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Abstract

Appropriate choice of vaccine vector is crucial for effective vaccine development. Rhabdoviral 

vectors, such as rabies virus and vesicular stomatitis virus, have been used in a variety of vaccine 

strategies. These viruses have small, easily manipulated genomes that can stably express foreign 

glycoproteins due to a well-established reverse genetics system for virus recovery. Both viruses 

have well-described safety profiles and have been demonstrated to be effective vaccine vectors. 

This review will describe how these Rhabdoviruses can be manipulated for use as vectors, their 

various applications as vaccines or therapeutics, and the advantages and disadvantages of their use.
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Introduction

The Rhabdoviridae family are bullet-shaped, negative-sense single-stranded RNA (ssRNA) 

viruses. They have a single segment genome that encodes five proteins: the nucleoprotein 
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(N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and RNA dependent RNA 

polymerase (L) [1]. Two well-studied rhabdoviruses are rabies virus (RABV), from genus 

Lyssavirus, and vesicular stomatitis virus (VSV) from genus Vesiculovirus. While both 

viruses are neurotropic zoonoses, and have similar length genomes (~11–12kb) [1], they 

differ in their biology.

RABV infects a variety of mammals and is typically maintained in nature through 

mesocarnivores (e.g., dogs, coyotes, foxes, raccoons, skunks) and bats [2]. In addition to 

causing disease in animals, RABV also causes severe encephalitis in humans that, if 

untreated, is almost always fatal [3]. Prompt treatment with the rabies vaccine before the 

onset of symptoms avoids the disease in almost all individuals exposed to RABV [4]. The 

first record of rabies disease dates back to the 4th century BC [5], and while significant 

advances have been made to eradicate the virus, it is still prevalent in many parts of the 

world [2].

VSV is an arbovirus with a limited host range compared to RABV, only causing disease in 

cattle, horses, and swine [1,6]. Unlike RABV, which replicates slowly and does not kill the 

host cell [1], VSV replicates rapidly to high titers and is a lytic virus, an effect caused by the 

M protein, which blocks host messenger RNA (mRNA) export [7]. VSV has been shown to 

induce a strong interferon response [8], in contrast to RABV which evades the innate 

immune response [9].

Research on rhabdoviruses has benefited significantly from the development of reverse 

genetics systems to recover them from cDNA [10,11]. Briefly, a cDNA plasmid encoding 

the entire rhabdoviral anti-genome is transfected into cells along with individual plasmids 

encoding the N, P, and L proteins (Figure 1, 1). A T7 promoter controls the expression of the 

different viral genes from each plasmid. Initially, a recombinant vaccinia virus expressing a 

T7 RNA polymerase was utilized to express the viral genes via the T7-promotor. Currently, 

most investigators use plasmids expressing the T7 polymerase, under control of a 

cytomegalovirus (CMV) promoter, that is included in the transfection. In both cases, the T7 

polymerase produces mRNAs of the individual viral proteins and a positive-sense full-length 

anti-genome (2). Once translated from their mRNAs, the N protein encapsulates the anti-

genome and the polymerase complex composed of P and L proteins and transcribes a full-

length viral genome (3). The viral genome then serves as a template for the transcription of 

the mRNAs as well as full-length anti-genomes (4). Viral particles can assemble after 

translation of these mRNAs and reverse transcription of the full-length anti-genomes (5). 

Figure 1 illustrates this process for RABV.

The so-called reverse genetics system allows for manipulation of rhabdoviral genes and 

determination of their functions and host interactions [7,12]. It was first shown for RABV 

that foreign genes can be introduced into the genome and expressed utilizing short 

transcription start and stop signals [13] (Figure 2), and then similar findings were made for 

VSV [14]. A large number of foreign proteins have since been expressed from these 

recombinant viruses. For example, both viruses can express and incorporate the cellular 

receptors CD4 and CCR5 into their viral particles, allowing them to specifically target 

HIV-1 infected cells [15,16]. RABV and VSV can also carry foreign glycoproteins in their 
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viral envelope that can act as a functional substitute for the rhabdoviral glycoproteins or be 

expressed simultaneously. Two examples are the currently U.S. Food and Drug 

Administration (FDA)-approved VSV-based Ebola virus vaccine [17] and a RABV 

expressing the Lassa Fever Virus glycoprotein complex [18].

Because rhabdoviral genomes can be easily manipulated and can integrate foreign proteins 

in the viral envelope, they are excellent candidates for vaccine vectors. Examples of their use 

as vaccine vectors and further discussion of their advantages and disadvantages are 

discussed in the sections below.

Rabies Virus

The RABV vaccine has had a long history of successful use [19], however, no recombinant 

RABV-vectored vaccines have been developed for humans. This section will describe the 

history of the RABV vaccine, the qualities that support its use as a vaccine vector, and 

experimental vaccines that have been developed with this vector.

Human Rabies Vaccine—The first human rabies vaccine was discovered by Louis 

Pasteur in the 19th century and consisted of dried spinal cord from rabbits injected with 

RABV [20]. It protected some individuals from rabies, but it had many limitations ranging 

from incomplete viral inactivation to severe allergic reactions. Since then, a variety of other 

strategies have been tested, including other nerve tissue vaccines, such as the Semple and 

suckling mouse brain vaccines and avian embryo vaccines [19]. Once cell culture methods 

were developed, production was easier and more efficient, eventually leading to the 

development of four rabies vaccines that are currently World Health Organization (WHO) 

pre-qualified: Rabipur (purified chick embryo cell [PCEC] vaccine); Verorab (purified Vero 

cell rabies vaccine [PVRV]); RABIVAX-S (PVRV); and VaxiRab-N (PCEC) [21]. These 

vaccines are produced by infecting either chick embryo cells or Vero cells with the Flury 

LEP or Pitman-Moore strains of RABV, followed by virus purification and beta-

propiolactone (BPL) inactivation [22–25]. All four vaccines efficiently induce rabies 

neutralizing antibody titers at a level considered protective, and are comparable to the 

previous gold standard rabies vaccine, the human diploid cell vaccine (HDCV) [4,19,26–28]. 

Additionally, vaccine safety has been demonstrated through use in essentially all patient 

populations with very few adverse effects (Reviewed for Rabipur in [29]).

Currently, human rabies vaccines are used world-wide in both pre- and post-exposure 

settings. Typically, rabies pre-exposure prophylaxis consists of 3 vaccine doses and is only 

recommended for those regularly exposed to the virus, such as laboratory workers and 

veterinarians [4]. Post-exposure prophylaxis (PEP) consists of 4–5 vaccine doses, and for the 

previously unvaccinated is typically accompanied with rabies immunoglobulin (RIG) 

treatment to promote immediate neutralization of the virus while the adaptive immune 

response to the vaccine develops [4,19,30]. When applied before symptom onset and 

following the proper dosing schedule, the rabies vaccine can prevent rabies disease in almost 

all cases [4,19,30]. Unfortunately, RABV is still prevalent in many parts of the world due to 

a lack of PEP accessibility [31].
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Wildlife Rabies Vaccine—Rabies is maintained in nature through a variety of 

mammalian hosts, including bats, foxes, racoons and dogs [2]. Dogs are the major source of 

human rabies infections world-wide and are the major target for efforts attempting to end 

human disease caused by the virus [32–34]. In various studies, vaccination of at least 70% of 

the dog population in an endemic area effectively prevented rabies transmission [35–37]. 

The WHO has guidelines for carrying out campaigns to vaccinate dogs against rabies [38], 

which are based on similar efforts that were effective in North America, Europe, and some 

Latin American countries [39,40].

Dog and wildlife vaccination efforts may employ a combination of vaccine strategies, 

including live-attenuated, recombinant, and inactivated vaccines [4]. Typically, domestic 

animals are given injections of inactivated vaccines in a veterinary setting, as these vaccines 

pose little risk to the animal or humans in contact with it [4]. Given the difficulty and 

potential dangers in capturing and administering vaccine injections to wildlife, wildlife 

vaccination campaigns typically employ live-attenuated or recombinant oral vaccines in the 

form of bait [38,41,42]. The standard live-attenuated viruses used for wildlife vaccines are 

derived from either the Street Alabama Dufferin (SAD) strain or its derivative strain, 

Evelyn-Rokitnicki-Abelseth (ERA), and frequently contain an attenuating mutation at amino 

acid 333 in the glycoprotein [43,44]. The attenuated SAD strain is also used as a vaccine 

vector for other pathogens, as will be discussed in the next section.

RABV as a Vaccine Vector—Wide-spread use of modern rabies vaccines has highlighted 

their safety profile, ease of large-scale production, safe administration, and efficacy. 

Additionally, RABV shares endemic regions with several pathogens, thus increasing the 

potential impact of a bivalent vaccine in affected areas.

To use RABV as a vaccine vector the foreign gene of interest is typically inserted into the 

rabies genome and the native rabies glycoprotein (G) is either retained or removed. The 

rabies vectors used typically contain attenuating mutations, like the 333 amino acid mutation 

in RABV-G [12], or have a gene deleted to render them replication deficient (Figure 3). 

These attenuations ensure the viruses are safe to work with, produce, and administer [45,46]. 

Examples of these kinds of RABV-based vaccines include live recombinant vaccines against 

human immunodeficiency virus (HIV) [45] and Lagos Bat Virus [47], and a replication-

deficient vaccine against lymphocytic choriomeningitis virus [48]. Live-attenuated vaccines 

are advantageous for the strong immune responses they induce, whereas replication-deficient 

viruses are safe for use in immunocompromised people because they cannot spread.

Inactivated RABV-based vaccines benefit from not requiring supplementation for 

production, unlike replication-deficient vaccines, and are safer to administer than live virus. 

For an inactivated vaccine to be effective, the foreign protein must incorporate into the 

membrane of the RABV virion. For many viral glycoproteins, no modifications are 

necessary to achieve this, as is the case for the Ebola virus (EBOV) [49] and Lassa fever 

virus glycoproteins [18]. Other proteins require modifications for successful virion 

incorporation. For example, Rift Valley Fever virus buds from the Golgi complex and its 

glycoproteins do not localize to the plasma membrane. Thus, this glycoprotein requires 

replacement of its transmembrane domain and cytoplasmic tail with that of RABV-G for 
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incorporation into RABV virions [50]. Such modifications can also be applied to non-viral 

proteins, as was done for anthrax protective antigen (PA) [51]. Specifically, to allow the 

protein to integrate into RABV particles, a chimeric PA domain 4 protein was engineered to 

contain a signal sequence and the proximal 51 amino acids of the RABV-G ectodomain 

along with the RABV-G transmembrane domain and cytoplasmic tail. Table 1 lists 

experimental RABV-vectored vaccine strategies.

In response to the current Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) outbreak, one group has developed an inactivated recombinant rabies-based vaccine 

against SARS-CoV-2 [52]. The vaccine, CORAVAX™ uses the S1 domain of the SARS-

CoV-2 spike protein that, as described above for the anthrax PA, was engineered to contain a 

RABV ectodomain, transmembrane domain and cytoplasmic tail for incorporation into 

RABV virions [52]. CORAVAX™ was shown to induce neutralizing antibodies in mice as 

both a live and inactivated vaccine [52]. This strategy is illustrated in the graphical abstract. 

Additional studies will be needed to determine whether this vaccine is protective against 

SARS-CoV-2 challenge and effective in humans.

Limitations—While there are many advantages to using RABV as a vaccine vector, there 

are some special considerations for their use. In particular, even though live RABV vaccine 

vectors are extremely safe, their use will be difficult because all risks must be eliminated 

before they can be applied in healthy populations. Additionally, RABV-G is highly 

immunogenic [53], and while this is ideal for rabies vaccines, the immune response to 

RABV-G could potentially interfere with the response to the foreign protein. In the case of 

foreign viral glycoproteins, this issue of RABV-G immunodominance can be avoided by 

removing RABV-G from the genome [18]. However, this would likely not be possible with 

other kinds of proteins, since glycoproteins are necessary for propagation of the virus.

Vesicular Stomatitis Virus

Since the establishment of the reverse genetics system, VSV has been used to develop 

biologic assays to study many different pathogens. Recently, the first recombinant VSV-

based vaccine was approved for use in humans by the FDA [17], paving the way for future 

therapeutics using this platform. This section will discuss the numerous uses of VSV as a 

vector to study and treat various diseases.

VSV as a Tool—VSV vectors have a variety of applications. A common use is as a vector 

for the production of pseudoviruses, where foreign glycoproteins are incorporated into VSV 

virions either through genetic manipulation or infection of cells expressing a foreign 

glycoprotein with VSV lacking its native glycoprotein gene [54]. These pseudoviruses have 

been employed in virus neutralization assays [18,55], surrogate challenge viruses [18], and 

studies of foreign glycoprotein mediation of attachment and entry [56–58]. Since VSV is a 

biosafety level 2 (BSL-2) pathogen, VSV pseudoviruses are used in this way for studying 

BSL-4 restricted viruses.

The glycoprotein of VSV (VSV-G), has also been incorporated onto other viruses because of 

its stability and broad tissue and host tropism [59,60]. Specifically, VSV-G has been used to 

produce stable retro- and lentiviruses with better transduction efficacy for various 

Scher and Schnell Page 5

Curr Opin Virol. Author manuscript; available in PMC 2021 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



applications, including gene therapies [61,62]. Another use of VSV-G is the preparation of 

virosomes (essentially VSV-G coated vesicles) for delivery of several therapeutic agents, 

such as antibodies and DNA, directly into cells [63,64]. These strategies employ VSV-G to 

deliver genome editing machinery and specific genes directly to cells therapeutically, most 

notably as anti-cancer treatments [65–67].

While the above-mentioned applications of VSV are widely used, the more well-known 

therapeutic uses of VSV are as a vaccine vector and anti-cancer oncolytic virus, both of 

which will be discussed in detail in the sections below.

VSV as a Vaccine Vector—In addition to the ability of VSV to stably express foreign 

genes [14], the virus is also advantageous as a vaccine vector because it does not typically 

cause disease in humans and can be produced efficiently due to its fast replication and high 

titers in tissue culture. Most vaccine strategies employ VSV as a replication competent 

vector and either insert a foreign gene into the VSV genome with the addition of vector 

attenuating mutations, or replace the native VSV-G with a foreign glycoprotein. This vector 

has been used to develop an assortment of experimental vaccines, including those against 

pulmonary tuberculosis [68], HIV [69], and most successfully, EBOV [70]. A more 

comprehensive list of VSV-vectored vaccine candidates can be found in Table 2.

In a recent example of a successful VSV-based vaccine, the replication-competent VSV-

ZEBOV replaces the native VSV-G with the glycoprotein (GP) of EBOV (Zaire strain) [71–

74]. VSV-ZEBOV mediates protection mainly through production of anti-EBOV-GP 

antibodies [75] and provides cross-protection against heterologous strains of Ebolavirus [76–

78]. In various clinical trials evaluating the immunogenicity and safety of VSV-ZEBOV in 

humans [79–84], the vaccine was linked to some mild to moderate side-effects, but was 

otherwise shown to be safe and to induce an EBOV-GP specific immune response in 

humans, resulting in its approval by the U.S. FDA [17].

VSV has also been used to develop vaccines against SARS-CoV-2. Specifically, there have 

been two groups that have developed a recombinant VSV expressing a modified SARS-

CoV-2 spike protein [85,86]. Both vaccine strategies elicited anti-SARS-CoV-2 antibodies 

and showed protection in either human angiotensin-converting enzyme-2 (ACE2) expressing 

mice [85], or hamsters challenged with SARS-CoV-2 [86]. Future studies will be needed to 

see whether these vaccines are safe and effective in humans.

VSV as an Oncolytic Virus—Another characteristic of VSV that has been exploited for 

therapeutic use is the virus’s ability to specifically kill cancer cells. VSV-G acts as a 

fusogenic membrane protein, which, when expressed in cells, causes syncytia formation and 

eventually cell death [87]. Many cancer cells down-regulate expression of various molecules 

in the interferon system, making them susceptible to VSV infection, as the virus is very 

sensitive to interferon and preferentially replicates in interferon deficient cells [88]. 

Additionally, due to VSV-G’s broad tissue tropism [1] and ability to express foreign genes 

[14] it can naturally infect a wide range of cells and be further targeted for specific cancer 

cell receptors or genes.
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Numerous approaches have been taken to use VSV as an anti-cancer therapy (reviewed in 

[89]). Two recombinant VSV examples will be discussed here. In one, VSV-G was replaced 

with the Sindibis Virus glycoprotein modified to targeted the Her2/neu receptor, which is 

commonly overexpressed on breast cancer cells [90]. This virus, called rrVSV, protected 

mice in a Her2/neu receptor-dependent manner and, upon rechallenge with tumor cells 

lacking the Her2/neu receptor, some mice previously treated with rrVSV were protected 

from tumor regrowth, showing that they gained immunity against the tumor cells 

themselves. Another strategy used VSV-G in Moloney murine leukemia virus (MoMLV) 

either with or without the Gibbon ape leukemia virus (GALV) env gene [91]. These 

recombinant viruses both induced syncytia formation and cell death in various cell lines in 
vitro, highlighting their potential use as an anti-cancer therapy.

Limitations—As discussed above, VSV is typically used as a replication competent virus 

since it does not typically cause disease in humans. However, there is a concern for 

immunocompromised individuals and pregnant women who are more susceptible to 

infection from even attenuated live viruses. While some studies have tested the safety of 

these vectors in immunocompromised populations, such as VSV-ZEBOV trials in patients 

with HIV [83], there are many different immunocompromising conditions and more wide-

spread testing should be conducted. Another concern when using replication competent 

VSV vectors is that much of the world is not endemic to VSV, and introducing live virus to 

these areas could have consequences for wildlife there, given that VSV causes disease in 

cattle, horses, and swine [1,6]. To address these concerns, testing needs to be done to ensure 

that these vectors will not undergo mutations resulting in restoration of virus pathogenesis. 

Using inactivated VSV-based vaccines, a strategy shown to induce immunogenicity in mice, 

could potentially overcome both of these issues [92,93].

Conclusions

As demonstrated throughout this review, RABV and VSV are attractive candidates for 

vaccine vectors. RABV and VSV are both well-studied and have well-established reverse 

genetics recovery systems [10,11] that can be used in combination with genome 

manipulation. This allows for foreign gene expression and incorporation into Rhabdovirus 

virions [13,14]. Both vectors have been successful vaccine vectors, as illustrated through the 

current use of the rabies vaccine world-wide [21] and FDA approval of VSV-ZEBOV [17]. 

Additionally, both vectors have excellent safety profiles for manufacturing and 

administration. Thus, in spite of the necessity of live virus handling during their production 

and other limitations, these viruses have a wide range of applications. Future studies are 

needed to see whether some of these limitations can be addressed. Overall, RABV and VSV 

are suitable vectors for the development of vaccines and other therapeutics.
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Figure 1. Rhabdoviral reverse genetics virus recovery system.
Diagram of virus recovery through cDNA reverse genetics system, exemplified by RABV. 

Abbreviations are defined as follows: Nucleoprotein (N), Phosphoprotein (P), Matrix Protein 

(M), Glycoprotein (G), RNA-dependent RNA polymerase (L), Cytomegalovirus (CMV), 

Open Reading Frame (ORF), T7 Polymerase (T7 Pol), RNA Polymerase (RNAP), Leader 

(le), Trailer (tr). Figure adapted from Davis, B.M. (unpublished).

Scher and Schnell Page 20

Curr Opin Virol. Author manuscript; available in PMC 2021 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Incorporation of foreign protein into Rhabdovirus.
Diagram of how genetic engineering leads to foreign protein incorporation into rhabdovirus 

virions, exemplified by RABV. Abbreviations are defined as follows: Nucleoprotein (N), 

Phosphoprotein (P), Matrix Protein (M), Glycoprotein (G), RNA-dependent RNA 

polymerase (L). Figure adapted from Davis, B.M. et al. 2015 [184].
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Figure 3. Schematic of replication competent vs. replication deficient rhabdoviruses.
Top panel shows replication competent rhabodovirus that encodes for all five rhabdoviral 

proteins is able to undergo multiple rounds of infection. Bottom panel shows a replication 

deficient rhabdovirus whose genome does not encode for a glycoprotein. This virus can only 

undergo one round of infection unless the missing gene is supplemented, as illustrated by the 

cell expressing the blue glycoproteins. Abbreviations are defined as follows: Nucleoprotein 

(N), Phosphoprotein (P), Matrix Protein (M), Glycoprotein (G), RNA-dependent RNA 

polymerase (L). Created with BioRender.com
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Table 1.
RABV-based vaccine candidates.

Vaccines are listed chronologically, by the type of vaccine and the target antigen used.

Vaccine Type Vaccine Target Refs.

Live attenuated and inactivated Severe Acute Respiratory Syndrome Coronavirus 2 S1 Spike Protein [52]

Inactivated Rift Valley Fever Virus Glycoprotein [50]

Inactivated Marburg Virus Glycoprotein [94]

Inactivated Nipah Virus Glycoprotein [95]

Inactivated Lassa Fever Virus Glycoprotein [18]

Replication-deficient Lymphocytic Choriomeningitis Virus Glycoprotein [48]

Live attenuated Lagos Bat Virus Glycoprotein [47]

Inactivated Middle East Respiratory Syndrome Coronavirus Spike Protein [96]

Inactivated Canine Distemper Virus Glycoproteins [97]

Live attenuated and inactivated Canine Parvovirus Virion Protein 2 [98]

Live attenuated and inactivated Hendra Virus Glycoprotein [92]

Live attenuated Canine Distemper Virus Hemagglutinin Protein [99]

Inactivated Botulinum Neurotoxins, serotypes /A, /B and /E [100,101]

Live attenuated and inactivated Ebola Virus Glycoprotein [49,102–105]

Live attenuated Gonadotropin-Releasing Hormone (Immunocontraception) [106]

Inactivated Anthrax Protective Antigen [51]

Live attenuated Severe Acute Respiratory Syndrome Coronavirus Spike Protein [107]

Replication-deficient Simian Immunodeficiency Virus Env Protein [108]

Live attenuated Simian Immunodeficiency Virus GagPol Proteins [109]

Live attenuated Simian Immunodeficiency Virus Gag Protein [110]

Live attenuated Simian-Human Immunodeficiency Virus Env Protein [110]

Live attenuated HIV Env Protein [111,112]

Live attenuated HIV Chimeric Env Protein (gp120/gp41) [113]

Live attenuated HIV Gag-Pol or Gag-Pol and Env Proteins [114]

Live attenuated and inactivated Hepatitis C Envelope Proteins [115]

Live attenuated HIV Gag Protein [45,112,116–118]

Inactivated Rabies, Mokola and European bat lyssavirus 1 glycoproteins [119]

Replication-deficient Mokola Virus Glycoprotein [120]
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Table 2.
VSV-based vaccines candidates.

Vaccines are listed chronologically, stating the type of vaccine and the target antigen used.

Vaccine Type Vaccine Target Refs.

Live attenuated Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein [85,86]

Live attenuated Andes Virus and Sin Nombre Virus Glycoproteins [121]

Live attenuated Crimean-Congo Hemorrhagic Fever Virus Glycoprotein [122]

Live attenuated Porcine Epidemic Diarrhea Virus Spike Protein [123]

Live attenuated Ebola Virus Glycoprotein and Zika Virus Pre-
Membrane and Envelope Proteins or Pre-Membrane and Soluble Envelope Proteins

[124]

Live attenuated Chikungunya Virus Envelope Polyprotein and Zika Virus Membrane-Envelope 
Glycoproteins

[125]

Live attenuated Zika Virus Capsid Protein [126]

Live attenuated Middle East Respiratory Syndrome Coronavirus Spike Protein [127]

Replication deficient Ebola Virus Glycoprotein [128]

Live attenuated Venezuelan Equine Encephalitis Virus E2/E1 Glycoproteins [129]

Live attenuated Zika Virus Envelope Protein [130]

Live attenuated Enterovirus 71 VP1 Protein [131]

Live attenuated Dengue-2 Virus Pre-membrane and Envelope Proteins [132]

Live attenuated Porcine Reproductive and Respiratory Syndrome
Virus Envelope Proteins GP5, M, GP4, GP3, GP2 and Nucleocapsid Protein

[133]

Live attenuated Lassa Virus Glycoprotein [134]

Replication deficient Mycobacterium ulcerans Proteins MUL2232 and MUL3720 [135]

Live attenuated and inactivated Hendra Virus Glycoprotein [92]

Live attenuated Nipah Virus Glycoprotein [136]

Live attenuated Bluetongue Virus Serotype 8 VP2 Protein [137]

Live attenuated Coxsackievirus B3 VP1 Protein [138]

Live attenuated Bundibugyo Ebolavirus Glycoprotein [78]

Live attenuated Andes Virus Glycoprotein [139]

Live attenuated Simian Retrovirus Type 2 Gag and Env Proteins [140]

Live attenuated Human Norovirus VP1 Protein [141,142]

Live attenuated Hepatitis B Virus Middle Envelope Surface Protein [143,144]

Live attenuated Vaccinia Virus B5R and L1R Proteins [145]

Live attenuated Human Immunodeficiency Virus gp160 Protein [146]

Live attenuated Influenza Virus Nucleoprotein and Hemagglutinin Protein [147,148]

Replication deficient Highly Pathogenic Avian Influenza Virus Hemagglutinin Protein [149,150]

Live attenuated West Nile Virus Envelope Glycoprotein [151]

Replication deficient Severe Acute Respiratory Syndrome Coronavirus Spike Protein [152]

Live attenuated Sudan Ebolavirus Glycoprotein [153]

Live attenuated Murine Cytomegalovirus Glycoprotein B [154]

Live attenuated Mycobacterium tuberculosis Ag85A Protein [68]
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Vaccine Type Vaccine Target Refs.

Live attenuated Human Paillomavirus Type 16 E7 Protein [155]

Live attenuated Human Immunodeficiency Virus Gag Protein [156,157]

Live attenuated Cottontail Rabbit Papillomavirus E1, E2, E6 and E7 Proteins [158]

Live attenuated Cottontail Rabbit Papillomavirus Early Protein E6 [159,160]

Live attenuated Yersinia pestis LcrV protein [161,162]

Live attenuated Human Immunodeficiency Virus gp120 Protein [163]

Live attenuated and replication 
deficient

Human Immunodeficiency Virus Env Protein [164]

Live attenuated Marburg Virus Glycoprotein [72,73,165]

Live attenuated Ebola Virus Glycoprotein [72,73]

Live attenuated Severe Acute Respiratory Syndrome Coronavirus Spike Protein [166]

Live attenuated Human Immunodeficiency Virus gp41 and Porcine Endogenous Retrovirus p15E 
Proteins

[167]

Live attenuated Simian Immunodeficiency Virus-Human
Immunodeficiency Virus Env, Gag and Pol proteins

[168,169]

Live attenuated Cottontail Rabbit Papillomavirus L1 Protein [170,171]

Live attenuated Hepatitis C Virus Glycoproteins [172]

Live attenuated and replication 
deficient

Respiratory Syncytial Virus G and F Proteins [173,174]

Live attenuated Bovine Viral Diarrhea Virus E2 Glycoprotein [175]

Live attenuated Measles Virus Hemagglutinin Protein [176,177]

Live attenuated Human Immunodeficiency Virus Env and Gag Proteins [69,178,179]

Live attenuated Influenza HA Protein [93,180,181]

Live attenuated Human Immunodeficiency Virus Env Protein [111,182,183]
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