolj (7)

The coefficient α2 for the hospital volume in model (7) indicates the change in the 

dependent variable, γ0j, the logit-scale average hospital death rate, because of a unit change 

in the hospital volume. It is straightforward to interpret its estimate as a contextual effect. 

For example, the authors used the hospital volume covariate in hundreds of patients and 

obtained an estimated odds ratio of 0.95 (95% CI: 0.92-0.98). This shows a significant 

contextual effect on the outcome of death among patients of same age and other 

characteristics, the reduced odds of death by 5% in a hospital with 100 more patients.

Furthermore, we can see that centering the age covariate to the hospital means in the patient-

level model as in model (3) will lead to a different interpretation of the hospital volume 

effect. The coefficient α2 in this case is not usually considered a contextual effect. Following 

Begg and Parides,4 the contextual effect of the hospital mean of age can be calculated as α2 

– α1, or 
exp(α2)
exp(α1)  in odds ratios. Because the estimated within-hospital and hospital mean 
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effects of patient age were reported by the authors, we can obtain an estimate of the 

contextual effect of the hospital mean age covariate as an odds ratio of 1.03 (1.11/1.08) per 

1-year increase.

3 ∣ EXPLAINING CLUSTER-LEVEL VARIATION OR “UNEXPLAINED” 

CONTEXTUAL EFFECTS

Unlike the contextual effects estimated as the cluster-level covariate effects, the authors 

described the estimation of general contextual effects measured via cluster variances. It is 

often of substantive interest to researchers to quantify the change in the estimated cluster 

variances because of the addition of an individual-level or cluster-level covariate in the 

multilevel models. For example, Rysavy et al6 estimated the proportion of hospital variation 

in infant survival that could be attributed to hospital-level approaches to care after 

controlling for infant-level maternal and neonatal characteristics. This parallels the analysis 

of proportion of the residual variances explained in ordinary linear or logistic regression 

analysis and probably can be more appropriately termed “explaining the unexplained (or 

residual) contextual effects.”

While it is well known that the residual variance will generally decrease with the addition of 

covariates in ordinary linear regression models, it is perhaps much less recognized and not 

well understood that, to the contrary of expectation, the cluster variance can increase with 

the addition of covariates in both multilevel logistic models (Snijders and Bosker7) and 

multilevel linear models (University of Texas at Austin8). The authors stated that the 

proportional change in cluster variance when outcomes are binary does not behave like an 

R2-type statistic and the inclusion of additional covariates can result in an increase in the 

variance of the distribution of the random effects. We conducted an investigation into this 

issue using both observed and simulated data and found somewhat different results. The 

usually observed decrease in cluster variance with the addition of covariates in ordinary 

linear models should still hold true with cluster-level covariates in the multilevel logistic 

models, but not with individual-level covariates. We present an example to illustrate this in 

the following.

Data on the survival outcomes of extremely preterm infants born between April 1, 2006 and 

March 31, 2011 were taken from 24 United States hospitals. We fitted a multilevel logistic 

regression model with a random intercept only and models that included 1 infant-level 

covariate, gender, birth weight, gestational age, plurality (multiple vs singleton birth) or 

exposure to antenatal corticosteroids prior to delivery, or included 1 hospital-level covariate, 

the hospital proportion or mean of these covariates. These infant characteristics were 

significantly associated with the survival outcome. Figure 1 plots the estimated hospital 

variances from our analysis. It can be seen that all 5 models with a hospital-level covariate 

have a smaller hospital variance than the intercept-only model, but 3 models with an infant-

level covariate had a larger cluster variance and 2 have a smaller one. Also, not shown in the 

figure, including additional hospital-level covariates in these models resulted in further 

decreases in the estimated hospital variance.
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Clearly, an implication of our findings is that using multilevel logistic models to quantify the 

proportional change in cluster variance should be conducted only among cluster-level 

covariates. One may compare an intercept-only model to models with cluster-level 

covariates or compare a model with both individual-level and cluster-level covariates to a 

model with the same set of individual-level covariates and additional cluster-level covariates.

It is not surprising that cluster variance usually decreases with the addition of cluster-level 

covariates. This may be best conceived if we view a multilevel model as a set of models at 

multiple levels. For example, the random-effect term, α0j, is simply the random error term of 

a hospital-level linear regression model (7), and its variance should be expected to decrease 

with the addition of covariates. Furthermore, from the point of view of estimating the 

contextual effects, one would be interested in the changes because of the effects of cluster-

level covariates while having individual-level covariates fixed.

4 ∣ CONCLUSION

In this letter, we have tried to clarify several important issues in this very useful primer for 

practicing statisticians and epidemiologists: (1) We caution readers that interpreting the 

effects of individual-level covariates as within-cluster effects could potentially be 

misleading; (2) we point out that taking the perspective of estimating contextual effects 

could help avoid the difficulty with the interpretation of cluster-level effects; (3) we 

demonstrate that while cluster variance may increase with the addition of individual-level 

covariates, the usual decrease in cluster variance with the addition of covariates observed in 

ordinary linear models should be similarly expected with cluster-level covariates in 

multilevel models, and discussed the impact of this result on modeling strategy.
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FIGURE 1. 
Hospital variance estimates from multilevel logistic models of infant survival. Dashed 

horizontal line: intercept-only model; circle: models with 1 infant-level covariate; triangle: 

models with 1 hospital-level covariate of mean or proportion
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