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Abstract
Plant responses to pathogen attacks and high-temperature stress (HTS) are distinct in nature but generally share several sig-
naling components. How plants produce specific responses through these common signaling intermediates remains
elusive. With the help of reverse-genetics approaches, we describe here the mechanism underlying trade-offs in pepper
(Capsicum annuum) between growth, immunity, and thermotolerance. The NAC-type transcription factor CaNAC2c was in-
duced by HTS and Ralstonia solanacearum infection (RSI). CaNAC2c-inhibited pepper growth, promoted immunity
against RSI by activating jasmonate-mediated immunity and H2O2 accumulation, and promoted HTS responses by activating
Heat shock factor A5 (CaHSFA5) transcription and blocking H2O2 accumulation. We show that CaNAC2c physically
interacts with CaHSP70 and CaNAC029 in a context-specific manner. Upon HTS, CaNAC2c–CaHSP70 interaction in the nu-
cleus protected CaNAC2c from degradation and resulted in the activation of thermotolerance by increasing CaNAC2c
binding and transcriptional activation of its target promoters. CaNAC2c did not induce immunity-related genes under HTS,
likely due to the degradation of CaNAC029 by the 26S proteasome. Upon RSI, CaNAC2c interacted with CaNAC029 in the
nucleus and activated jasmonate-mediated immunity but was prevented from activating thermotolerance-related genes.
In non-stressed plants, CaNAC2c was tethered outside the nucleus by interaction with CaHSP70, and thus was unable to acti-
vate either immunity or thermotolerance. Our results indicate that pepper growth, immunity, and thermotolerance are coor-
dinately and tightly regulated by CaNAC2c via its inducible expression and differential interaction with CaHSP70 and
CaNAC029.

Introduction

In their natural habitats, plants are continuously exposed to
biotic and abiotic stresses, either individually or in

combination. Plants, therefore, need to appropriately cope
with these challenges to maximize fitness by prioritizing the
allocation of limited recourses between growth and response
to stress. The resulting trade-off is thought to be regulated
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by crosstalk between signaling pathways (Fujita et al., 2006;
Sharma et al., 2013; Nejat and Mantri, 2017) and is likely to
be modulated according to dynamic changes in the severity
of different stresses (Lozano-Duran et al., 2013). However,
the nature of the involved factors and their possible modes
of action remain elusive.

High-temperature stress (HTS) and pathogen attack are
frequently encountered by plants growing in tropical or sub-
tropical climates and lead to severe retardation in growth
and development, sometimes even death. Under the con-
stant selective pressure of these stresses, plants have evolved
sophisticated defense systems. Upon pathogen infection,
conserved, and ubiquitous receptors—generally termed pat-
tern recognition receptors (PRRs)—at the plant plasma
membrane and fast-evolving intracellular R proteins perceive
pathogen-derived pathogen-associated molecular patterns
(PAMPs) and effectors, thereby activating PAMP-triggered
immunity (PTI) and effector-triggered immunity (ETI), re-
spectively (Jones and Dangl, 2006). Under these conditions,
plant cells undergo a global reprogramming of their metabo-
lism and adopt a defense mode rather than a growth mode.
Plant immune responses generally include the production of
reactive oxygen intermediates (ROIs) such as superoxide an-
ion (O�2 ), nitric oxide (NO), and hydrogen peroxide (H2O2;
Schreck and Baeuerle, 1991; Chandra et al., 1996; McDowell
and Dangl, 2000) leading to a hypersensitive response (HR;
Dangl, 1998; Delledonne et al., 2001). In addition, infected
plants produce antimicrobial compounds (Jabs et al., 1997)
and pathogenesis-related proteins (Fobert and Després,
2005; Breen et al., 2017) to fight off the infection.

Unlike immune responses initiated by pathogen infection
mainly at the cell surface, plants perceive heat via sensors in
various cellular locations such as plasma membrane-localized
channels, a histone variant sensor in the nucleus, unfolded
protein sensors in the endoplasmic reticulum (ER), and the
cytosol, the red light photoreceptor phytochrome B (PhyB)
and ER membrane-associated basic leucine zipper transcrip-
tion factors (Mittler et al., 2012; Srivastava et al., 2014; Song
et al., 2017). These thermosensors activate thermotolerance
by inducing the production of Heat Shock Proteins (HSPs)
that act as chaperones to help resolubilize protein aggre-
gates after heat stress, as well as the biosynthesis of antioxi-
dants or reactive oxygen species (ROS) scavengers that offer
protection from oxidative damage (Kotak et al., 2007; Chen
et al., 2016; Yu et al., 2019).

Although the two pathways involve distinct sensors, plant
responses to pathogens and HTS share signaling compo-
nents such as Ca2þ signaling, ROS, phytohormones such as
jasmonic acid (JA) and salicylic acid (SA; Li et al., 2011; Liu
et al., 2015a, 2015b) and Nucleotide Binding Site (NBS)-
Leucine-Rich Repeat (LRR) proteins (Kim et al., 2015). This
overlap hints at the potential for extensive trade-off be-
tween plant responses to pathogens and HTS. Indeed, these
two processes have been suggested to be closely related
(Lee et al., 2012): for example, plant immunity is generally
dampened by HTS (Janda et al., 2019). Specific defense

responses will thus require the selective activation of the ap-
propriate shared components. However, how these crucial
regulators achieve their specific regulation and maintain a
balance between plant responses to HTS and pathogen at-
tack remains largely unknown.

Given that plant defense responses against pathogen
attacks or HTS generally include massive transcriptional
reprogramming, transcription factors (TFs) are likely to act
as crucial players in these processes (Hua, 2009; Moore et al.,
2011; Fragkostefanakis et al., 2015; Liu et al., 2015a; Xue et
al., 2015; Du et al., 2017; Birkenbihl et al., 2018). However,
the precise roles of TFs in balancing plant responses to
pathogen attacks and HTS and the underlying molecular
details remain to be elucidated. The No Apical Meristem
(NAM)/Arabidopsis Transcription Activation Factor (ATAF)/
Cup-Shaped Cotyledon (CUC) NAC family of TFs constitute
one of the largest plant TF families. They are characterized
by a conserved N-terminal NAC domain and a diversified C-
terminal transcription regulatory region and have been clas-
sified into eight subfamilies (Puranik et al., 2012). NAC TFs
are implicated in the regulation of plant responses to stress
conditions via binding a specific recognition site [CGT (G/
A)] in the promoters of their target genes (Fang et al., 2016;
Khedia et al., 2018). NAC TFs involved in stress responses
belong to one subgroup (Fang et al., 2008; Nakashima et al.,
2012; Negi et al., 2018). Although NAC proteins clearly par-
ticipate in plant responses to heat stress or thermotolerance
(Guan et al., 2014; Fang et al., 2015; Dong et al., 2020; Liu et
al., 2020) and plant immunity (Perochon et al., 2019; Chang
et al., 2020), to date, no individual NAC TF has been dem-
onstrated to influence the balance between plant immunity
and heat stress response.

A typical example of balance (or trade-off) between plant
immunity and heat stress responses comes from pepper, a
member of the Solanaceae family and a vegetable of great
agricultural importance worldwide. Pepper originated from
the tropical and subtropical regions of Central and South
America and is widely grown during the warm seasons or in
greenhouses, where it frequently suffers from bacterial wilt
caused by Ralstonia solanacearum infections, a soil-borne
pathogen that invades plants exclusively through their roots
(Mansfield et al., 2012; Jiang et al., 2017). Pepper plants are
also routinely exposed to HTS, causing severe growth retar-
dation (Usman et al., 2014). We have shown previously that
pepper responses to infection by R. solanacearum and HTS
share a number of components, including calcium-depen-
dent protein kinase 15 (CaCDPK15; Shen et al., 2016), the
WRKY TFs CaWRKY6 (Cai et al., 2015), and CaWRKY40
(Dang et al., 2013), as well as the TF basic region/leucine zip-
per motif 63 (CabZIP63; Shen et al., 2016).

In the present study, we demonstrate that CaNAC2c, a
member of the NAC family in pepper, not only participates
in the regulation of pepper responses to RSI and HTS but
also in the regulation of the trade-off between growth and
responses to HTS or R. solanacearum infection (RSI). In addi-
tion, CaNAC2c acts as a crucial regulator coordinating
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growth, immunity, and thermotolerance at both the tran-
scriptional and post-transcriptional levels by differential and
context-specific interactions with CaNAC029 and CaHSP70.

Results

Expression profiling of pepper NAC genes during
HTS and RSI
It was previously shown that NAC TFs that play roles during
plant response to heat stress or pathogen attack can be identi-
fied based on their transcriptional signature in response to
these stresses (Nakashima et al., 2012). To identify candidate
pepper NAC genes involved in coordinating responses to HTS
and RSI, we explored the expression profiles of 90 NAC genes
in pepper plants exposed to HTS and to RSI based on publicly
available data from Pepper Hub (http://www.hnivr.org/; Liu et
al., 2017) and our unpublished transcriptome deep-sequencing
(RNA-seq) data. One NAC gene (Capana06g001739) was upre-
gulated by both HTS and RSI (Supplemental Figure S1, A). We
validated the observed upregulation of this gene by RT-qPCR
analysis on root samples collected from pepper plants chal-
lenged with RSI or HTS (Supplemental Figure S1, B). This NAC
and three closely related NAC genes encoded proteins with a
conserved N-terminal NAC domain and a diversified C-termi-
nal transcription regulatory (TR) region (Supplemental Figure
S2, A). They shared the highest sequence identity with
Arabidopsis (Arabidopsis thaliana) NAC2 (Supplemental Figure
S2, B and Supplemental Table S2). Accordingly, we named
these genes CaNAC2a to CaNAC2d, CaNAC2c being induced
by both HTS and RSI. CaNAC2c and CaNAC2d showed a se-
quence identity of 73%, the highest among these four NAC
genes (Supplemental Figure S2, C and D). We explored the re-
sponse of these four NAC2-like genes to HTS and RSI in our
RNA-seq dataset of pepper plants challenged with RSI:
CaNAC2c was strongly up-regulated by both HTS and RSI.
Notably, CaNAC2d was only induced by RSI in roots
(Supplemental Figure S2, E). NAC TFs can exhibit different sub-
cellular localizations (Mathew et al., 2016). To determine where
CaNAC2c resides in the cell, we overexpressed 35Spro:Yellow
Fluorescent Protein (YFP) or 35Spro:CaNAC2c-YFP in Nicotiana
benthamiana leaf epidermal cells. We detected YFP fluores-
cence exclusively in the nucleus for CaNAC2c-YFP, whereas free
YFP was observed throughout the cell, including the cytosol
and the nucleus, indicating that CaNAC2c is a nucleus-localized
protein (Supplemental Figure S3).

CaNAC2c is a positive regulator of thermotolerance
and R. solanacearum resistance but a negative
regulator of plant growth
To determine the role of CaNAC2c in response to HTS or RSI,
we first performed a loss-of-function assay by gene silencing
using virus-induced gene silencing(VIGS), to avoid the possi-
ble off-targeting, we selected two specific fragments in the 30-
UTR and the open reading frame(ORF) of CaNAC2c for vec-
tor construction, the result showed that CaNAC2c transcript

levels were greatly reduced by two distinct vectors targeting
different portions of the CaNAC2c mRNA (Supplemental
Figure S4, A and B). To detect the specificity of the CaNAC2c
silencing, we tested the transcript levels of CaNAC07,
CaNAC08, and CaNAC59 that belong to different NAC sub-
family in pepper genome, and found that the silencing of
CaNAC2c did not reduce the transcript levels of the tested
genes compared to the mock treatment(Supplemental Figure
S5), indicating the specificity of CaNAC2c silencing. Upon ex-
posure to HTS, CaNAC2c-silenced plants exhibited decreased
basal and acquired thermotolerance, as evidenced by a pro-
nounced wilting phenotype and high mortality rates (Figure
1, A and B). CaNAC2c-silenced plants also displayed increased
ion leakage in response to HTS, as measured by conductivity,
relative to control plants transformed with the empty pTRV
vector (TRV:00, Supplemental Figure S4, C and D). In addi-
tion, DAB and NBT staining revealed much higher levels of
H2O2 and ROS accumulation, respectively, in the leaves and
stems of CaNAC2c-silenced plants compared to the control
plants (Supplemental Figure S4, E and F). In agreement with
these physiological responses, CaNAC2c-silenced plants were
more affected by HTS than control plants, as seen by lower
Fv/Fm and photosystem II (PSII) photochemical efficiency in
the light (aPSII), indicator of thermotolerance and thermosta-
bility of the photosynthetic apparatus, respectively (Yan et al.,
2008; Wang et al., 2014; Guan et al., 2018) immediately after
HTS (Figure 1, C and D). In a complementary approach, we
generated N. benthamiana lines overexpressing CaNAC2c
(CaNAC2c-OE). We generated transgenic N. benthamiana
plants of 35S:CaNAC2c, a total of eight T0 plants were ac-
quired, by strict self-pollination, their corresponding T1 and
T2 lines were acquired. Two T2 lines, CaNAC2c-OE1# and
CaNAC2c-OE2#, with high levels of CaNAC2c transcripts, were
selected for further assay. In contrast to pepper plants si-
lenced for CaNAC2c, these N. benthamiana CaNAC2c-OE
plants were more tolerant to HTS compared to wild type
(Supplemental Figure S6 and S7), indicating that CaNAC2c
acts as a positive regulator in basal and acquired thermotoler-
ance. To evaluate the role of CaNAC2c in the regulation of
thermotolerance in different pepper germplasms, we silenced
CaNAC2c comparatively in GZN13 (a heat-sensitive inbred
line), HN42, and 79 (an inbred line with high level of thermo-
tolerance), we found that these silencings all significantly re-
duced thermotolerance of the three pepper lines
(Supplemental Figure S8).

To investigate the function of CaNAC2c in response to
RSI, we inoculated TRV control plants and CaNAC2c-si-
lenced pepper plants with R. solanacearum, but observed no
differences (Data has been exposed to CNGB: https://db.
cngb.org/search/?q¼CNP0001104). By contrast, we noticed
clear wilting symptoms in N. benthamiana plants challenged
with RSI at 7 dpi (days post-inoculation), whereas N. ben-
thamiana CaNAC2c-OE plants exhibited only slight wilting
symptoms, as shown by the lower disease index values and
lower R. solanacearum titer (Figure 1, E and Supplemental
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Figure 1 Phenotypes associated with CaNAC2c silencing in pepper plants and overexpression in N. benthamiana plants on thermotolerance and
resistance to RSI (R. solanacearum infection). A, CaNAC2c-silenced pepper plants display reduced basal (BT) and acquired (AT) thermotolerance
(pretreated with 37�C for 12 h and recovery for 12 h). B, Plant mortality (24 plants were calculated) exposed to HTS from 1 to 42 h post-treatment
(hpt). C, Fv/Fm and �F/Fm0 in leaves of CaNAC2c-silenced pepper plants challenged with HTS. D, Fv/Fm and �F/Fm0 in leaves of CaNAC2c-si-
lenced pepper plants challenged with HTS by dipping half of the leaf in water set to 42�C. E, Increased resistance of N. benthamiana plants overex-
pressing CaNAC2c to RSI relative to control plants. F and G, Simultaneous silencing of CaNAC2c and CaNAC2d produces an additive decrease in
the resistance of pepper plants to RSI (24 plants were calculated for disease index). H, Height of CaNAC2c-silenced and control pepper plants. I,
Root length of CaNAC2c-silenced and control pepper plants. J, Overall morphology of CaNAC2c-silenced and control pepper plants 35 d after sow-
ing. In E, F, and J, the images were digitally extracted. In (C, D, G, H, and I), data presented are means 6 standard error (SE) of four replicates, dif-
ferent capital letters indicate significant differences among means (P< 0.01), as calculated with Fisher’s protected LSD test.
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Figure S9). The silencing of CaNAC2c did not result in obvi-
ous symptoms upon RSI, while its overexpression in N. ben-
thamiana plants did promote immunity against RSI,
suggesting that CaNAC2c may function redundantly with
other factors in response to RSI. As CaNAC2c was highly re-
lated to CaNAC2d and both genes were upregulation by RSI
(Supplemental Figure S2), we hypothesized that they may
act redundantly. To test this hypothesis, we silenced both
CaNAC2c and CaNAC2d in pepper and measured the re-
sponse of these plants to RSI and HTS. Although the silenc-
ing of CaNAC2d alone did not significantly affect
thermotolerance or immunity against RSI, the combined si-
lencing of CaNAC2c and CaNAC2d produced clear wilting
symptoms as early as 3 dpi and reaching the highest disease
index value at 8 dpi, while plants silenced for either gene in-
dividually behaved as control plants (Figure 1, F and G and
Supplemental Figure S10). Collectively, these results indicate
that CaNAC2c and CaNAC2d function redundantly in pep-
per immunity against RSI.

Notably, CaNAC2c-silenced plants grew larger than the
control plants: CaNAC2c-silenced plants were taller, had lon-
ger roots, stems, and leaves, produced more leaves and flow-
ers (Figure 1, H–J and Supplemental Figure S11). While
lowering CaNAC2c expression improved plant fitness, raising
CaNAC2c expression had the opposite effect, as seen in N.
benthamiana CaNAC2c-OE plants and their smaller leaves,
shorter roots and stems, fewer flowers, and leaves
(Supplemental Figure S12), supporting the role of CaNAC2c
as a negative regulator of plant growth.

CaNAC2c-mediated resistance to RSI is repressed
upon HTS by ABA signaling
To better understand how CaNAC2c enhances thermotoler-
ance and improves resistance to RSI, we measured relative
transcript levels for a number of marker genes in CaNAC2c-
silenced pepper plants, N. benthamiana CaNAC2c-OE plants
upon HTS, and in the leaves of pepper plants transiently
overexpressing CaNAC2c (CaNAC2c-TO). CaNAC2c silencing
was accompanied by the significant down-regulation of the
thermotolerance marker genes Heat Shock Protein 24
(CaHSP24) and CaHSP70, as well as Heat Shock Factor B2a
(CaHSFB2a; Ashraf et al., 2018; Supplemental Figure S13, A).
In contrast, relative transcript levels of thermotolerance-re-
lated N. benthamiana genes ASCORBATE PEROXIDASE
(NbAPX), NbHSP18, and NbsHSP rose in CaNAC2c-OE in N.
benthamiana plants relative to control plants (Supplemental
Figure S6, D), and their upregulation was amplified by HTS.

Furthermore, by exogenous application of ABA (or
Furidon), SA, or JA, whose success was confirmed by tran-
script levels of CaABR1 (Choi and Hwang, 2011), CaPR1
(Kim and Hwang, 2014), and CaCOI1 (Hu et al., 2013), re-
spectively (Supplemental Figure S14), the association of
CaNAC2c to signaling mediated by ABA, SA, or JA was
assayed. We established that transcription of CaNAC2c was
upregulated both by an exogenous application of abscisic
acid (ABA) and by HTS, based on b-glucuronidase (GUS)

activity from a CaNAC2c pro:GUS reporter construct.
Notably, the higher transcription rate of CaNAC2c in re-
sponse to HTS was blocked by treatment of fluridon, an in-
hibitor of ABA biosynthesis (Figure 2, A). These data suggest
that the role of CaNAC2c in promoting thermotolerance is
regulated by ABA signaling. In addition, CaNAC2c transcrip-
tion was upregulated by exogenously applied methyl jasmo-
nate (MeJA) but not by that of salicylic acid (SA; Figure 2,
B). To test the possible regulation of ABA signaling in im-
munity and thermotolerance mediated by CaNAC2c, we
detected the effect of exogenously applied ABA and fluridon
on response CaNAC2c overexpressing Nicotiana benthami-
ana plants to RSI and to HTS, respectively, we found that
exogenous application of ABA significantly increased the
susceptivity of CaNAC2c overexpressing Nicotiana benthami-
ana plants to RSI (Figure 2, C), and the exogenous applica-
tion of fluridon significantly reduced the tolerance of
Nicotiana benthamiana plants to HTS (Figure 2, D), consis-
tently, the exogenous application of ABA did not restore
thermotolerance reduced by CaNAC2c silencing in pepper
plants (Figure 2, E) indicating that ABA signaling acts posi-
tively in thermotolerance but negatively in immunity against
RSI, and CaNAC2c might act downstream ABA signaling.

We also discovered that CaNAC2c-TO triggered HR-like
cell death (Figure 2, F) at room temperature, resulting in the
higher level of H2O2 accumulation upon RSI (Figure 2, G),
which was also revealed by DAB staining, but this response
was abolished by exogenous ABA treatment (Figure 2, F–H).
In contrast, at 37�C, CaNAC2c-TO did not induce any cell
death but reduced the accumulation of H2O2, although an
exogenous application of fluridon restored cell death (Figure
2, F and G). These results suggest that ABA may prevent
the activation of cell death induced by CaNAC2c at 37�C,
and CaNAC2c-mediated resistance to RSI is repressed by
ABA signaling at high temperature.

Turning to pepper plants transiently overexpressing
CaNAC2c, JA signaling dependent gene DEFENSIN 1 (CaDEF1;
Choi et al., 2008; Germain et al., 2012; Choi et al., 2015; Kim
et al., 2015; Zhang et al., 2018), CaCoI1 (Hu et al., 2013), two
lipoxygenase genes CaLOX14 (Sarde et al., 2018), CaLOX31
(Sarde et al., 2019) with the most obvious response to
Ralstonia solanacearum infection in pepper by data of our
RNA-seq (Supplemental Figure S15) as well as by that of
Dang et al. (2013), which encode enzyme crucial for JA bio-
synthesis, a hypersensitive response (HR)-related gene hyper-
sensitive-induced reaction 1 (CaHIR1; Jung et al., 2008) were
all upregulated by RSI as well as by overexpression of
CaNAC2c at room temperature, but these upregulations
were blocked by the exogenous application of ABA (Figure
2, I), while CaHSP24 that is related to thermotolerance,
CaAPX (Wang et al., 2017) that is related to scavenger of
ROS including H2O2, and ABA signaling related CaABI5
(Lopez-Molina et al., 2002) were similarly upregulated by
overexpression of CaNAC2c in the absence of R. solanacae-
rum at room temperature, and these upregulations were po-
tentiated by exogenous application of ABA (Figure 2, I). The
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Figure 2 CaNAC2c Resistance to RSI is Repressed upon HTS. A and B, Activity of the CaNAC2cpro:GUS reporter to the application of SA (2 mM),
ABA (30 lM), MeJA (10 lM), fluridon (10 lM) or HTS. Agrobacterium cells carrying the CaNAC2cpro:GUS reporter were infiltrated into pepper
plants leaves, and GUS activity measured after HTS, fluridon, or phytohormones at 24 hpt (CK: pepper plants leaves infiltrated with GV3101 cells
carrying pMDC-163). C, Effect of exogenous application of ABA on-resistance of CaNAC2c overexpressing N. benthamiana plants to Ralstonia sola-
nacearum infection. D, Effect of the exogenously applied fluridon on acquired thermotolerance of CaNAC2c overexpressing N. benthamiana plants.
E, Effect of exogenous application of ABA on thermotolerance of CaNAC2c-silenced pepper plants. F, HR-like cell death lesions at room tempera-
ture or under HTS triggered by transient overexpression of CaNAC2c or exogenous application of fluridon or ABA. G, H2O2 accumulation, dis-
played by DAB staining in CaNAC2c transiently overexpressing pepper leaves challenged with RSI, HTS, or with fluridon under HTS. H, H2O2

accumulation in CaNAC2c transiently overexpressing pepper leaves challenged with RSI, ABA, HTS, or with fluridon under HTS (F: fluridon). I,
Transcript level of CaDEF1, CaCOI1, CaLOX14, CaLOX31, CaHIR1, CaHSP24, CaAPX, or CaABI5 in CaNAC2c transiently overexpressing pepper leaves
challenged with RSI, ABA, or with ABA under RSI. J, Transcript level of CaDEF1, CaCOI1, CaLOX14, CaLOX31, CaHIR1, CaHSP24, CaAPX, or CaABI5
in CaNAC2c transiently overexpressing pepper leaves challenged with HTS or with fluridon under HTS (F: fluridon). In C–E, the images were digi-
tally extracted. Data presented are means 6 standard error (SE) of four replicates. In A, B, H, I, and J, different capital letters indicate significant dif-
ferences among means (P< 0.01), as calculated with Fisher’s protected LSD test.
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upregulation of CaLOX14 by overexpression of CaNAC2c
upon RSI was much higher than that of CaLOX31, indicating
that the biosynthesis of JA upon RSI is mainly determined
by CaLOX14. Upon HTS plus exogenous fluridon, the overex-
pression of CaNAC2c failed to upregulate CaHSP24, CaAPX,
or CaABI5, but upregulated all of the tested immunity-re-
lated marker genes (Figure 2, J). All these data suggest that
ABA signaling positively regulates thermotolerance but nega-
tively regulates immunity against RSI.

Consistently, the thermotolerance related CaHSP24,
CaHSP70, and CaHSFB2a were not downregulated by silenc-
ing of CaNAC2d, their transcript levels in CaNAC2c silencing
were similar to that in CaNAC2c and CaNAC2d simulta-
neously silenced pepper plants (Supplemental Figure S13, B).
In contrast, transcript levels of CaDEF1 were not downregu-
lated by silencing of either CaNAC2c or CaNAC2d, but were
significantly decreased by simultaneous silencing of
CaNAC2c and CaNAC2d, indicating that CaNAC2c and
CaNAC2d function redundancy in pepper immunity against
RSI mediated by JA signaling.

CaHSFA5 is directly targeted by CaNAC2c upon HTS
but not RSI
When we performed a co-expression analysis in Pepper Hub
(http://www.hnivr.org/; Liu et al., 2017), we noticed that
CaHSFA5 was co-expressed with CaNAC2c under HTS
(Supplemental Table S4). To test if CaHSFA5 is a target of
CaNAC2c, we determined whether CaNAC2c would bind to
the CaHSFA5 promoter by chromatin immunoprecipitation
followed by PCR or qPCR (ChIP-PCR or ChIP-qPCR; Figure 3,
A). Indeed, we amplified a fragment of the CaHSFA5 pro-
moter with a specific primer pair flanking a predicted NAC
TF binding site, but not with a control primer pair directed
at a region free of NAC TF binding site, indicating that
CaNAC2c directly targets CaHSFA5 (Figure 3, B and C).
Moreover, HTS significantly enhanced the binding of
CaNAC2c to the CaHSFA5 promoter fragment (Figure 3, B
and C). We validated the binding of CaNAC2c to its puta-
tive binding site in the CaHSFA5 promoter in vitro by micro-
scale thermophoresis (MST) assay (Figure 3, D). Likewise,
recombinant CaNAC2c-GST was able to bind the CaHSFA5
promoter in electrophoretic mobility shift assays (EMSA), via
the cis-element CATGTG, as mutating it to GGGGGG pre-
vented binding (Figure 3, E). As expected from their co-ex-
pression, CaHSFA5 transcript levels decreased when
CaNAC2c was silenced in pepper plants challenged with
HTS, and was upregulated by the transient overexpression
of CaNAC2c. Similarly, NbHSFA5, the presumptive CaHSFA5
ortholog in N. benthamiana, was up-regulated in N. ben-
thamiana CaNAC2c-OE plants (Figure 3, F and G). These
results indicate that CaHSFA5 is directly and positively regu-
lated by CaNAC2c upon HTS.

To assay the role of CaHSFA5 in pepper thermotolerance
and immunity against RSI, we generated CaHSFA5-silenced
pepper plants via VIGS (Figure 4, A). Similar to CaNAC2c,
CaHSFA5 acted as a negative regulator of plant growth, as

CaHSFA5-silenced plants had larger leaves, as well as longer
stems and roots (Supplemental Figure S16). In addition,
CaHSFA5-silenced plants were more sensitive to heat stress
compared to control plants, with or without pre-treatment
with a nonlethal HTS, as evidenced by the higher mortality
rates and lower Fv/Fm and �F/Fm0 (Figure 4, B–E). Upon
monitoring the expression of marker genes, we observed
that silencing of CaHSFA5 blocked the induction of CaHSP24
and CaHSP70 expression by HTS but did not affect CaDEF1,
indicating that CaHSFA5 acts as a positive regulator specifi-
cally in thermotolerance (Figure 4, I and K). As might be
expected from the normal transcript levels of CaDEF1, the si-
lencing of CaHSFA5 did not change the resistance of pepper
plants to RSI (Figure 4, F and G).

To further characterize the role of CaHSFA5 in relation to
CaNAC2c, we targeted NbHSFA5, the CaHSFA5 ortholog in N.
benthamiana by VIGS. The silencing of NbHSFA5 in N. ben-
thamiana largely rescue the growth retardation
(Supplemental Figure S17) displayed by N. benthamiana
plants overexpressing CaNAC2c, but at the same time lowered
their thermotolerance (Supplemental Figure S18, B and D).
However, resistance to R. solanacearum infection was not af-
fected (Supplemental Figure S18, E and F).

CaNAC2c interacts with CaHSP70 under HTS but
interacts with CaNAC029 upon RSI
The distinct behavior of CaNAC2c upon HTS or RSI
suggested that its function might be modulated by ad-
ditional regulatory proteins in a context-dependent
manner. To isolate these possible interacting partners,
we performed a GST pull-down followed by mass spec-
trometry identification. Accordingly, we incubated re-
combinant CaNAC2c-GST produced in E. coli with
protein extracts from pepper plants challenged with
HTS or RSI. All pulled-down proteins were identified by
mass spectrometry, revealing a number of proteins that
potentially interacted with CaNAC2c under both condi-
tions (Supplemental Table S5). After preliminary
screening by Bimolecular Fluorescent Complimentary
(BiFC) assay, we selected an HSP70-type protein
(XP_016569463.1) which might interact with CaNAC2c
specifically under HTS and the NAC-type TF CaNAC029
(XP_016569463.1) which interact with CaNAC2c specifi-
cally upon RSI from these potential interacting partners
for further analysis. As CaNAC2c regulates thermotoler-
ance in ABA-signaling but mediate pepper immunity
against RSI in JA-signaling dependent manner, we
tested the response of CaNAC029 and CaHSP70 to the
exogenous application of MeJA, SA, or ABA, the result
showed that CaNAC029 responded specifically to exoge-
nously applied MeJA, while CaHSP70 responded specifi-
cally to exogenous application of ABA(Supplemental
Figure S19), indicating that the interactions of
CaNAC2c with these two partners might play specific
roles in biological processes mediated by JA and ABA
signaling, respectively.

Plant Physiology, 2021, Vol. 186, No. 4 PLANT PHYSIOLOGY 2021: 186; 2169–2189 | 2175

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
http://www.hnivr.org/
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data


CaHSP70 interacts with CaNAC2c in the nucleus
upon HTS to enhance CaNAC2c-mediated
thermotolerance but represses immunity to RSI
We established by BiFC assay that CaHSP70 interacts with
CaNAC2c in the cytoplasm at room temperature but in the
nucleus when exposed to HTS (Figure 5, A). To validate this
result, we performed co-immunoprecipitation (co-IP) assays
using CaHSP70-HA immunoprecipitated from pepper leaves
transiently co-overexpressing CaNAC2c-Myc and CaHSP70-
HA with an anti-HA antibody. We tested for the presence of
CaNAC2c in the immunoprecipitated by immunoblot

analysis with an anti-MYC antibody. CaNAC2c and
CaHSP70-HA interacted under both room temperature and
high temperature (Figure 5, B). CaHSP70 expression was up-
regulated by HTS but not by RSI (Figure 5, C). This result
suggested that CaHSP70 may be involved in CaNAC2c-medi-
ated thermotolerance. As mentioned earlier, CaHSFA5 is one
of the downstream targets of CaNAC2c for mounting toler-
ance to high-temperature exposure. We, therefore, examined
the effects associated with the overexpression of CaHSP70
on CaNAC2c-mediated transcriptional activation of
CaHSFA5 by ChIP-qPCR. We observed that the enrichment

Figure 3 CaHSFA5 Is a Direct Transcriptional Target of CaNAC2c upon HTS. A, Schematics of the CaHSFA5 promoter, with the CATGTG-contain-
ing fragment and a CATGTG-free fragment highlighted for ChIP-PCR of CaHSFA5 by CaNAC2c. B, CaNAC2c directly targets the CaHSFA5 pro-
moter, as shown by ChIP-PCR. Chromatin was isolated from pepper leaves transiently overexpressing CaNAC2c-GFP, sheared into 300–500 bp
fragments. The DNA was immunoprecipitated with antibodies against GFP, and the purified DNA was used as a template with specific primer
pair of CATGTG-containing promoter region. C, CaNAC2c shows enhanced binding to the CaHSFA5 promoter under HTS, as seen by ChIP-qPCR.
D, MST analysis of CaNAC2c binding to the CaHSFA5 promoter, using CaNAC2c-GFP fusion protein transiently overexpressed in pepper leaves
and immunoprecipitated with anti-GFP antibody and a CATGTG-containing CaHSFA5 promoter fragment. E, EMSA analysis of CaNAC2x binding
to the CaHSFA5 promoter, with recombinant CaNAC2c-GST and a CaHSFA5 promoter fragment containing CATGTG or its mutant version
(GGGGGG). F, CaHSFA5 is downregulated by silencing CaNAC2c under HTS. G, CaHSFA5 is upregulated in N. benthamiana plants overexpressing
CaNAC2c or by the transient overexpression of CaNAC2c in pepper leaves. In C, F, and G, data presented are means 6 standard error (SE) of four
replicates, different capital letters indicate significant differences among means (P< 0.01), as calculated with Fisher’s protected LSD test.
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Figure 4 Silencing CaHSFA5 Decreases Thermotolerance in Pepper Plants but does not Affect Resistance to RSI. A, Diagram of the fragments in
the coding sequence (CDS) or 30-untranslated region (UTR) of CaHSFA5 used for VIGS (TRV:CaHSFA5-CDS and TRV:CaHSFA5-30UTR). B and C,
CaHSFA5 silencing lowers basal and acquired thermotolerance of pepper plants (24 plants were calculated for mortality). D, CaHSFA5 silencing
decreases Fv/Fm of pepper leaves upon HTS. E, CaHSFA5 silencing decreases �F/Fm of pepper leaves upon HTS. F, CaHSFA5 silencing does not af-
fect the resistance of pepper plants to RSI. G, CaHSFA5 silencing does not affect the disease index values of pepper plants upon RSI (24 plants
were calculated). H, Successful silencing of CaHSFA5 and overexpression of CaNAC2c. I, CaHSFA5 silencing significantly decreases the expression of
thermotolerance-related genes CaHSP24 and CaHSP70 in pepper plants. J, HR-like cell death induced by CaNAC2c-TO at room temperature is not
influenced by the silencing of CaHSFA5, and CaNAC2c-TO does not induce cell death at 37�C. K, CaHSFA5 does not affect the induction of
CaDEF1 expression by CaNAC2c. In A and F, the images were digitally extracted. Data presented are means 6 standard error of four replicates. In
C, the data were counted based on 24 pepper plants. In C, E, G, H, I, and K, data presented are means 6 standard error (SE) of four replicates, dif-
ferent capital letters indicate significant differences among means (P< 0.01), as calculated with Fisher’s protected LSD test.

Plant Physiology, 2021, Vol. 186, No. 4 PLANT PHYSIOLOGY 2021: 186; 2169–2189 | 2177



Figure 5 The interaction between CaNAC2c and CaHSP70 and its effect on transcription of immunity or thermotolerance-related genes by
CaNAC2c. A, BiFC confirmation of the interaction between CaNAC2c and CaHSP70 in N. benthamiana leaves infiltrated with Agrobacterium cells
bearing CaNAC2c-YFPCþCaHSP70-YFPN or CaNAC2c-YFPNþCaHSP70-YFPC constructs, NbH3 (histone H3)-CFP was used to indicate the nucleus.
Cyan fluorescence and yellow fluorescence, visible light, and merged images were taken on a confocal microscope at 48 hpi. Bars ¼ 25 lm. B,
Interaction between CaNAC2c and CaHSP70 in vivo, as determined by Co-IP assay. Proteins were isolated from pepper leaves transiently overex-
pressing CaNAC2c-Myc and CaHSP70-HA, and CaNAC2c-Flag and its interacting partners were immunoprecipitated with antibody of Flag, the
presence of CaHSP70 in the protein complex was assayed by western blotting using antibody of HA. C, Fragments per Kilobase Million (FPKM) of
CaHSP70 in pepper plant challenged with HTS or RSI based the RNA-seq data set. D, The effect of CaHSP70 silencing on its deposition on the pro-
moter of CaHSFA5 by ChIP-qPCR. E, The effect of CaHSP70 silencing on the regulation of CaHSFA5 and CaDEF1 by transient overexpression of
CaNAC2c under room temperature and upon HTS challenge by RT-qPCR. F, The effect of CaHSP70 silencing on the HR cell death triggered by
transient overexpression of CaNAC2c under room temperature and upon HTS challenge. In C, D, and E, data are shown as means 6 standard er-
ror of four replicates. Different capital letters above the bars indicate significant differences between means (P< 0.01) by Fisher’s protected least-
significant-difference (LSD) test.
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of CaNAC2c at the CaHSFA5 promoter increased, as did
CaHSFA5 transcript levels, when CaHSP70 was transiently
co-overexpressed with CaNAC2c (Supplemental Figure S20),
but were drastically reduced when CaHSP70 was silenced in
pepper plants (Figure 5, D and E). We conclude that
CaHSP70 plays a key role in ameliorating heat tolerance by
upregulating CaHSFA5 transcript levels via CaNAC2c binding
to the CaHSFA5 promoter.

We then aimed to determine the contribution, if any, of
CaHSP70 to immunity against RSI. Notably, the HR-like cell
death phenotype triggered by the transient overexpression
of CaNAC2c was not affected when silencing CaHSP70
(Figure 5, F). Although CaDEF1 transcript levels were signifi-
cantly reduced by the transient co-overexpression of
CaHSP70 and CaNAC2c at room temperature and high tem-
perature (Supplemental Figure S20, B), they were not af-
fected by the silencing of CaHSP70 when CaNAC2c was
transiently overexpressed (Figure 5, E). These data collec-
tively indicate that CaHSP70 interacts with CaNAC2c in the
nucleus upon HTS, thereby enhancing CaNAC2c activity to-
ward activating thermotolerance but also repressing its func-
tion as a regulator of plant immunity.

CaNAC029 interacts with CaNAC2c to promote the
regulation of CaNAC2c in pepper immunity but not
thermotolerance
We performed similar BiFC and co-IP assays to validate the
interaction between CaNAC2c and CaNAC029: CaNAC2c
interacted with CaNAC029 under room temperature and
upon RSI in the nucleus, but not upon HTS (Figure 6, A and
B). Based on co-IP, CaNAC2c appeared to interact with
CaNAC029 quantitatively more upon RSI than at room tem-
perature, while we detected no interaction upon HTS
(Figure 6, B).

We then explored the consequences of the interaction be-
tween CaNAC2c and CaNAC029 on the function of
CaNAC2c in the induction of HR-like cell death, which play
important roles in plant immunity against the pathogen
(Jones and Dangl, 2006). To this end, we transient overex-
pressed CaNAC2c in the leaves of pepper plants with normal
levels of CaNAC029 (wild-type controls) or silenced for
CaNAC29. The transient overexpression of CaNAC2c trig-
gered a strong HR-like cell death response in wild-type
leaves but not when CaNAC029 was silenced (Figure 6, C),
indicating that CaNAC2c positively regulates pepper immu-
nity in a CaNAC029-dependent manner. To test the effect
of the transient overexpression of CaNAC029 on the target-
ing and regulation of the immunity-related gene CaDEF1 by
CaNAC2c, we performed RT-qPCR by transiently co-overex-
pressing CaNAC2c and CaNAC029 or transiently overexpress-
ing CaNAC2c alone in pepper leaves. A ChIP-qPCR assay
showed that CaNAC029 failed to bind to the CaHSFA5 pro-
moter under RT, RSI, or HTS. In addition, overexpression of
CaNAC029 prevented the binding of CaNAC2c to the
CaHSFA5 promoter specifically at room temperature but
supported full deposition of CaNAC2c at the CaHSFA5

promoter upon HTS (Figure 6, D). The transient co-overex-
pression of CaNAC029 and CaNAC2c induced CaDEF1 ex-
pression to higher levels than CaNAC2c alone at room
temperature, but this phenomenon was abolished upon
HTS (Figure 6, E). In contrast, CaNAC029 silencing signifi-
cantly repressed the upregulation of CaDEF1 by transient
overexpression of CaNAC2c at room temperature but did
not affect the positive regulation of CaHSFA5 by CaNAC2c
either at room temperature or upon HTS (Figure 6, F). In
addition, transient overexpression of CaNAC029 inhibited
the increase of CaHSFA5 transcription induced by CaNAC2c
overexpression, but the inhibition was abolished at high
temperature. These data indicate that the interaction be-
tween CaNAC2c and CaNAC029 promotes the control of
gene expression mediated by CaNAC2c in pepper immunity
but not in thermotolerance.

The 26S proteasome degrades CaNAC029 to direct
CaNAC2c toward thermotolerance under HTS
We characterized protein stability for CaNAC2c and
CaNAC29 under our experimental conditions. To our sur-
prise, CaNAC2c-Myc remained stable under all conditions
tested, including challenge by HTS (Figure 7, A). Unlike
CaNAC2c, CaNAC029-HA was stable at room temperature
and upon RSI, but was degraded within 2 h upon HTS
(Figure 7, D). The 26S proteasome inhibitor MG132 blocked
the degradation of CaNAC029 upon HTS, suggesting the in-
volvement of ubiquitin modification and the 26S protea-
some (Figure 7, D). Indeed, an immunoblot analysis with an
antibody against ubiquitin revealed a ladder-like pattern
upon HT, consistent with degradation through ubiquitina-
tion (Figure 7, F). Even though CaNAC2c was not degraded
in response to HTS in control plants, the silencing of
CaHSP70 significantly reduced the stability of CaNAC2c
(Figure 7, B). Consistently, we tested the effect of the addi-
tion of prokaryotic expressed CaHSP70-6�His on the degra-
dation of CaNAC2c-GST at 42�C, we found that the
addition of CaHSP70-6�His significantly blocked the degra-
dation of CaNAC2c-GFP (Figure 7, C). In contrast, silencing
CaHSP70 did not affect the degradation of CaNAC029 upon
HTS (Figure 7, E), nor did it affect the HR-like cell death
caused by transient overexpression of CaNAC029 in leaves
(Figure 7, G). These data indicate that CaHSP70 maintains
the stability of CaNAC2c upon HTS but not CaNAC029.
During heat shock, the rapid elimination of CaNAC029
through the 26S proteasome will quickly target CaNAC2c to
the CaHSFA5 promoter and initiate thermotolerance
responses.

Discussion
To maximize fitness, plants continuously balance their lim-
ited resources via diverse mechanisms leading to trade-offs
between growth or responses to various stresses. Although
TFs are crucial for plant responses to biotic and abiotic
stresses, a single TF may be involved in regulating several
seemingly disparate processes (Rushton et al., 2010;
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Figure 6 The interaction between CaNAC2c and CaNAC029 and its effect on transcription of immunity or thermotolerance related genes by
CaNAC2c. A, BiFC confirmation of the interaction between CaNAC2c and CaNAC029 in N. benthamiana leaves infiltrated with Agrobacterium
cells bearing CaNAC2c-YFPCþCaNAC029-YFPN or CaNAC2c-YFPNþCaNAC029-YFPC constructs, NbH3 (histone H3)-CFP was used to indicate
the nucleus. Cyan fluorescence and yellow fluorescence, visible light, and merged images were taken on a confocal microscope at 48 hpi. Bars ¼
25 lm. B, Interaction between CaNAC2c and CaHSP70 in vivo, as determined by Co-IP assay. Proteins were isolated from pepper leaves transiently
overexpressing CaNAC2c-Myc and CaNAC029-HA, and CaNAC2c-Flag and its interacting partners were immunoprecipitated with antibody of
Flag, the presence of CaNAC029 in the protein complex was assayed by western blotting using antibody of HA. C, The effect of CaNAC029 silenc-
ing on the HR cell death triggered by transient overexpression of CaNAC2c under room temperature and upon HTS challenge. D, CaNAC029 can-
not bind to the promoter of CaHSFA5 upon RSI or HTS, and co-transient overexpression of CaNAC029 and CaNAC2c inhibit the binding of
CaNAC2c to CaHSFA5 promoters at room temperature. E, The effect of transient overexpression of CaNAC029 on the regulation of CaHSFA5 and
CaDEF1 by CaNAC2c by RT-qPCR. F, The effect of CaNAC029 silencing on the regulation of CaHSFA5 and CaDEF1 by transient overexpression of
CaNAC2c under room temperature and upon HTS challenge by RT-qPCR. In D, E, and F, data are shown as means 6 standard error of four repli-
cates. Different capital letters above the bars indicate significant differences between means (P< 0.01) by Fisher’s protected least-significant-differ-
ence (LSD) test.
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Nuruzzaman et al., 2013), making it difficult to identify the
precise mode of action underlying the balance between
plant growth and stress responses. In the present study, we
establish that CaNAC2c acts as a negative regulator of pep-
per growth and as a positive regulator in defense response
to HTS and RSI. Notably, whether CaNAC2c directs plant
resources toward growth or response to HTS and RSI is dic-
tated by differential and context-specific interactions with
the heat shock protein CaHSP70 and the other NAC-type
TF CaNAC029.

CaNAC2c acts positively in thermotolerance and in
immunity against RSI but negatively in pepper
growth
Our data demonstrated that upon HTS or RSI, CaNAC2c
was transcriptionally upregulated, leading to enhanced basal
and acquired thermotolerance, or enhanced resistance to
RSI, depending on the stressor. At the same time, the induc-
tion of CaNAC2c also repressed growth, supporting a role

for CaNAC2c as a negative regulator of pepper growth but
as a positive regulator of thermotolerance and defense
against RSI. This result is similar to our previous studies in
which we had shown that CaWRKY6 (Cai et al., 2015),
CaWRKY40 (Dang et al., 2013), and CabZIP63 (Shen et al.,
2016) act positively in pepper responses to both RSI and
HTS, supporting the notion that pepper responses to RSI
are closely linked to HTS responses. CaNAC2c performed its
distinct functions by differential targeting and transcriptional
regulation of subsets of genes: for thermotolerance,
CaNAC2c directly targeted and induced the expression of
thermotolerance-related genes such as CaHSFA5 (Figures 3
and 4 and Supplemental Figure S16), CaHSP24, CaHSP70,
and CaHSFB2a (Supplemental Figure S13, A). CaNAC2c also
caused reduced H2O2 accumulation, which is associated
with the degree of thermotolerance (Yu et al., 2019; Zhuang
et al., 2020). In contrast, CaNAC2c acted as a positive regula-
tor for immunity against RSI by upregulating CaDEF1 expres-
sion and enhancing the accumulation of H2O2 (Yoshioka et

Figure 7 Effect of CaHSP70 silencing on HR-like cell death and immunity and expression of thermotolerance-related genes induced by transient
overexpression of CaNAC029. A, Stability of CaNAC2c-myc in pepper plants transiently overexpressing CaNAC2c-myc at room temperature or
upon HTS. Time since 10 is shown in min. B, Effect of CaHSP70 silencing on the stability of CaNAC2c in pepper plants at room temperature or
upon HTS. C, CaNAC2c was protected from degradation by CaHSP70 through in vitro assay using specific inhibitors (200 lM Apoptozole) of
CaHSP70. D, Stability of CaNAC029-HA in pepper plants transiently overexpressing CaNAC029-HA at room temperature or upon HTS. Time since
10 is shown in min. E, Effect of CaHSP70 silencing on the stability of CaNAC29-HA in pepper plants transiently overexpressing CaNAC20-HA at
room temperature or upon HTS. F, Immunoblot analysis of CaNAC29-HA in pepper plants transiently overexpressing CaNAC29-HA upon HTS
with an anti-Ub antibody. G, Effect of CaHSP70 silencing on the HR-like cell death response triggered by the transient overexpression of CaNAC29
at room temperature and upon HTS.
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al., 2003), reflecting the different mechanisms behind heat
stress response (HSR) and immune responses to pathogens.
While CaNAC2c silencing did not affect pepper responses to
RSI, this result is due to partial redundancy between
CaNAC2c and the highly related CaNAC2d, as the simulta-
neous silencing of CaNAC2c and CaNAC2d decreased plant
resistance to RSI. A comparable level of functional redun-
dancy has been extensively described for immunity-associ-
ated genes such as bHLH-type TFs (Xu et al., 2014). That
CaNAC2c acts alone in the context of thermotolerance but
redundantly with other genes against pathogen attacks may
stem from the varying selective pressure imposed by HTS
and pathogen attack over the course of evolution. As plants
and pathogens attempt to bypass each other’s defense
mechanisms, plant immunity has frequently been overcome
by new pathogen-derived effectors that target specific plant
immune components such as TFs (Canonne et al., 2011).
This apparent redundancy may therefore make the immune
response more robust in the face of a constant arms race
against pathogens, since the removal or inactivation of a
subset of redundant components may be functionally com-
pensated for by others.

The immunity-thermotolerance trade-off mediated
by CaNAC2c is tuned by differential and context-
specific interactions with CaHSP70 and CaNAC029
Our data showed that CaNAC2c targets and regulates
CaHSFA5 upon HTS but regulates CaDEF1 when pepper
plants are challenged by RSI, indicating that CaNAC2c per-
forms functions in both processes by differential targeting
via context-specific interactions with other regulatory pro-
teins (Chi et al., 2013). We tested this hypothesis by isolating
possible interacting partners during pepper response to HTS
or RSI by pull-down assays followed by mass spectrometry
and testing these new interactors by BiFC and co-IP assays
against CaNAC2c. We determined that CaNAC2c may inter-
act with either CaHSP70 or CaNAC029 depending on the
context: upon HTS, CaNAC2c interacted with CaHSP70 in
the nucleus, thereby protecting CaNAC2c from degradation,
promoting the targeting of CaNAC2c to the CaHSFA5 pro-
moter and preventing CaNAC2c from activating CaDEF1
(Figures 5 and 7 and Supplemental Figure S18). When pep-
per plants were challenged by RSI, CaNAC2c interacted with
CaNAC029 in the nucleus, leading to enhanced transcript
levels of CaDEF1, while the potential activation of HSR by
CaNAC2c was blocked (Figure 6), similarly, GmNAC81 in
soybean interact with GmNAC30, and this interaction deter-
mines the full activation or repression of target promoters
(Mendes et al., 2013), we speculate that the heterodimeriza-
tion of CaNAC2c and CaNAC029 may be required for the
full regulation of gene expression by CaNAC2c. To confirm
this hypothesis, further study is required to determine the
target genes of CaNAC2c and CaNAC029 and to study the
precise molecular details behind the regulation of CaNAC2c/
CaNAC029 interaction on their transcription. However, we
did not observe any interaction between CaNAC2c and

CaNAC029, probably due to the degradation of CaNAC029
upon HTS by the 26S proteasome (Figure 6, A, B and 7).
Based on these results, we concluded that the balance be-
tween pepper responses to HTS and RSI that is mediated by
CaNAC2c is modulated by CaHSP70 and CaNAC029, respec-
tively, in a context-specific manner. As HTS and pathogen
attacks such as R. solanacearum are two frequently co-oc-
curring stresses in subtropical or tropical climates where
pepper originated from, this post-translational regulation
might benefit rapid and precise switches between defense
responses to different stresses. It is worth pointing out that
a subset of regulatory proteins such as MYB (Zhang et al.,
2020), xylem NAC domain 1 (XND1; Zhang et al., 2020),
CDPKs (Vivek et al., 2016), the phosphatidylinositol 4-kinase
PI4Kgamma5 (Yong et al., 2016), radical-induced cell death 1
(RCD1; O’Shea et al., 2015), C-repeat binding factor (CBF;
Shan et al., 2014), the protein phosphatase regulator of CBF
gene expression 2 (RCF2; Guan et al., 2014), ring-H2 (Greve
et al., 2003), RCD1 (O’Shea et al., 2015), and crowded nuclei
(CRWN1; Guo et al., 2017) have been shown to interact
with NAC TFs, thereby altering their targeting specificities
and transcriptional activities. In contrast, to date, neither
HSP protein had been demonstrated to interact with a NAC
TF, nor one NAC-type TF with another NAC protein to reg-
ulate plant immunity.

The growth/defense trade-off mediated by
CaNAC2c is regulated at both transcriptional and
post-transcriptional levels by interaction with
CaHSP70
The different roles of CaNAC2c as negative regulator in pep-
per growth and positive regulator in thermotolerance and
immunity against RSI indicate that CaNAC2c acts as a cen-
tral regulator of the trade-off between pepper growth and
stress responses. Growth-defense tradeoffs are essential for
optimizing plant performance and adaptation under stress
conditions (de Vries et al., 2017), recent advances in plant
physiology and ecology suggest that this mechanism is more
complex than just a resource trade-off (de Vries et al., 2017).
Signaling mediated by SA (Meldau et al., 2012; Li et al., 2019;
Nakagami et al., 2020) and JA (Guo et al., 2018; Howe et al.,
2018) have been found in tradeoffs between growth and de-
fense response to biotrophic and to necrotrophic pathogen
or herbivore, respectively. CaNAC2c expression remains low
but constitutive in the absence of stress, but is upregulated
by RSI or HTS, indicating that the lower transcript levels of
CaNAC2c are crucial for the evocation of pepper growth un-
der normal conditions. In contrast, upon HTS or RSI,
CaNAC2c transcription was upregulated, leading to the acti-
vation of distinct defense responses via differential targeting
of the encoded CaNAC2c TF. In addition, we saw that
CaNAC2c interacts with CaHSP70 in nonstressed pepper
plants, but outside the nucleus (Figure 5, A), indicating a
possible mechanism to titrate a TF away from its target de-
fense-related genes to prevent their untimely activation
(Moore et al., 2011). These data indicate that growth/
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defense trade-offs mediated by CaNAC2c are regulated at
the transcriptional level and the post-translational level by
interacting with CaHSP70. Since the overexpression of these
TFs generally causes a growth penalty (Liu et al., 2018), it is
plausible that plants have adopted reducible expression
strategies for TFs involved in stress resistance (Cheng et al.,
2018; Sun et al., 2019) to reduce the associated fitness cost.
Since CaNAC2c was upregulated by exogenous application
of MeJA or ABA and its expression change by overexpres-
sion altered the expression of JA- or ABA-signaling depen-
dent marker genes(Figure 2, I and J), CaNAC029 and
CaHSP70 were specifically upregulated by exogenous applica-
tion of MeJA and ABA, respectively, and JA and ABA have
been implicated in plant response to necrotrophic stage in-
fection of R. solanacearum, a hemibiotrophic pathogen, and
to heat stress, respectively (Kachroo et al., 2003; Hiruma et
al., 2013; Huang et al., 2016), it can be speculated that the
trade-off between pepper growth and immunity against RSI
is mediated by JA signaling, the trade-off between pepper
growth and thermotolerance is regulated by ABA signaling,
and the balance between pepper immunity against RSI and
thermotolerance mediated by CaNAC2c might be regulated
by the antagonism between JA and ABA signaling (Robert-
Seilaniantz et al., 2011; Kyndt et al., 2017).

Collectively, our data indicate that CaNAC2c acts posi-
tively in thermotolerance and immunity against R. solana-
cearum and negatively in pepper growth. Trade-offs
between pepper growth and defense responses are deter-
mined by CaNAC2c transcription and CaNAC2c protein via
its interaction with CaHSP70, while thermotolerance-immu-
nity trade-off is regulated by CaHSP70 and CaNAC029, re-
spectively, in a CaNAC2c interactor-dependent manner.

Materials and methods

Plant materials and growth conditions
The seeds of HN42, a pepper (Capsicum annuum) inbred
line with middle level of thermotolerance and bacterial wilt
resistance, and Nicotiana benthamiana were sown on a soil
mixture [peat moss: perlite, 2:1 (v/v)] in plastic pots and
were placed in a growth room at 28�C, 60–70 mmol pho-
tons m�2 s�1, a relative humidity of 70%, and a 16-h light/
8-h dark photoperiod.

Construction of vectors
To generate vectors for overexpression, the full-length open
reading frames (ORFs) of CaNAC2c, CaNAC029, and
CaHSP70 were cloned into the entry vector pDONR207 by
BP reaction with appropriate primers (Supplemental Table
S1) and then cloned into the destination vectors
pEarleyGate101, pDEST-15/17, and pEarleyGate103 by LR re-
action, using Gateway cloning techniques (Invitrogen,
Carlsbad, CA, USA). For virus-induced gene silencing (VIGS),
one or two specific 300–400 bp fragments in the ORFs or
30-untranslated regions (UTRs) of CaNAC2c/d, CaHSFA5,
CaHSP70, and CaNAC029 were PCR-amplified and cloned
into the entry vector pDONR207 and then into the pYL279

vector. The specificity of each fragment was confirmed by
Basic Local Alignment Search Tool for DNA (BLAST)
searches against the pepper Zunla-1 genome (http://pepper
sequence.genomics.cn/page/species/blast.jsp).

Plant treatment with HTS
Pepper plants were exposed to HTS by transferring 8-leaf
stage pepper plants to 42�C with 50% humidity in a growth
chamber, while the control plants were kept at 28�C and
50% humidity in another growth chamber until they are
harvested for further assay.

Application of plant hormones
Application of plant hormones was carried out as described
previously (Dang et al., 2013). Pepper plants at the four-leaf
stage were sprayed with 5 mm salicylic acid (SA), 100 mM
methyl jasmonate (MeJA; both dissolved in 1:9, v:v ethanol).
Mock plants were sprayed with 10% ethanol (1:9, v:v). One-
month-old pepper plants were sprayed with 100 mM ab-
scisic acid (ABA) or 10 mM Fluridone and 10 mm ethephon
in sterile ddH2O. Control plants were sprayed with sterile
ddH2O.

Pathogens and R. solanacearum inoculation
The highly virulent Ralstonia solanacearum strain FJC100301
was used in the present study. The bacterial cell solution
used for inoculation was diluted to 108 cfu mL�1 (OD600 ¼
0.8) or 103 cfu mL�1 (OD600 ¼ 0.3). For root inoculation of
pepper or N. benthamiana plants planted in pots, which
was well watered before mechanically damaging the roots
with scissors and irrigated with 1 mL of R. solanacearum cell
suspension (OD600 ¼ 0.8) for each pot. For leaf inoculation
with R. solanacearum, we inoculated leaves with 100 lL of
R. solanacearum cell suspension (OD600 ¼ 0.3) at each inoc-
ulating site using a syringe without a needle. We scored the
disease index of more than 24 plants at each time point
over the course of the infection cycle based on visual obser-
vation (Supplemental Table S3).

DAB and NBT staining and H2O2 content detection
The accumulation of H2O2 and reactive oxygen species
(Papageorgiou et al., 2016) was assessed by staining the
leaves, roots, or stems from pepper or N. benthamiana
plants with 1 mg mL�1 diaminobenzidine (DAB) or
Nitrotetrazolium Blue chloride (NBT). After overnight incu-
bation in DAB and NBT, the stained leaves were cleared by
boiling in lactic:glycerol:absolute ethanol (1:1:3, v:v:v) and
then destained overnight in absolute ethanol. We used
BeiboVR BBcellProbeVR plant hydrogen peroxide H2O2 detec-
tion kit to text the level of hydrogen peroxide in tissues and
cells. 1:5 ratio of tissue mass (g) and reagent volume (mL; it
is recommended to weigh about 0.1 g tissue and add 500
lL Buffer B) were mixed for ice bath homogenization, and
then transferred to EP tube and centrifuged at 8,000 g, 4�C
10 min, then took the supernatant and put it on ice for
testing. Then 2 lL BBcellProbeTM O11 hydrogen peroxide
probe was added to the supernatant of the homogenate
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and mixed well, then incubated in a 37�C cell incubator in
the dark for 20 min. Then, 488 nm excitation wavelength
and 525 nm emission wavelength were used to detect the
intensity of the sample fluorescence.

Gene silencing by VIGS in pepper plants
To silence CaNAC2c(d), CaHSFA5, CaHSP70, or CaNAC029,
we infiltrated the cotyledons of 2-week-old pepper seedlings
with Agrobacterium (Agrobacterium tumefaciens) strain
GV3101 carrying the vector pTRV-RNA1 (pYL192) and
pTRV-RNA2 (pYL279, the empty VIGS vector) or pYL279-
CaNAC2c (CaNAC2d, CaHSFA5, CaHSP70, or CaNAC029),
mixed and resuspended in induction medium (10 mM MES,
10 mM MgCl2, 200 mM acetosyringone, pH 5.6) at a 1:1 ratio
to a final OD600 ¼ 0.6. To simultaneously silence CaNAC2c
and CaNAC2d, Agrobacterium cells containing pTRV-RNA1
and pTRV-RNA2-CaNAC2c and cells containing pTRV-RNA1
and pTRV-RNA2-CaNAC2d were mixed at a ratio of 1:1 and
resuspended in induction medium to a final OD600 ¼ 0.6. A
volume of 100 lL was infiltrated into the cotyledons of 2-
week-old pepper seedlings, which were then placed in the
dark at 16�C for 56 h, and then moved to a growth room
at 28�C, 60–70 mmol photons m�2 s�1, a relative humidity
of 70%, and a 16-h light/8-h dark photoperiod. At 15 dpi,
the success and specificity of gene silencing were assessed in
pepper plants challenged with HTS by measuring the tran-
script levels of the gene(s) targeted for silencing.

Transient expression of CaNAC2c in pepper leaves
For transient expression analysis, Agrobacterium cells har-
boring the 35Spro:CaNAC2c-GFP construct (or 35Spro:GFP as
control) were grown overnight and then resuspended in in-
duction medium (10 mM MES, 10 mM MgCl2, 200 mM ace-
tosyringone, pH 5.6) to OD600 ¼ 0.8. Approximately 1 mL
was infiltrated into the leaves of pepper plants at the eight-
leaf stage using a syringe. The infiltrated leaves were col-
lected at the indicated time points for further use.

Generation of transgenic N. benthamiana plants
overexpressing CaNAC2c
Nicotiana benthamiana leaf discs were transformed with
Agrobacterium strain GV3101 carrying the 35Spro:CaNAC2c-
GFP vector according to the method of Regner et al. (1992)
and Bardonnet et al. (1994). Nineteen independent T0 trans-
genic N. benthamiana plants were selected by hygromycin
(5 mg L�1) selection and validated by PCR and reverse tran-
scription-quantitative PCR (RT-qPCR). The T0 plants were
then allowed to self-pollinate and set seeds. Positive trans-
formants were propagated for two or three generations and
subjected to the same selection to obtain T2 and T3 seeds.
Two T3 transgenic lines that exhibited moderate levels of
CaNAC2c transcripts without phenotypic abnormality were
selected for further analysis.

RT-qPCR
We performed RT-qPCR to determine the relative transcript
levels of selected genes with specific primers (Supplemental

Table S1) and the SYBR Premix Ex Taq II system (TaKaRa)
on a BIO-RAD Real-time PCR system (Foster City, CA, USA)
according to the manufacturer’s instructions. Total RNA
preparation and real-time qPCR were carried out following
procedures described in our previous studies from four bio-
logical replicates (Cai et al., 2015). Total RNA was isolated
from pepper samples using TRIzol Reagent according to the
manufacturer’s protocol (Invitrogen, Canada). mRNAs were
reverse-transcribed into cDNA using a reverse transcription
system and an oligo(dT) primer (Takara Biotechnology,
Japan). Data were analyzed by the Livak method (Livak and
Schmittgen, 2001; Zhang et al., 2015) and expressed as nor-
malized relative expression level (2�DDCT) of the respective
genes. Relative transcript levels were normalized to CaACTIN
(GQ339766) and 18S ribosomal RNA (EF564281),
respectively.

Chlorophyll fluorescence spectrophotometry
We used a MINI Imaging PAM instrument (Heinz Walz
GmbH, Effeltrich, Germany) to measure Fv/Fm and �F/Fm

0

values from pepper and N. benthamiana leaves. The plants
were adapted to darkness for 15 min before being placed
into the instrument for measurements according to the
method of Schreiber et al. (2012).

Immunoblot analysis
We extracted total protein from pepper samples by adding
extraction buffer (10% glycerol, 25 mM Tris-HCl pH 7.5, 150
mM sodium chloride, 1 mM EDTA, 1% Triton X-100, 10
mM dithiothreitol, 1� plant protease inhibitor, 2% (w/w)
polyvinylpyrrolidone [PVPP]) to samples ground to a fine
powder in liquid nitrogen. Protein extracts were incubated
at 4�C with anti-hemagglutinin (anti-GFP) agarose beads
(Thermo Fisher Scientific, Waltham, MA, USA) overnight.
Beads were collected using a magnetic rack and washed 3
times with Tris-buffered saline and Tween-20 (0.05%). Eluted
proteins were probed by immunoblotting using anti-GFP–
peroxidase antibodies (Abcam, Cambridge, UK).

ChIP assay
ChIP assays were performed according to a previous study
(Khan et al., 2018). We inoculated three fully extended pep-
per leaves at the six-leaf stage with Agrobacterium cells har-
boring the 35Spro:CaNAC2c-GFP construct. The infiltrated
leaves were harvested at 48 h post-inoculation (hpi) and
crosslinked in a 1% formaldehyde solution; chromatin was
isolated and sheared into 300–500 bp fragments, followed
by immunoprecipitation of DNA–protein complexes using
anti-GFP antibodies. The crosslinking was then reversed and
DNA purified and used as a template for qPCR using primer
pairs specific to a CATGTG-box-containing fragment or
CATGTG-free fragment in the CaHSFA5 promoter by semi-
quantitative PCR using specific primer pairs (Supplemental
Table S1).

2184 | PLANT PHYSIOLOGY 2021: 186; 2169–2189 Cai et al.

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab190#supplementary-data


Production and purification of recombinant
CaNAC2c-GST/6�His
We introduced the pDEST-15/17 plasmid harboring
T7:CaNAC2c-GST/6�His into Escherichia coli (E. coli) strain
BL21 (DE3). Production of the fusion protein was induced
by the addition of 1 mM isopropyl b-D-1-thiogalactopyrano-
side (IPTG) at 20�C for 12 h. To purify the recombinant pro-
teins carrying the GST tag, Beaver BeadsTM GSH (Beaver
Biosciences, China) were washed thrice with Buffer A (140
mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4,
pH 7.4) and then mixed with protein extract for 3 h at 4�C.
The beads were washed 5 times with Buffer A and the tar-
get protein was eluted in Buffer B (50 mM Tris-HCl, 10 mM
reduced glutathione, pH 8.0).

Pull-down assays
We immobilized the fusion protein CaNAC2c-6�His (0.1
mg) onto nickel Smart Beads 6FF (Smart-Life Sciences,
China) and incubated the mixture under shaking for 3 h at
4�C. Proteins bound to the beads were subsequently washed
with wash buffer (20 mM PBS with 0.5 mM imidazole, pH
7.4) and eluted with elution buffer (20 mM PBS with 250
mM imidazole, pH 7.4). Eluted proteins were resolved by
SDS-PAGE gel electrophoresis and detected with an anti-
body against 6�His (PM013; 1:1,000 dilution; MBL
International, Woburn, MA, USA).

Liquid chromatography-tandem mass spectrometry
analysis
Isolated proteins and potential CaNAC2c interactors were
analyzed on an LTQ-Orbitrap XL mass spectrometer
(Thermo Fisher Scientific), as previously described (Zuo et
al., 2001; Wang et al., 2018). The samples were dissolved in
10 lL of a 10% formic acid solution, then analyzed by liquid
chromatography-tandem mass spectrometry (LC-MS/MS)
with an online sodium spray ion source. Peptide samples (5
lL) were loaded onto the trap column (Acclaim
PepMapC18, 100 lm � 2 cm; Thermo Fisher Scientific) at a
flow rate of 10 lL min�1, and subsequently separated on a
60-min gradient on the analytical column (Acclaim
PepMapC18, 75 lm � 15 cm). The column flow was con-
trolled at 300 nL min�1, and the electrospray voltage was 2
kV. Full scan spectra (m/z 350–1,550) were collected at a
mass resolution of 60 K, and HCD MS/MS scans were subse-
quently performed at a resolution of 30 K with a dynamic
exclusion for 30 s.

The original mass spectrometry collection files were
imported into Proteome Discover 2.1 for retrieval. We
searched peptide fragments against the Zunla pepper data-
base and used BLAST searches at the National Center for
Biotechnology Information (NCBI) database to annotate the
functions of the corresponding proteins.

BiFC assay and subcellular localization
We determined the subcellular localization of CaNAC2c as de-
scribed previously (Shen et al., 2016). Agrobacterium cells har-
boring the 35Spro:CaNAC2c-YFP construct were infiltrated into

N. benthamiana leaves. The YFP signal was detected 48 hpi.
The open reading frames for CaNAC2c or CaNAC029/
CaHSP70 in the pDONR vector were directly introduced into
the destination vectors pSPYCE or pSPYNE via Gateway cloning
to generate 35Spro:CaNAC2c-YFPc-HA and 35Spro:CaNAC029/
CaHSP70-YFPn-MYC. Vectors were then introduced into
Agrobacterium strain GV3101, and cells harboring
35S:CaNAC2c-YFPc-HA and 35S: CaNAC029/CaHSP70-YFPn-
MYC were co-infiltrated into N. benthamiana leaves. BiFC
assays were performed as described previously (Choi et al.,
2012) and the fluorescent signal from Agrobacterium-infiltrated
N. benthamiana leaves was observed at 48 hpi. YFP fluores-
cence was collected on a confocal microscope (YFP:527 nm/
CFP:485 nm/TCS SP8, Leica Microsystems, Germany), Images
were obtained at 100 Hz, 42% Exposure Rate, 1.000 Gain, and
5% Offset.

Co-IP assay
Nicotiana benthamiana leaves were infiltrated with
35Spro:CaNAC2c-YFPc-HA and 35Spro:CaNAC029/CaHSP70-
YFPn-MYC and harvested at 48 hpi. Total protein extracts
were prepared using protein extraction buffer (10% glycerol,
25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 2%
Triton X-100, 10 mM DTT, 1� complete protease inhibitor
cocktail (Sigma-Aldrich, St. Louis, MO, USA), and 2% (w/v)
PVPP). Extracted proteins were incubated with monoclonal
anti-HA magnetic beads (Sigma-Aldrich) at 4�C overnight.
Beads were then collected with a magnet and washed 3
times with protein extraction buffer. Eluted proteins were
separated by SDS-PAGE electrophoresis and immunoblotted
using anti-HA-peroxidase antibody or anti-MYC-peroxidase
antibody (Sigma-Aldrich)

Electrophoretic mobility shift assay
Cy5-labeled double-stranded DNA fragments containing the
CATGTG motif or its mutated version (GGGGGG) were
commercially synthesized to use as probes in EMSA.
CaNAC2c-GST or GST proteins were incubated with wild-
type or mutated probe labeled with a Cy5 fluorochrome in
5� binding buffer (1 M Tris-HCl pH 7.5, 5 M NaCl, 1 M KCl,
1 M MgCl2, 0.5 M EDTA pH 8.0, 10 mg mL�1 BSA). The
mixture was separated by PAGE gel and then scanned on
an Odyssey@ CLX instrument (LI-COR, USA).

MST assessment of interaction of protein with
promoter fragments in solution
The binding of CaNAC2c to the CaHSFA5 promoter was an-
alyzed by microscale thermophoresis (MST) in solution
(Zillner et al., 2012). GFP fused to CaNAC2c was used as
fluorescent label against a fragment containing the CATGTG
motif within the CaHSFA5 promoter, which was amplified
by PCR with a specific primer pair, followed by purification.
The fragment containing the mutant version of CATGTG
motif (GGGGGG) was amplified by PCR by conventional
overlapping PCR-based site-directed mutagenesis. The two
DNA fragments were used as the nonfluorescent molecules
in the assay. Interaction between protein and DNA was
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measured as described previously (Qiu et al., 2018). We used
the Nano Temper Analysis 1.2.20 software to fit the data
and determine apparent Kd values (Zillner et al., 2012;
Papageorgiou et al., 2016).

Statistical analyses
Statistical analyses were performed with the DPS software
package. Data are shown as means 6 SD obtained from
three or four replicates; different letters indicate significant
differences among means (P< 0.01), as calculated with
Fisher’s protected least-significant-difference (LSD) test.

Accession numbers
CaNAC2c (XP_016575179.1); CaNAC2d (XP_016569664.1);
CaHSFA5 (XM_016695662.1); CaNAC029 (A0A1U8EJR9);
CaHSP70 (A0A1U8E6Q9); CaHSFB2a (XP_016564681.1);
CaHSP24 (HM132040); CaNPR1 (X61679.1); CaDEF1 (AF442
388); CaHIR1 (AAX20040); CaNAC07 (XM_016697660.1);
CaNAC08 (XM_016725353.1); CaNAC059 (XM_016723243.1);
CaLOX14 (NM_001324652.1); CaLOX31 (NM_001324819.1);
CaActin (GQ339766); NbAPX (XP_016432750.1); NbHSFA5
(XM_016600975.1); NbHSP18 (XP_016481364.1); NbsHSP
(XP_016463300.1); NbDEF1 (ABU40984.1); NtEF-1a (D63396).

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Transcript levels of CaNAC2c
and pepper NAC family members to HTS or RSI.

Supplemental Figure S2. Deduced amino acid sequences
of pepper NAC2 proteins and their phylogenetic
relationship.

Supplemental Figure S3. Nuclear localization of
CaNAC2c in N. benthamiana epidermal cells.

Supplemental Figure S4. Silencing of CaNAC2c in pepper
enhances thermotolerance.

Supplemental Figure S5. The specificity of CaNAC2c si-
lencing in pepper plants by VIGS.

Supplemental Figure S6. Overexpression of CaNAC2c
enhances thermotolerance in N. benthamiana plants.

Supplemental Figure S7. N. benthamiana plants overex-
pressing CaNAC2c exhibit enhanced Fv/Fm, �F/Fm and de-
creased ion leakage and lower ROS levels upon HTS.

Supplemental Figure S8. Silencing of CaNAC2c in differ-
ent pepper germplasms.

Supplemental Figure S9. N. benthamiana plants overex-
pressing CaNAC2c exhibit enhanced resistance to RSI.

Supplemental Figure S10. Effect of CaNAC2c/2d silencing
on the thermotolerance of pepper plants.

Supplemental Figure S11. CaNAC2c silencing promotes
the growth of pepper plants.

Supplemental Figure S12. N. benthamiana plants overex-
pressing CaNAC2c repress growth and delay development.

Supplemental Figure S13. CaNAC2c influences the ex-
pression of genes related to thermotolerance and immunity.

Supplemental Figure S14. Relative transcript levels of
marker genes by the exogenous application of ABA,
Fluridon, SA, or MeJA.

Supplemental Figure S15. FPKMs of members in pepper
LOX family in roots of pepper plants challenged with RSI.

Supplemental Figure S16. CaHSFA5 acts as negative regu-
lator of pepper growth.

Supplemental Figure S17. Silencing of CaHSFA5 pro-
motes growth of N. benthamiana plants overexpressing
CaNAC2c.

Supplemental Figure S18. Silencing of NbHSFA5 significantly
decreases thermotolerance but does not affect resistance of N.
benthamiana plants overexpressing CaNAC2c to RSI.

Supplemental Figure S19. CaHSP70 is upregulated by
ABA and CaNAC029 is upregulated by MeJA.

Supplemental Figure S20. The effect of transient co-over-
expression of CaNAC2c and CaHSP70 on the enrichment of
CaNAC2c at the CaHSFA5 promoter and expression of im-
munity or thermotolerance-related genes at room tempera-
ture and upon HTS challenge.

Supplemental Table S1. Primers used in this study.
Supplemental Table S2. Sequence similarity between

CaNAC2c predicted protein sequence and its putative
orthologs from other plant species.

Supplemental Table S3. Disease index for pepper plants
infected with Ralstonia solanacearum.

Supplemental Table S4. Results of CaNAC2c co-expres-
sion analysis under HTS in pepperhub.

Supplemental Table S5. Proteins identified as potential
interaction candidates with CaNAC2c using LC-MS/MS.
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