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ABSTRACT
Immunotherapy targeting the CD274 (PD-L1)/PDCD1 (PD-1) immune checkpoint axis has emerged as 
a promising treatment strategy for various cancers. Experimental evidence suggests that phosphatidyli
nositol-4,5-bisphosphonate 3-kinase (PI3K) signaling may upregulate CD274 expression. Thus, we 
hypothesized that PIK3CA mutation, PTEN loss, or their combined status might be associated with 
CD274 overexpression in colorectal carcinoma. We assessed tumor CD274 and PTEN expression by 
immunohistochemistry and assessed PIK3CA mutation by pyrosequencing in 753 patients among 4,465 
incident rectal and colon cancer cases that had occurred in two U.S.-wide prospective cohort studies. To 
adjust for potential confounders and selection bias due to tissue availability, inverse probability weighted 
multivariable ordinal logistic regression analyses used the 4,465 cases and tumoral data including 
microsatellite instability, CpG island methylator phenotype, KRAS and BRAF mutations. PIK3CA mutation 
and loss of PTEN expression were detected in 111 of 753 cases (15%) and 342 of 585 cases (58%), 
respectively. Tumor CD274 expression was negative in 306 (41%), low in 195 (26%), and high in 252 
(33%) of 753 cases. PTEN loss was associated with CD274 overexpression [multivariable odds ratio (OR) 
1.83; 95% confidence interval (CI), 1.22–2.75; P = .004]. PIK3CA mutation was statistically-insignificantly 
(P = .036 with the stringent alpha level of 0.005) associated with CD274 overexpression (multivariable OR, 
1.54; 95% CI, 1.03–2.31). PIK3CA-mutated PTEN-lost tumors (n = 33) showed higher prevalence of CD274- 
positivity (82%) than PIK3CA-wild-type PTEN-lost tumors (n = 204; 70% CD274-positivity) and PTEN- 
expressed tumors (n = 147; 50% CD274-positivity) (P = .003). Our findings support the role of PI3K 
signaling in the CD274/PDCD1 pathway.
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Introduction

Over the past few decades, cancer immunotherapies have 
changed the landscape of cancer treatment. Among them, 
immune checkpoint inhibitors targeting PDCD1 (pro
grammed cell death 1, PD-1) and its ligand, CD274 (pro
grammed cell death 1 ligand 1, PD-L1) on tumor cells, are 
increasingly used for a variety of cancers, including colorectal 
cancer.1,2 Recent studies suggest that oncogenic activation of 
signaling pathways play an important role in CD274 upregu
lation in cancer cells.3–5

Phosphatidylinositol-4,5-bisphosphonate 3-kinase (PI3K) 
signaling plays a central role in several cellular functions 
that are influential in oncogenesis and metastasis.6,7 

PIK3CA encodes the catalytic subunit of PI3K that is 
involved in cell growth, proliferation, survival, and apopto
sis, through induction of AKT phosphorylation and, subse
quently, MTOR activation.7 Conversely, PTEN counteracts 
this mechanism by dephosphorylating phosphatidylinositol- 
3,4,5-triphosphonate to phosphatidylinositol-4,5-
biphosphonate.7–9
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Evidence indicates that PIK3CA mutation is associated with 
KRAS mutation in colorectal cancer and the prevalence of 
PIK3CA mutation gradually increases from rectum to 
cecum.10–12 While PIK3CA mutation in colorectal cancer 
may not be a prognostic biomarker,7,10,13–17 it may be 
a predictive biomarker for response to aspirin.18–22 With 
regard to CD274 (PD-L1) overexpression in colorectal cancer, 
while it may not be a prognostic biomarker,23–27 it has been 
shown to predict resistance to aspirin,28 suggesting a possible 
interplay between the PTGS2 and PDCD1 pathways.29 With 
regard to PTEN, evidence indicates that loss of PTEN expres
sion is a potential therapeutic target in colorectal cancer.30 

Experimental studies suggest that activation of PI3K signaling 
may upregulate CD274 expression in certain experimental 
models,4,31,32 including colon cancer cell lines.26 However, as 
evidence indicates that tumor microenvironment can substan
tially change cellular gene expression profiles,33,34 experimental 
findings under artificial or non-human conditions need to be 
tested in human tumor tissue research. We therefore tested the 
hypothesis that PIK3CA mutation and PTEN loss might be 
associated with tumor CD274 overexpression in human color
ectal cancer specimens.

To test our hypothesis, we used a database of 4,465 incident 
colorectal cancer cases, including 753 cases with available 
molecular data, from two large U.S.-wide prospective cohort 
studies. This comprehensive dataset allowed us to examine the 
association of PIK3CA mutation, PTEN loss, and their com
bined status with CD274 expression in tumor tissue after 
adjustment for potential confounders and selection bias due 
to tissue availability.

Materials and methods

Study population

We used two large prospective cohort studies in the U.S., the 
Nurses’ Health Study (NHS, 121,701 women aged 30–55 years 
followed since 1976) and the Health Professionals Follow-up 
Study (HPFS, 51,529 men aged 40–75 years followed since 
1986).35 Every two years, follow-up questionnaires were 
obtained to update information, such as lifestyle factors and 
newly-diagnosed diseases, including colorectal cancer. The 
overall response rate for these questionnaires was more than 
90% in each follow-up questionnaire cycle. The National Death 
Index was used to confirm deaths of participants and identify 
unreported lethal colorectal cancer cases. We documented 
4,465 colorectal cancer cases that had occurred in the two 
cohort studies during the follow-up until 2012. Participating 
physicians, who were blinded to exposure data, reviewed med
ical records of colorectal cancer patients to collect data on 
tumor characteristics including tumor size, tumor location, 
and disease stage based on the American Joint Committee on 
Cancer (AJCC) tumor, node and metastases classification, and 
identified causes of death for participants. We obtained for
malin-fixed paraffin-embedded (FFPE) tumor tissue samples 
from the hospitals where participants underwent tumor resec
tion. A single pathologist (S.O.), blinded to other data, 
reviewed all hematoxylin and eosin-stained tissue sections of 

colorectal cancer cases and recorded pathological features.36 In 
this study, we utilized a molecular pathological epidemiology 
database of 753 colorectal cancer cases with available data on 
PIK3CA mutation status and CD274 (PD-L1) expression and 
3,712 colorectal cancer cases without tissue data (Figure 1). 
Comparison of clinical characteristics between cases with avail
able tissue data and those without available tissue data is shown 
in Table S1. We included both colon and rectal cancers based 
on based on the colorectal continuum theory: i.e., a gradual 
change of clinical and tumor characteristics throughout the 
colorectum.11,37

Informed consent was obtained from all study participants 
at study enrollment. The study protocol was approved by the 
institutional review boards of the Brigham and Women’s 
Hospital and Harvard T.H. Chan School of Public Health 
(Boston, MA, USA), and those of participating registries as 
required.

Tumor tissue analyses

Tumor DNA was extracted from archival FFPE tissue sections 
with QIAamp DNA FFPE Tissue Kit. Microsatellite instability 
(MSI) status was examined using 10 microsatellite markers 
(D2S123, D5S346, D17S250, BAT25, BAT26, BAT40, D18S55, 
D18S56, D18S67, and D18S487), and MSI-high was defined as 
the presence of instability in ≥30% of the markers.38 

Methylation status of eight CpG island methylator phenotype 
(CIMP)-specific promoters (CACNA1G, CDKN2A, CRABP1, 
IGF2, MLH1, NEUROG1, RUNX3, and SOCS1) and long inter
spersed nucleotide element-1 (LINE-1) were assessed as pre
viously described.39–41 CIMP-high was defined as the presence 
of methylated promoters in at least six of the eight markers. 
Polymerase chain reaction and pyrosequencing were targeted 
for KRAS (codons 12, 13, 61, and 146), BRAF (codon 600), and 
PIK3CA (exons 9 and 20) to detect mutations.22,42 The PCR 
products were sequenced by Pyrosequencing PSQ96 HS 
System (Biotage AB) following the manufacturer’s 
instructions.43

Tissue microarrays were constructed from FFPE tissue.44 

Immunohistochemical analyses of CD274 (PD-L1) and PTEN 
expression in tumor cells were performed using anti-CD274 
antibody (Clone MIH1, dilution, 1:50; eBioscience) and anti- 
PTEN antibody (Clone 6H2.1, dilution 1:200; Abcam), respec
tively (Figure 2), following standardized protein nomenclature 
recommended by the expert panel.45 Blind to other data, 
immunohistochemical expression was recorded by a single 
investigator for each marker (CD274 by Y.M.; PTEN by K. 
N.). Tumor CD274 expression was evaluated based on immu
nostaining in the cytoplasm and membrane of tumor cells, as 
previously described.24,46 Tumor CD274 expression was inter
preted as negative, low, or high. Appropriate positive and 
negative controls were included in each run of immunohisto
chemistry. PTEN expression was evaluated as intact in the 
presence of moderate or strong nuclear and cytoplasmic stain
ing in tumor cells as previously described.47 Loss of PTEN 
expression was defined as the absence of staining or only 
weak nuclear and/or cytoplasmic staining of tumor cells.47 
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A second investigator (A.dS. for CD274; Y.B. for PTEN) inde
pendently reviewed 148 cases for CD274 expression and 109 
cases for PTEN expression, and the weighted kappa values 
between the two independent investigators were 0.65 for 
CD274 expression (P < .001) and 0.45 for PTEN expression 
(P < .001).

Statistical analysis

All statistical analyses were performed using SAS software 
(version 9.4, SAS Institute, Cary, NC, USA). All P values were 
two-sided, and we used the stringent two-sided α level of 0.005 
for our hypothesis testing, as recommended by a panel of 
expert statisticians.48 Our primary hypothesis testing was an 
assessment of a statistical association of PIK3CA mutation 
status (wild-type and mutant; as a predictor variable) and 
PTEN expression (intact and lost; as an predictor variable) 
with CD274 expression score (negative, low, and high; as an 
ordinal outcome variable). All other analyses were secondary 
analyses. We used multivariable ordinal logistic regression 
models for our primary hypothesis testing. The proportional 

odds assumption was generally satisfied in ordinal logistic 
regression models (P > .05). The chi-square test was used to 
compare categorical data between PIK3CA mutation and 
PTEN expression categories.

To adjust for selection bias due to the availability of tumor 
tissue, we integrated the inverse probability weighting (IPW) 
method into multivariable ordinal logistic regression analyses 
using covariate data of the 4,465 incident colorectal cancer 
cases.49,50 Multivariable ordinal logistic regression analyses 
initially included sex (female vs. male), age at diagnosis 
(continuous), year of diagnosis (continuous), family history 
of colorectal cancer in any first-degree relatives (present vs. 
absent), tumor location (proximal colon vs. distal colon vs. 
rectum), tumor differentiation (well to moderate vs. poor), 
disease stage (I to II vs. III to IV), MSI status (MSI-high vs. 
non-MSI-high), CIMP (high vs. low/negative), LINE-1 methy
lation level (continuous), BRAF mutation (mutant vs. wild- 
type), and KRAS mutation (mutant vs. wild-type). To select 
variables for the final models, a threshold of P = .05 was used in 
a backward stepwise elimination procedure. The variables 
which remained in the final models are shown in Tables 2 

Figure 1. Flow diagram of study population in the nurses’ health study and the health professionals follow-up study.
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Figure 2. Tumor CD274 and PTEN expression in colorectal cancer. Tumor CD274 expression was evaluated based on immunostaining in the cytoplasm and membrane of 
tumor cells. Tumor CD274 expression was interpreted as negative (a), low (b), or high (c) according to membranous and cytoplasmic intensity. Tumor PTEN expression 
was evaluated based on immunostaining in the cytoplasm and nuclear of tumor cells. Cytoplasmic and nuclear PTEN expression level was classified as lost (d) or intact 
(e) according to cytoplasmic and nuclear intensity. Scale bars represent 50 μm.
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and 4. In this analysis, cases with missing data (family history 
of colorectal cancer in any first-degree relatives, 0.9%; tumor 
location, 0.3%; tumor differentiation, 0.3%; disease stage, 6.0%; 
MSI status, 2.4%; CIMP status, 1.7%; BRAF mutation, 1.4%; 
and KRAS mutation, 2.2%) were imputed as the most common 
category of the given variable to avoid overfitting of the mod
els. For cases with missing data on LINE-1 methylation level 
(2.7%), we substituted the mean value and assigned a separate 
indicator variable. It was confirmed that no results were sub
stantially altered after excluding the cases with missing infor
mation in any of the covariates. We categorized LINE-1 
methylation level as low vs. high based on the median level. 
We conducted stratified analyses by LINE-1 methylation level 
(high vs. low) and CIMP status (high vs. low/negative), and 

assessed a statistical interaction using the Wald test for the 
cross-product term of PIK3CA mutation/PTEN expression and 
CIMP status or LINE-1 methylation level in the logistic regres
sion model.

Results

PIK3CA mutation was detected in 111 (15%) of 753 cases, 
whereas loss of PTEN expression was detected 342 (58%) of 
585 cases. Among 753 cases, tumor CD274 (PD-L1) expression 
was negative in 306 (41%), low in 195 (26%), and high in 252 
(33%) cases. We summarized the clinical, pathological, and 
molecular characteristics of colorectal cancer cases according 
to PIK3CA mutation and PTEN expression in tumor tissue 

Table 1. Clinical, pathological, and molecular characteristics of colorectal cancer cases according to PIK3CA mutation and PTEN expression in tumor tissue.

PIK3CA mutation PTEN expression

Characteristic*
All cases 

(N = 753)
Wild-type 
(N = 642)

Mutant 
(N = 111) P value†

Intact 
(N = 243)

Lost 
(N = 342) P value†

Sex 0.34 0.40
Male (HPFS) 342 (45%) 287 (45%) 55 (50%) 103 (42%) 133 (39%)
Female (NHS) 411 (55%) 355 (55%) 56 (50%) 140 (58%) 209 (61%)
Mean age ± SD, (years) 69.4 ± 9.0 69.3 ± 9.0 70.1 ± 8.6 0.39 68.4 ± 7.2 67.1 ± 8.8 0.069
Year of diagnosis 0.82 0.73
1995 or before 228 (30%) 197 (31%) 31 (28%) 105 (43%) 140 (41%)
1996–2000 249 (33%) 212 (33%) 37 (33%) 86 (35%) 132 (39%)
2001–2012 276 (37%) 233 (36%) 43 (39%) 52 (21%) 70 (20%)
Family history of colorectal cancer in first-degree relative(s) 0.51 0.38
Absent 591 (79%) 507 (80%) 84 (77%) 184 (77%) 271 (80%)
Present 153 (21%) 128 (20%) 25 (23%) 56 (23%) 69 (20%)
Tumor location 0.018 0.67
Cecum 132 (18%) 107 (17%) 25 (23%) 42 (17%) 69 (20%)
Ascending to transverse colon 238 (32%) 198 (31%) 40 (36%) 79 (33%) 103 (30%)
Descending to sigmoid colon 223 (30%) 188 (29%) 35 (32%) 68 (28%) 103 (30%)
Rectum 156 (21%) 145 (23%) 11 (9.9%) 53 (22%) 66 (19%)
Tumor differentiation 0.43 0.90
Well to modulate 682 (91%) 579 (90%) 103 (93%) 220 (91%) 311 (91%)
Poor 69 (9.2%) 61 (9.5%) 8 (7.2%) 22 (9.1%) 30 (8.8%)
AJCC disease stage 0.85 0.63
I 160 (23%) 134 (23%) 26 (25%) 60 (27%) 77 (24%)
II 224 (32%) 190 (32%) 34 (32%) 69 (31%) 113 (35%)
III 211 (30%) 183 (31%) 28 (27%) 62 (28%) 97 (30%)
IV 105 (15%) 88 (15%) 17 (16%) 32 (14%) 40 (12%)
Mean LINE-1 methylation level (%) 62.5 ± 9.7 62.2 ± 9.9 64.2 ± 8.7 0.043 62.7 ± 8.9 61.3 ± 10.0 0.078
MSI status 0.65 0.24
Non-MSI-high 619 (83%) 525 (83%) 94 (85%) 190 (82%) 288 (85%)
MSI-high 125 (17%) 108 (17%) 17 (15%) 43 (18%) 50 (15%)
CIMP status 0.36 0.071
Low/negative 578 (83%) 497 (83%) 81 (79%) 193 (81%) 292 (87%)
High 122 (17%) 101 (17%) 21 (21%) 45 (19%) 45 (13%)
KRAS mutation <0.001 0.95
Wild-type 446 (60%) 398 (63%) 48 (43%) 136 (57%) 190 (57%)
Mutant 298 (40%) 235 (37%) 63 (57%) 102 (43%) 144 (43%)
BRAF mutation 0.83 0.027
Wild-type 635 (85%) 540 (85%) 95 (86%) 195 (82%) 298 (88%)
Mutant 113 (15%) 97 (15%) 16 (14%) 44 (18%) 40 (12%)
CD274 (PD-L1) expression score 0.095 <0.001
Negative 306 (41%) 268 (42%) 38 (34%) 78 (49%) 78 (28%)
Low 195 (26%) 166 (26%) 29 (26%) 33 (21%) 79 (29%)
High 252 (33%) 208 (32%) 44 (40%) 48 (30%) 117 (43%)
PTEN expression 0.83
Intact 222 (43%) 184 (42%) 38 (44%)
Lost 299 (57%) 250 (58%) 49 (56%)

* (%) indicates the proportion of patients with a specific clinical, pathologic, or molecular characteristic among all patients or in strata of PIK3CA mutation or PTEN 
expression. 

†To compare categorical data between PIK3CA mutation or PTEN expression categories, the chi-square test was performed. To compare continuous variables, an analysis 
of variance was performed. 

Abbreviations: AJCC, American Joint Committee on Cancer; CIMP, CpG island methylator phenotype; HPFS, Health Professionals Follow-up Study; LINE-1, long 
interspersed nucleotide element-1; MSI, microsatellite instability; NHS, Nurses’ Health Study; PD-L1, programmed cell death 1 ligand 1; SD, standard deviation.
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(Table 1). Loss of PTEN was associated with tumor CD274 
overexpression (P < .001).

We used multivariable logistic regression model (to adjust 
for confounding) combined with inverse probability weighting 
(IPW) method on all 4,465 incident colorectal cancer cases to 
adjust for selection bias due to tissue availability (Table 2). Loss 
of PTEN was statistically significantly associated with higher 
CD274 expression [multivariable odds ratio (OR) 1.83; 95% 
confidence interval (CI), 1.22–2.75; P = .004]. PIK3CA muta
tion was statistically-insignificantly (P = .036 with the stringent 
alpha level of 0.005) associated with CD274 overexpression 
(multivariable OR, 1.54; 95% CI, 1.03–2.31). We confirmed 
that similar results were obtained by sensitivity analyses with
out IPW adjustment (Tables S2 and S3). We also stratified 
analyses by LINE-1 methylation level and CIMP status and 
did not observe significant effect modification (Table S4).

We evaluated the association of the combined status of 
PIK3CA mutation and PTEN expression with CD274 over
expression (Table 3). PIK3CA-mutated PTEN-lost tumors 
(n = 33) showed higher prevalence of CD274-positivity (82%) 
than PIK3CA-wild-type PTEN-lost tumors (n = 204; 70% 

CD274-positivity), PIK3CA-mutated PTEN-expressed tumors 
(n = 24; 50% CD274-positivity), and PIK3CA-wild-type PTEN- 
expressed tumors (n = 123; 50% CD274-positivity) (P = .003). 
In the multivariable ordinal logistic regression model, the 
coexistence of PIK3CA mutation and loss of PTEN expression 
was significantly associated with CD274 overexpression (multi
variable OR, 3.70; 95% CI, 1.69–8.19, compared to PIK3CA 
wild-type PTEN-intact tumors; P = .001) (Table 4).

Table 2. Inverse probability weighting-adjusted ordinal logistic regression analy
sis to assess the association of tumor PIK3CA mutation or PTEN expression 
(predictor) with CD274 (PD-L1) expression (outcome).

Characteristic

CD274 (PD-L1) expression 
For one category increase in three ordinal 

CD274 categories

Univariable 
OR (95% CI)* P value

Multivariable 
OR (95% CI) 

*† P value

PIK3CA mutation
Wild-type (N = 642) 1 (referent) 1 (referent)
Mutant (N = 111) 1.53 (1.01– 

2.31)
0.045 1.54 (1.03– 

2.31)
0.036

MSI status
Non-MSI-high (N = 619) 1 (referent) 1 (referent)
MSI-high (N = 125) 0.60 (0.41– 

0.89)
0.010 0.63 (0.42– 

0.93)
0.022

Year of diagnosis (per 5-year 
increase)

0.85 (0.74– 
0.97)

0.018 0.86 (0.75– 
0.98)

0.027

PTEN expression
Intact (N = 243) 1 (referent) 1 (referent)
Lost (N = 342) 1.88 (1.24– 

2.84)
0.003 1.83 (1.22– 

2.75)
0.004

MSI status
Non-MSI-high (N = 478) 1 (referent) 1 (referent)
MSI-high (N = 93) 0.38 (0.22– 

0.65)
<0.001 0.46 (0.26– 

0.82)
0.008

AJCC disease stage
I to II (N = 319) 1 (referent) 1 (referent)
III to IV (N = 231) 1.78 (1.21– 

2.63)
0.004 1.62 (1.09– 

2.43)
0.019

Year of diagnosis (per 5-year 
increase)

0.77 (0.63– 
0.94)

0.010 0.79 (0.65– 
0.96)

0.027

* IPW was applied to reduce selection bias due to the availability of tumor tissue. 
†The multivariable ordinal logistic regression model initially included sex, 

age, year of diagnosis, tumor differentiation, disease stage, family history of 
colorectal cancer, tumor location, microsatellite instability, CpG island methy
lator phenotype, long-interspersed nucleotide element-1 methylation level, 
KRAS mutation and BRAF mutation. A backward elimination with a threshold 
P of 0.05 was used to select variables for the final models. The variables which 
remained in the final models are shown in this table. 

Abbreviations: AJCC, American Joint Committee on Cancer; CI, confidence inter
val; IPW, inverse probability weighting; MSI, microsatellite instability; OR, odds 
ratio; PD-L1, programmed cell death 1 ligand 1.

Table 3. CD274 (PD-L1) expression score according to PIK3CA mutation and PTEN 
expression in tumor tissue.

PIK3CA mutation and PTEN expression

Characteristic*
All cases 

(N = 384)

PIK3CA 
wild-type 

/PTEN 
intact 

(N = 123)

PIK3CA 
mutant/ 

PTEN 
intact 

(N = 24)

PIK3CA 
wild-type 

/PTEN 
lost 

(N = 204)

PIK3CA 
mutant/ 

PTEN 
lost 

(N = 33) P value†

CD274 (PD-L1) 
expression 
score

0.003

Negative 140 
(36%)

61 (50%) 12 
(50%)

61 (30%) 6 (18%)

Low 100 
(26%)

26 (21%) 5 (20%) 58 (28%) 11 
(33%)

High 144 
(38%)

36 (29%) 7 (29%) 85 (42%) 16 
(48%)

* (%) indicates the proportion of patients with a specific CD274 expression score 
category among all patients or in strata of PIK3CA mutation and PTEN 
expression. 

†To compare categorical data between PIK3CA mutation and PTEN expression 
categories, the chi-square test was performed. 

Abbreviations: PD-L1, programmed cell death 1 ligand 1.

Table 4. Inverse probability weighting-adjusted ordinal logistic regression analy
sis to assess the association of the combination of PIK3CA mutation and PTEN 
expression (predictor) with CD274 (PD-L1) expression (outcome).

Characteristic

CD274 (PD-L1) expression 
For one category increase in three ordinal 

CD274 categories

Univariable 
OR (95% 

CI)* P value

Multivariable 
OR (95% CI) 

*† P value

Combination of PIK3CA 
mutation and PTEN 
expression

PIK3CA wild-type/PTEN intact 
(N = 123)

1 (referent) 1 (referent)

PIK3CA mutant/PTEN intact 
(N = 24)

1.49 (0.59– 
3.77)

0.40 1.56 (0.63– 
3.86)

0.33

PIK3CA wild-type/PTEN lost 
(N = 204)

1.97 (1.23– 
3.16)

0.005 1.90 (1.19– 
3.06)

0.008

PIK3CA mutant/PTEN lost 
(N = 33)

3.53 (1.55– 
8.07)

0.003 3.70 (1.68– 
8.19)

0.001

MSI status
Non-MSI-high (N = 322) 1 (referent) 1 (referent)
MSI-high (N = 63) 0.35 (0.21– 

0.61)
<0.001 0.35 (0.20– 

0.62)
<0.001

* IPW was applied to reduce selection bias due to the availability of tumor tissue. 
†The multivariable ordinal logistic regression model initially included sex, 

age, year of diagnosis, tumor differentiation, disease stage, family history of 
colorectal cancer, tumor location, microsatellite instability, CpG island methy
lator phenotype, long-interspersed nucleotide element-1 methylation level, 
KRAS mutation and BRAF mutation. A backward elimination with a threshold 
P of 0.05 was used to select variables for the final models. 

Abbreviations: CI, confidence interval; IPW, inverse probability weighting; MSI, 
microsatellite instability; OR, odds ratio; PD-L1, programmed cell death 1 ligand 
1.
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Discussion

We conducted this study to test the hypothesis that tumor 
PIK3CA mutation or PTEN loss might be associated with 
tumor CD274 (PD-L1) expression levels in colorectal cancer. 
We found that loss of PTEN was statistically significantly 
associated with higher CD274 expression, independent of 
other molecular features, including MSI status, CIMP status, 
and LINE-1 methylation level. In addition, the combination of 
PIK3CA mutation and loss of PTEN expression was more 
strongly associated with higher CD274 expression than loss 
of PTEN expression alone, suggesting that PIK3CA mutation 
may have additional influences on CD274 expression.

To our best knowledge, only one prior study has examined 
the association between PTEN loss and CD274 expression in 
human colorectal cancer specimens (from 314 cases).26 

Although another study has examined PIK3CA mutation in 
relation to CD274 expression in 66 colorectal cancer patients, 
the association could not be assessed because the sample size 
for this comparison was small.51 The current study is the 
largest study that assessed PIK3CA mutation and PTEN loss 
(and the first study that assessed their combined status) in 
relation to CD274 expression in colorectal cancer. It is impor
tant to further investigate the consequences of activated PI3K 
signaling, as our findings suggest a potential role for the PI3K 
signaling pathway in CD274 (PD-L1) upregulation in color
ectal cancer.

The PI3K signaling pathway is crucial in numerous cellular 
processes, including metabolism, cell survival, differentiation, 
proliferation, motility, and angiogenesis.52 Evidence suggests 
that aberrant alterations of the PI3K pathway by either PIK3CA 
mutation or PTEN loss are potential predictive biomarkers for 
adjuvant therapy in colorectal cancer.15,22,30 Recent studies 
have shown that activation of the PI3K pathway regulates 
tumor-intrinsic and immune-intrinsic features of the immu
nosuppressive tumor microenvironment.53,54 In particular, 
PTEN abrogation generates an immune-suppressive microen
vironment by altering cytokine secretion patterns.8 Moreover, 
a few studies have indicated that activation of PI3K signaling 
may promote immune escape through regulating PDCD1 (PD- 
1)/CD274 expression.3,55 In triple-negative breast cancer, 
a study reported that knockdown of PTEN genes led to high 
CD274 levels and decreased T-cell proliferation and increased 
apoptosis.4 Other studies have shown that the inhibition of the 
PI3K pathway results in CD274 downregulation in various 
cancer cell lines.3,5,56 We previously assessed the association 
between tumor CD274 expression and T cell infiltration.46 We 
found that tumor CD274 expression level was not associated 
with overall T cell density but inversely associated with 
FOXP3+ cell densities,46 suggesting that the PDCD1 immune 
checkpoint pathway and regulatory T cells infiltration may be 
generally mutually exclusive mechanisms of immune evasion. 
Although more research is needed to clarify the downstream 
signaling of PDCD1, our findings, based on a large 
U.S. nationwide sample of human colorectal cancers, support 
the association of loss of PTEN expression with higher CD274 
expression, spurring subsequent studies to assess whether PI3K 

pathway inhibition can be exploited as a new treatment strat
egy to supplement immune checkpoint inhibition in colorectal 
cancer.8,57

The mechanisms by which the PI3K signaling pathway 
upregulate CD274 expression remain to be fully characterized. 
Although direct transcriptional upregulation by the PI3K path
way may be responsible for higher CD274 expression in breast 
cancer cell lines,4 post-translational mechanisms have also 
been implicated in colorectal cancer or other cancer cell 
lines.26,31,32 It is possible that the PI3K signaling pathway 
upregulate CD274 expression via transcriptional and/or post- 
transcriptional mechanisms depending on tumor type. 
Evidence also indicates that tumor CD274 expression differs 
by colorectal cancer molecular subtypes.46,58 More evidence 
from in vitro and in vivo studies of different tumor types is 
needed to clarify the mechanisms. Mounting evidence suggests 
that epigenetic aberrations contribute to cancer 
development.59 LINE-1 hypomethylation, which reflects the 
global DNA hypomethylation, has been associated with poor 
clinical outcomes in colorectal cancer.60,61 CIMP-high color
ectal cancer represents a subset of colorectal cancer developing 
through epigenetic instability.62–65 We conducted stratified 
analyses by LINE-1 methylation level and CIMP status, and 
assessed the effect of those markers on our results. However, 
there was little evidence for substantial effect modification.

We acknowledge several limitations in this study. First, our 
study examined PIK3CA mutation and PTEN loss but did not 
examine somatic mutations in PTEN gene.66 However, the 
majority of cases with PTEN loss in colorectal cancer have 
been attributed to epigenetic causes such as 
hypermethylation,30 and immunohistochemistry used in this 
study is able to detect loss of protein expression irrespective of 
cause. Second, measurement errors may exist in molecular 
tissue data. However, such errors would likely be nearly ran
domly distributed and drive our results toward the null 
hypothesis. Third, our study was an observational, cross- 
sectional analysis, and further in vivo and in vitro experimental 
studies are needed to elucidate the mechanisms underlying our 
findings. Lastly, in this study, separate single-color immuno
histochemistry assays did not allow the examination of co- 
expression patterns of PTEN and CD274 at the single cell 
level. Therefore, multiplex immunohistochemistry or immu
nofluorescence assays should be considered in future studies.

This study has notable strengths. First, the integrated mole
cular pathological epidemiology67,68 database of clinical, 
pathological, and tumor molecular characteristics allowed us 
to rigorously investigate the potential interactive association of 
the PI3K pathway and tumor PDCD1/CD274 axis in colorectal 
cancer. Moreover, our prospective cohort studies enabled us to 
adjust for selection bias due to tissue availability utilizing the 
4,465 incident colorectal cancer cases.50 We have conducted 
a separate analysis that examined lymphocytic reaction pat
terns in relation to colorectal cancer survival, using the same 
cohort studies.69 In the current study, we tested the hypothesis 
on CD274 expression in relation to PIK3CA mutation and loss 
of PTEN expression. As illustrated by these studies, because the 
large integrated database of clinical, pathological, and tumor 
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molecular characteristics has been established, we can utilize it 
to test different hypotheses in an efficient and robust manner. 
In addition, cases and specimens in our study were drawn from 
a large number of hospitals located throughout the U.S., which 
increased the generalizability of our findings.

In conclusion, our data indicate that PI3K pathway activa
tion by PTEN loss and/or PIK3CA mutation is associated with 
CD274 (PD-L1) overexpression in colorectal tumor tissue, 
supporting the role of PI3K signaling in the CD274 
upregulation.
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