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Abstract

Purpose: To rapidly reconstruct undersampled 3D non-Cartesian image-based navigators 

(iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in 

coronary magnetic resonance angiography (CMRA).

Methods: An end-to-end unrolled network is trained to reconstruct beat-to-beat 3D iNAVs 

acquired during a CMRA sequence. The unrolled model incorporates a nonuniform FFT operator 

in TensorFlow to perform the data-consistency operation, and the regularization term is learned by 

a convolutional neural network (CNN) based on the proximal gradient descent algorithm. The 

training set includes 6,000 3D iNAVs acquired from 7 different subjects and 11 scans using a 

variable-density (VD) cones trajectory. For testing, 3D iNAVs from 4 additional subjects are 

reconstructed using the unrolled model. To validate reconstruction accuracy, global and localized 

motion estimates from DL model-based 3D iNAVs are compared with those extracted from 3D 

iNAVs reconstructed with l1-ESPIRiT. Then, the high-resolution coronary MRA images motion 

corrected with autofocusing using the l1-ESPIRiT and DL model-based 3D iNAVs are assessed for 

differences.

Results: 3D iNAVs reconstructed using the DL model-based approach and conventional l1-

ESPIRiT generate similar global and localized motion estimates and provide equivalent coronary 

image quality. Reconstruction with the unrolled network completes in a fraction of the time 

compared to CPU and GPU implementations of l1-ESPIRiT (20× and 3× speed increases, 

respectively).

Conclusions: We have developed a deep neural network architecture to reconstruct 

undersampled 3D non-Cartesian VD cones iNAVs. Our approach decreases reconstruction time for 
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3D iNAVs, while preserving the accuracy of nonrigid motion information offered by them for 

correction.
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1 | INTRODUCTION

We have previously developed an approach for free-breathing whole-heart coronary 

magnetic resonance angiography (CMRA)1,2 using an alternating-repetition time (ATR) 

balanced steady-state free precession (bSSFP) sequence.3 The high-resolution imaging data 

is collected with a non-Cartesian 3D cones trajectory. For translational and nonrigid 

respiratory motion tracking, beat-to-beat 3D image-based navigators (iNAVs) of the heart 

are acquired2,4 using an accelerated variable-density (VD) 3D cones sampling technique.1,5 

The reconstruction of 3D iNAVs using compressed sensing (i.e., l1-ESPIRiT1,6) is a time-

consuming process, as each scan involves the collection of several hundred 3D iNAVs.

Deep learning (DL) has the potential to reduce reconstruction times for undersampled MRI 

data. Convolutional neural networks (CNNs) have recently become a powerful tool for 

image reconstruction. CNNs are popular due to their ease of use, accuracy, and fast 

inference time. CNN architectures generally operate in the image domain and are trained to 

minimize a specific loss function with respect to a “ground truth” image. One of the issues 

with a pure CNN architecture is the lack of incorporating physics specific to the application, 

leading to a “black-box” DL approach. Such an approach requires a very large number of 

training datasets, and can lead to issues with image quality as well as convergence during 

training. Through the use of a DL model-based architecture, more sophisticated techniques 

that incorporate CNNs with previous iterative reconstruction methods can provide improved 

accuracy while reducing the demand for training data and training time.7

Among the several DL model-based approaches that have been proposed,8,9 an unrolled 

network architecture10–14 has emerged as a promising technique. Here, images are 

reconstructed by unfolding the proximal gradient descent (PGD) algorithm15 and learning 

the regularization functions and coefficients. Prior studies leveraging unrolled networks have 

been limited to contexts involving Cartesian acquisitions. For reconstruction of non-

Cartesian datasets, only image-to-image CNNs have been investigated.16 In this work, we 

modify the unrolled model architecture to accommodate non-Cartesian 3D k-space datasets 

by incorporating a nonuniform Fast Fourier Transform (NUFFT) operator. This would 

enable the rapid reconstruction of the undersampled 3D iNAV datasets acquired in our 

CMRA sequence.

2 | METHODS

2.1 | Imaging data and 3D iNAV acquisition

Beat-to-beat undersampled 3D iNAVs are acquired as part of the CMRA sequence shown in 

Supporting Information Figure S1A. Specifically, free-breathing high-resolution CMRA data 
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(28 × 28 × 14 cm3 FOV, 1.2 mm isotropic spatial resolution, and 500–600 total heartbeat 

scan time) are collected with a 3D cones trajectory using ATR-bSSFP.1,2,17 The 3D iNAVs 

are acquired in the same volumetric region and after the segmented full-resolution 

acquisition (i.e., 500–600 separate 3D iNAVs are acquired and reconstructed) by continuing 

the ATR-bSSFP sequence to maintain similar image contrast.1 The 3D cardiac datasets were 

acquired on a 1.5T GE Signa system with an 8-channel cardiac coil using VD trajectories 

consisting of 32 cone readouts with 4.4 mm isotropic spatial resolution, yielding an 

acceleration factor of 9 due to undersampling18 two different trajectories that were based on 

either sequential or phyllotaxis 3D iNAV designs.19 Details for both trajectories are shown 

in Supporting Information Figure S1B,C.

To correct for rigid and nonrigid respiratory motion, an autofocusing technique is applied to 

the high-resolution data. This motion compensation method requires accurate localized 

motion estimates, which are derived from the 3D iNAVs following their reconstruction with 

a computationally expensive iterative optimization approach (i.e., l1-ESPIRiT). The solution 

to this optimization problem, however, can be derived in an accelerated fashion using an 

unrolled DL model.

2.2 | 3D iNAV reconstruction

2.2.1 | Iterative algorithm and unrolled network overview—The unrolled network 

is based on PGD, which solves the following inverse problem with the image x, k-space data 

y, encoding operator A, and regularization term R(x):

minimize
x

1
2 Ax − y

2

2
+ λR(x) (1)

The solution, which is found using proximal gradient descent, iterates between the data-

consistency and proximal operator steps:

xk + 1 = PλR xk − αAT Axk − y (2)

The proximal operator of the regularization function is PλR, defined as:

PλR(v) = argmin
u

R(u) + 1
2λ u − v 2

2
(3)

When using non-Cartesian data, the acquisition model A incorporates the SENSE 

reconstruction20 operator S (coil sensitivity maps computed using ESPIRiT6), and the 

NUFFT operator, FNUFFT. The regularization term, λR(x), is implicitly learned by replacing 

the proximal operator PλR with a CNN to obtain the next iteration xk+1. For l1-ESPIRiT, the 

regularization function is the l1-norm of the wavelet transform applied to the image, x. In 

this case, PGD simplifies to the iterative soft-shrinkage algorithm (ISTA).21

The data-consistency step is important because it allows the model to incorporate the 

measured k-space data in each iteration. There are two ways of implementing data-

consistency: hard-projection, and soft-projection. To apply hard-projection, the trajectory 

undersampling is performed using subsampling (i.e., not collecting certain data points from 
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the fully sampled k-space trajectory). After the acquisition, the uncollected data points are 

zero-filled. For each iteration of l1-ESPIRiT or the unrolled model, the Fourier transform of 

the 3D image is taken (after previous regularization, i.e., wavelet or CNN), and the data in 

the acquired k-space trajectory locations are replaced with the original measured data while 

allowing for the zero-filled locations to update (Figure 1A).

When using compressed sensing, VD sampling has been shown to work well.22 Many 

different k-space sampling techniques have been developed using VD Cartesian sub-

sampling.23–26 For example, in Cheng et al,26 a Cartesian subsampling design called 

variable-density sampling and radial view ordering (VDRad) is used which approximates 

VD spirals on the Cartesian grid. The current 3D iNAVs use a true VD non-Cartesian 

design1 instead of the subsampled Cartesian approach. The VD non-Cartesian cones design 

is not a subsampled version of a fully sampled trajectory; therefore, there are not any 

uncollected k-space data points to zero-fill and utilize during the regularization and hard-

projection steps. Thus, soft-projection is used for data-consistency. In summary, for the 

Cartesian approach, hard-projection or soft-projection can be applied, but the VD non-

Cartesian design is limited to soft-projection. To further illustrate the trajectory differences, 

a subsampled Cartesian trajectory, and a VD non-Cartesian trajectory are shown in Figure 

1B.

One key difference with the prior Cartesian model11 and proposed non-Cartesian model is 

the replacement of the data-consistency step using the FFT with a gradient descent (GD) 

update step (i.e., soft-projection) using the NUFFT, which maintains consistency with the 

measured non-Cartesian k-space data. The step size for the GD update step, α, is initialized 

to 2 and left as a learnable parameter for the model to allow for improved training flexibility. 

Also, soft-projection for data-consistency can potentially give improved results when the k-

space measurements are noisy, since a GD approach is used.27 The non-Cartesian unrolled 

model is summarized below.

Unrolled Network Problem:

JObiectiveFunction = 1
2 Ax − y 2

2
+ λR(x)

JDataConsistency = 1
2 Ax − y 2

2

A = FNUFFTS (acquisition model = NUFFT operator, SENSE operator)

CNN = λR(x) (wavelet regularization is replaced with a CNN)

y = input raw k-space data

xout = output of the network

α = initialize to 2 (learnable parameter)

k = index for each iteration (N = number of iterations)
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xk = output of the data-consistency step

xcnnk  = output of the CNN

1. Initialize xcnn0 = ATy

2. Data-consistency (soft projection/gradient update): 

xk + 1 = xcnnk − α∇ JDataConsistency  = xcnnk − αAT Axcnnk − y

3. CNN (regularization step): xcnnk + 1 = CNN xk + 1  (Equation 2 with PλR = CNN)

4. Repeat Steps 2–3 for (N−1) iterations

5. xout = xcnnN

2.2.2 | Neural network architecture—The unrolled model architecture uses 4 gradient 

steps (N = 4 iterations) consisting of 2 (M = 2) residual network (ResNet)28 blocks/step. The 

hyperparameters were initially chosen to match13 and empirically tuned to ensure 

convergence given the memory constraints for the current application. The input into the 

network is the undersampled 3D complex k-space data, k-space coordinates (to generate the 

NUFFT operator), and the respective coil sensitivity maps for each channel (for the SENSE 

operator). The ground truth used for training is the reconstructed image when using l1-

ESPIRiT. Each gradient step begins with data-consistency which uses the forward and 

transpose acquisition model A and AT to apply soft projection where x0 is initialized as ATy. 

The complex image is then separated into 2 channels consisting of the real and imaginary 

components. Next, the network uses M ResNet blocks comprised of two 3D convolutional 

layers with a kernel size of 3 × 3 × 3 and filter depth of 64. Also, each convolutional layer is 

preceded by a rectified linear unit preactivation layer as recommended in He et al.29 An 

additional layer is added to the end of each unrolled step which outputs 2 channels for the 

real and imaginary parts of the k-space data and uses a linear activation to preserve the sign 

of the data. The final layer is also added to a skip connection from the input of the first 

ResNet block to accelerate training convergence. For previous Cartesian approaches,13,14 

circular convolutions were used to handle the “wrap-around” coherent aliasing artifacts. 

However, while the FFT causes periodic boundary conditions in the image domain, here the 

NUFFT operation does not because of image cropping and zero-padding that it uses, and the 

noise-like aliasing properties of undersampled 3D cones.4 Accordingly, zero-padded 

convolutions (i.e., noncircular convolutions) were applied in each convolutional layer. The 

gradient step block is then repeated 3 (i.e., N−1) more times for a total of N = 4 iterations. 

Also, the network is trained using the complex l1 loss and a batch size of 1 (stochastic 

gradient descent). While the l2 loss has been used to successfully train other reconstruction 

networks (e.g.,7), using the l1 loss has been shown to improve convergence and produce 

sharper images.30,31 A graphical representation of the unrolled architecture is shown in 

Figure 2A,B. In Figure 2B, the data-consistency for the prior11 and proposed models are 

shown using a hard-projection and soft-projection respectively.
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2.3 | Training data

The training set includes a total of seven subjects. Four of the seven subjects were scanned 

with both the sequential-based and phyllotaxis-based 3D iNAVs acquired each heartbeat 

which gives a total of 11 scans. Of the 11 scans, 5 were acquired with the trajectories rotated 

by the golden angle between each heartbeat (Supporting Information Figure S1D) to vary 

the aliasing artifacts, which serves as a form of data augmentation to improve the 

performance and ability of the model to generalize. Each scan collected data for 500–600 

heartbeats, thus yielding approximately 6,000 total iNAV datasets used for training. The 

ground truth images were reconstructed with l1-ESPIRiT using the Berkeley Advanced 

Reconstruction Toolbox (BART) toolbox.32 The l1-ESPIRiT reconstruction parameters were 

empirically determined using 50 iterations, step size of 1e-6, and wavelet regularization (λ = 

0.05). To alleviate the aliasing artifacts from objects outside of the FOV during training, the 

ground truth datasets were reconstructed at (2 × FOVx, 1.25 × FOVy, 1.5 × FOVz); that is, 

(128x, 80y, 48z) with a native matrix size of (64x, 64y, 32z). Additionally, training was 

performed without data-consistency using one iteration for a “black-box” approach (i.e., 

N=1 iteration and M = 8 ResNet blocks/step with the same kernel size of 3 × 3 × 3 and filter 

depth of 64) to examine the differences compared to the unrolled model (i.e., data-

consistency and CNN blocks). The reconstructions were run on two different Linux systems 

with 2.20 GHz Xeon E5–2650 v4 CPU, 512 GB RAM with 48 total cores, and a 3.70 GHz 

Intel i7-8700K CPU, 64 GB RAM with 12 total cores. Also, the reconstructions were 

performed on two different GPUs using an NVIDIA Titan XP with 12 GBs of GDDR5X 

memory, and an NVIDIA Titan RTX GPU with 24 GBs of ultra-fast GDDR6 memory.

2.3.1 | Computation—When using the NUFFT operator, there is an increase in 

computation compared to the standard FFT. The NUFFT operator requires additional steps 

involving density compensation, convolution with a gridding kernel (Kaiser-Bessel),33 

sampling on the Cartesian grid, oversampled FFTs, and an apodization correction. This can 

introduce challenges when reconstructing undersampled datasets which require larger matrix 

sizes to alleviate aliasing artifact. When using the NUFFT operator with the unrolled model, 

the increased computation increases the memory requirements for training, thus limiting the 

matrix size.

An efficient NUFFT operator is implemented in Python using native TensorFlow functions 

so that the overall operator can be back-propagated. To reduce memory overhead, a pruned 

FFT implementation is used to compute the oversampled FFT step.34 In particular, pruned 

FFTs avoid extra memory allocation by exploiting structures of the radix-2 Cooley-Tukey 

FFT.35 Note that pruned FFTs are also used in BART so that our computation time 

comparisons are fair. The gridding and re-gridding steps are implemented using the gather 

and scatter functions provided by Tensorflow. At its essence, our 3D NUFFT 

implementation entails multiplications and additions, which are operations that are 

compatible with standard back-propagation procedures in TensorFlow.

The overall model is an end-to-end unrolled network where the NUFFT operator used 

during the data-consistency step is incorporated into the TensorFlow graph using python. In 

this way, the auto-differentiation framework in TensorFlow is lever-aged with the NUFFT 
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operator (i.e., the parameters are trained as part of the entire network). To satisfy memory 

requirements, the proposed model architecture was trained on an NVIDIA Titan RTX GPU 

with 24 GBs of ultra-fast GDDR6 memory.

2.4 | Motion correction with 3D iNAVs

To correct for respiratory motion in the high-resolution data, 3D global and localized motion 

estimates are calculated1,5,36 using both the l1-ESPIRiT and model-reconstructed 3D iNAVs. 

A technique similar to the previous state-of-the-art method in Luo et al5 was applied for 

motion-estimate calculation when using the 3D iNAVs:

1. The motion estimates are generated by selecting a region of interest (ROI) mask 

that covers the heart in the axial, sagittal, and coronal planes. Then, a reference 

3D iNAV time frame (heartbeat) is determined using mutual information37,38 and 

the similarity matrix approach.

2. Global translational motion estimates are calculated by minimizing the mean-

squared difference cost function between the current 3D iNAV frame with the 

previously determined reference 3D iNAV.

3. To take advantage of the localized spatial information from the 3D iNAVs, 

residual 3D displacement fields are also calculated, using the MATLAB Imaging 

Processing Toolbox (The Mathworks, Natick, Massachusetts), relative to the 

reference 3D iNAV (after aligning the 3D iNAVs using the global motion 

estimates) and used to determine five unique spatial regions (or bins) of localized 

residual motion. The bins are obtained with k-means clustering (minimizing the 

l2-norm distance metric), and using the displacement field estimates (in the 

selected ROI) as the features.

4. The mean of all the features within each calculated bin (plus the global motion 

estimate) is then used as the residual motion estimate for the bin.

We then apply a linear phase modulation term generated using the motion estimates for each 

heartbeat in k-space to generate a bank of 6 3D motion-compensated reconstructions from 

one global motion estimate, and 5 residual localized motion estimates (all 5 applied on top 

of the global estimates). For the final nonrigid autofocused image, the reconstruction is 

performed on a pixel-by-pixel basis by choosing the pixel from the bank of 3D motion-

compensated reconstructions that minimizes the gradient entropy value at each pixel.1,36

2.5 | Inference and testing

Four additional subjects were scanned with the previously mentioned navigator designs (2 

sequential-based, 1 rotated sequential-based, and 1 rotated phyllotaxis-based) to test the 

generalization of the unrolled model. The motion information of the 3D iNAVs when using 

l1-ESPIRiT and the unrolled model is then assessed by examining the motion estimates, 

autofocusing outcomes, and right coronary artery (RCA) and left coronary artery (LCA) 

images. The motion estimate similarity between the l1-ESPIRiT and DL model-based 3D 

iNAVs is determined by calculating the correlation coefficients of the left/right (L/R), 

anterior/posterior (A/P), and superior/inferior (S/I) motion estimates for the global and five 

spatial bins. Furthermore, the autofocusing outcomes were analyzed by computing the 

Malavé et al. Page 7

Magn Reson Med. Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



“autofocusing histograms” for each volunteer. The autofocusing histograms show the 

occurrence of each selected bin that minimized the gradient entropy for each pixel in the 

final high-resolution image. Also, oblique reformatted maximum intensity projection (MIP) 

images of the RCA and LCA are shown with cross-sectional views of the vessels before and 

after motion correction when using the l1-ESPIRiT and DL model-based 3D iNAVs for 

autofocusing. To assess the vessel sharpness of the motion-corrected images, quantitative 

measurements of coronary vessel sharpness were obtained using the image edge profile 

acutance (IEPA) metric39 similar to the previous method in Malavé et al.17 The IEPA 

measurements were performed on the RCA and LCA (left main coronary artery (LMCA) 

and the left anterior descending (LAD) artery) along 50 mm coronary segments made at 1 

mm intervals, and with 10 evenly spaced profile lines drawn perpendicular to the lumen axis. 

The IEPA values range from 0 to 1 where higher values correspond to sharper edges.

3 | RESULTS

3.1 | 3D iNAV reconstructions

Subjects 3–4 (test dataset) 3D iNAV inputs (gridded images), outputs (CNN), outputs (data-

consistency and CNN), and ground truths (after l1-ESPIRiT) are shown in Figure 3 with 

their respective axial, sagittal, and coronal slices. Subjects 1–2 are shown in Supporting 

Information Figure S2. For the CNN output, a denoising/smoothening effect is observed, but 

introduces artifacts for all subjects (Figure 3 and Supporting Information Figure S2) which 

are not present in the unrolled model (data-consistency and CNN) and l1-ESPIRiT outputs. 

Also, for subjects 3–4 (Figure 3), the denoising for the CNN did not perform as well and 

blurred parts of the image compared to the unrolled model (e.g., in the coronal slices near 

the apex of the heart). A few differences are highlighted using white arrows in Figure 3 and 

Supporting Information Figure S2. Perhaps, with more subjects for training, the “black-box” 

approach can become more competitive with our proposed approach. However, the need for 

large amounts of training data may be a disadvantage for many applications. Additionally, 

the l1 loss for each subject is shown in Table 1. For each subject, the unrolled model (data-

consistency and CNN) outperformed the “black-box” CNN approach. For the unrolled 

model, an example output of each iteration during training is shown in Supporting 

Information Figure S3. For the initial iterations, certain structures may not be visible or may 

appear blurred due to the undersampling which introduces aliasing and interpolation errors 

when compared to later iterations. For each iteration, image depiction is improved by 

denoising the image and enhancing structure which mimics multiple iterations for l1-

ESPIRiT. When employing the trained architecture, the undersampled cardiac images 

(compared to the outcomes from gridding) retained structural features as a result of the 

denoising/smoothening operation. More specifically, the aliasing artifacts arising from 

undersampling a cones trajectory were effectively reduced after evaluation by the network. 

The training was run for 40 epochs which took a total of approximately 16.7 days (15.3 days 

for the CNN without data-consistency). The average inference time per 3D iNAV for the 

proposed architecture is approximately 0.5 seconds (4.33–5.20 total minutes) on GPU (Titan 

RTX), while l1-ESPIRiT (using BART) requires approximately 10 seconds (87.42–104.90 

total minutes) on CPU (Xeon E5–2650 v4, and Intel i7-8700K) and 1.5 seconds (12.92–

15.50 total minutes) on GPU (Titan RTX). Average reconstruction times for both the 
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unrolled model and CNN are shown in Table 2. All four subject datasets have a total of 500–

600 3D iNAVs.

3.2 | Motion estimates

Due to the improved performance of the unrolled network architecture compared to the 

CNN without data-consistency, motion estimates were acquired using the 3D iNAVs 

reconstructed with the unrolled model. The global motion estimates for the first 100 

heartbeats of the four different subjects are shown in Supporting Information Figure S4 for 

all three directions (A/P, L/R, S/I). The scatter plots for l1-ESPIRiT vs. Model and the 

correlation coefficients (R) are shown in Figure 4. Also, the measurements are normalized 

by sub-tracting the mean S/I, A/P, and L/R displacements similar to36 when comparing the 

estimates. The additional correlation coefficients (including the global and five spatial bins) 

are shown in Supporting Information Table S1. The R values for all four subjects show a 

strong positive correlation of the global motion estimates between the l1-ESPIRiT and DL 

model-based 3D iNAVs, thus indicating similar motion estimates in all directions 

(Supporting Information Figure S4).

3.3 | Autofocusing histograms

The autofocusing histograms for all 4 subjects are shown in Supporting Information Figure 

S5. For subjects 2 and 3 (Supporting Information Figure S5B,C, respectively), the global bin 

is the most selected by the autofocusing algorithm which demonstrates that there was less 

residual motion beyond the rigid-body translational motion. For subjects 1 and 4 

(Supporting Information Figure S5A,D), bins 4 and 5 are the most selected, respectively, 

which shows that there was additional residual motion which minimized the gradient 

entropy metric. Subjects 1 and 2 histograms lack noticeable difference, and subjects 3 and 4 

show minor differences in bin 2. Additionally, example residual motion estimate scatter plots 

and correlation coefficients (R) for all four subjects are shown in Supporting Information 

Figure S6. The first 100 heartbeats corresponding to residual motion estimates (A/P, L/R, 

S/I) are also shown in Supporting Information Figure S7. Small differences (submillimeter) 

can be seen in the residual motion estimates between the l1-ESPIRiT and DL model-based 

3D iNAV estimates. These minor differences are further investigated in the high-resolution 

images to verify the effects on the coronary image quality.

3.4 | Motion-corrected images

The 3D autofocused images using both 3D iNAV reconstruction schemes are shown for all 4 

subject scans. The total time for autofocusing reconstruction takes approximately 8 minutes 

(2 minutes to calculate the global translations, 5 minutes to calculate the displacement fields 

and perform k-means clustering, and 1 minutes to calculate gradient entropy minimization of 

each pixel). In Figure 5, the right coronary artery (RCA) is shown before and after motion 

correction with cross-sectional views demonstrating the improvements when using the l1-

ESPIRiT and DL model-based 3D iNAVs. The RCA images for all four subjects show 

nearly identical vessel sharpness. Also, in Figure 6, the left coronary artery (LCA) is shown 

with the corresponding cross-sectional views. Similar to the RCA, the LCA sharpness 

increased after motion correction and maintained similar and comparable improvements 

when using l1-ESPIRiT and DL model-based 3D iNAVs for motion correction. Additionally, 
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the average RCA and LCA vessel sharpness values (IEPA), shown in Supporting 

Information Table S2, correspond to the similar vessel sharpness seen for the motion-

corrected images in Figures 5 and 6.

4 | DISCUSSION

We have shown that the proposed non-Cartesian unrolled network architecture generates 

similar 3D iNAV reconstruction results in a fraction of the time, with a 20× and 3× speed 

increase for CPU and GPU, respectively, and leads to high correlations of the derived global 

and localized motion estimates compared to l1-ESPIRiT 3D iNAV reconstructions. The most 

computationally expensive part of the training involves the NUFFT operation. The NUFFT 

is used to apply the data-consistency (soft projection) step which can require more 

calculations for the gradients during training, thus increasing training time and the GPU 

memory requirements. Similar issues arise during the l1-ESPIRiT iterative reconstruction. 

To account for this, BART uses the Toeplitz method40 for the compressed sensing 

reconstruction. However, the Toeplitz method requires a matrix size that is twice as large as 

the nominal matrix (i.e., twice the FOV in all three dimensions) to encompass the support of 

the object in the image domain. This helps to alleviate aliasing errors that can arise from 

objects outside of the FOV when using the Toeplitz method. Due to the computation 

benefits, further investigation may be warranted by using a Toeplitz-based NUFFT for the 

data-consistency (soft projection) steps even though the 2× oversampling constraints are not 

required when using a normal NUFFT operator. Benefiting from using the Toeplitz-based 

NUFFT operator would depend on the amount of undersampling, trajectory type, and native 

matrix size.41

When using the proposed non-Cartesian unrolled model, there are improvements and 

limitations to address. For this implementation, the complex data was separated into 2 

channels without any noticeable training issues, but architectures that can process the full 

complex data channel may prove beneficial for better generalization and potentially lead to 

faster training since fewer filter weights are used. In Virtue et al,42 this was done by using 

complex activation layers that attenuate the magnitude based on the input phase, essentially 

acting as a “complex rectified linear unit” activation function. Also, currently an l1 loss is 

used, but other approaches such as using generative adversarial networks (GANs)43 have the 

ability to learn better loss functions that take into account diagnostic image quality.44–46 

This would have the potential for improving the “perceived” image quality for clinicians 

which an l1 or l2 loss may not fully quantify. Furthermore, when collecting the 3D iNAV 

datasets, the fully sampled data is not obtained due to the finite acquisition window after 

collecting the segmented high-resolution data within one heartbeat; thus, the ground truth 

was obtained through the compressed sensing reconstruction of VD cones. Even though the 

ground truth is biased towards the compressed sensing reconstruction, we have shown that 

the unrolled network was able to successfully reconstruct the 3D iNAVs with improved 

image quality compared to gridding and allow for similar motion estimates compared to 

using compressed sensing.

Additionally, we have primarily trained the unrolled model with 3D VD cones cardiac 

datasets with 4.4 mm resolutions. Fortunately, due to flexibility of the model architecture, 
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the training dataset for the current application is not limited to these specific undersampled 

3D cardiac iNAVs. Thus, to help further generalization of the model, datasets acquired using 

different trajectories, resolutions, and anatomies can be added to the current training dataset 

for retraining (fine-tuning).47 Also, when training with higher resolutions, the aliasing 

artifacts may become more severe and require larger matrix sizes to avoid aliasing from 

objects outside of the FOV during the data-consistency step in the model. These 

modifications can potentially require prolonged training times, as opposed to classical 

compressed sensing methods. Therefore, the GPU implementation of l1-ESPIRiT may have 

an advantage over DL model-based methods when training time is limited. Nevertheless, the 

proposed approach has successfully shown the reconstruction of undersampled low-

resolution 3D iNAVs that were used for motion estimation. Further analysis of different 

resolutions and anatomies may be warranted to test the limitations of the unrolled model.

In the current work, autofocusing1,5,36 and binning with localized motion correction were 

investigated when using the proposed DL model-based 3D iNAV reconstruction approach. 

Further techniques for motion correction involve using a deep-learning framework48–50 to 

obtain the motion estimates or motion-corrected images directly from the k-space data can 

potentially replace autofocusing but would likely require a larger training set. This could 

allow for an end-to-end model using the proposed unrolled PGD architecture for 3D iNAV 

reconstruction and an additional model which takes in the 3D iNAVs with the motion-

corrupted high-resolution k-space data and outputs the motion-corrected images. This 

framework has the potential for a substantial reduction in reconstruction time. Even if the 

end-to-end model produces less optimal motion-corrected images compared to previous 

techniques, the model can be used as a tool for quickly validating scan quality. Then, if 

further improvements are required, reconstruction can be applied using the standard more 

time-consuming l1-ESPIRiT and autofocusing techniques.

Future work includes implementing the non-Cartesian unrolled model for higher resolution 

data. Current limitations include the 24 GBs of memory on the NVIDIA RTX GPU which 

limits the potential matrix size used for training. To solve this problem, filter depth, number 

of iterations, and ResNet blocks can be decreased but may reduce the ability for proper 

generalization of the model. As previously mentioned, a Toeplitz-based NUFFT can be used 

but would lead to a 2× FOV oversampling requirement. Also, multi-GPU training can be 

implemented to allow for larger matrix sizes but would increase training time due to 

introduced overhead. The technique that currently has the most potential and feasibility 

involves the bandpass approach13 that segments k-space into multiple overlapping patches. 

Each patch is then reconstructed in parallel using different unrolled DL models that are 

trained to reconstruct specific regions of k-space. To generate the final image, all individual 

segments are stitched together in k-space. Training a non-Cartesian high-resolution unrolled 

model has many challenges and constraints, but there are many options for solving the 

memory and computation problems.

5 | CONCLUSION

A deep neural network architecture was developed for the reconstruction of undersampled 

VD cones 3D iNAVs acquired during a CMRA sequence. The unrolled network architecture 
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was designed to solve the PGD reconstruction problem and for the reconstruction of 

undersampled non-Cartesian datasets. It was shown that the reconstruction of 3D iNAVs 

using the DL model-based reconstruction compared to using l1-ESPIRiT can be performed 

in a fraction of the time (1/20th on CPU and 1/3rd on GPU) while generating similar motion 

estimates and, after motion correction of the high-resolution data, equivalent RCA and LCA 

image quality.
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FIGURE 1. 
A, A subsampled trajectory is shown where the green circles and white circles represent 

measured and zero-filled data in k-space respectively. After regularization (blue circles) 

using wavelets (i.e., soft thresholding in the wavelet domain) or a CNN (i.e., applying 

convolutions in the image domain), the Fourier transform of the 3D image is taken and the 

original k-space trajectory locations are replaced with the measured data by performing a 

hard-projection. B, The Cartesian trajectory (left) uses subsampling while the non-Cartesian 

trajectory (right) uses a variable-density (VD) design to achieve undersampling
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FIGURE 2. 
A, The input into the network is the 3D k-space data, k-space coordinates (to generate the 

NUFFT operator, FNUFFT), and the coil sensitivity maps for each channel (for the SENSE 

reconstruction operator S). The ground truth is the l1-ESPIRiT reconstruction of the input k-

space data. Each iteration consists of a data-consistency (DC) and CNN block. Initially 

before entering the CNN block, the transpose model (AT) is used to transform the data to 

image space. B, The architecture uses N = 4 iterations (gradient steps) consisting of M = 2 

ResNet blocks/step. One key difference between the prior Cartesian model11 (top) and the 

proposed model (bottom) is the replacement of the data-consistency step using an FFT with 

a gradient-descent (GD) update step (i.e., soft-projection) using the NUFFT, which 

maintains consistency with the measured non-Cartesian k-space data. The first iteration 

Malavé et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



applies the transpose model (AT), followed by the CNN. The remaining iterations (i.e., 2 to 

N) for hard-projection (top) and soft-projection (bottom) use the architecture shown in the 

dotted box, and gradient update step, respectively, followed by the CNN
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FIGURE 3. 
The axial, sagittal, and coronal slices are shown from one heartbeat. 3D iNAV inputs 

(gridded images using the NUFFT operator), outputs using CNNs without data-consistency 

(DC), outputs using the unrolled model with DC and CNNs, and ground truths (l1-ESPIRiT) 

are shown, respectively, for subjects 3–4 (test datasets). For each method, the differences are 

highlighted using white arrows which show how the unrolled model more closely matches 

the ground truth compared to using a CNN without DC
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FIGURE 4. 
The global motion estimates for subjects 1–4 (A-D) are shown in three different scatter plots 

(A/P, L/R, and S/I) with the corresponding correlation coefficients (R) for l1-ESPIRiT versus 

the model
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FIGURE 5. 
A, Reformatted maximum intensity projection images of the RCA for four healthy 

volunteers are shown before and after motion correction. The cross-sectional views 

demonstrate similar improvements in the distal regions of the RCA when using both the l1-

ESPIRiT and DL model-based 3D iNAVs for motion correction
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FIGURE 6. 
A, Reformatted maximum intensity projection images of the LCA for four healthy 

volunteers are shown before and after motion correction with the corresponding cross-

sectional views. The LCA sharpness increased in the medial and distal regions after motion 

correction and exhibited similar improvements when using l1-ESPIRiT and DL model-based 

3D iNAVs for motion correction

Malavé et al. Page 21

Magn Reson Med. Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Malavé et al. Page 22

TABLE 1

Reconstructed image l1 loss for all four subjects when applying the CNN model without data-consistency 

(DC) and the unrolled model (DC and CNN)

Model Reconstructed l1 loss

Subject CNN DC + CNN

Subject 1 2.44E+03 1.16E+03

Subject 2 2.43E+04 2.16E+04

Subject 3 2.20E+03 1.76E+03

Subject 4 1.91E+03 9.09E+02
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