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The Indian subcontinent has an origin geologically different from Eurasia,
but many terrestrial animal and plant species on it have congeneric or
sister species in other parts of Asia, especially in the Southeast. This
faunal and floral similarity between India and Southeast Asia is explained
by either of the two biogeographic scenarios, ‘into-India’ or ‘out-of-India’.
Phylogenies based on complete mitochondrial genomes and five nuclear
genes were undertaken for ricefishes (Adrianichthyidae) to examine which
of these two biogeographic scenarios fits better. We found that Oryzias
setnai, the only adrianichthyid distributed in and endemic to the Western
Ghats, a mountain range running parallel to the western coast of the
Indian subcontinent, is sister to all other adrianichthyids from eastern
India and Southeast–East Asia. Divergence time estimates and ancestral
area reconstructions reveal that this western Indian species diverged in the
late Mesozoic during the northward drift of the Indian subcontinent.
These findings indicate that adrianichthyids dispersed eastward ‘out-of-
India’ after the collision of the Indian subcontinent with Eurasia, and
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subsequently diversified in Southeast–East Asia. A review
of geographic distributions of ‘out-of-India’ taxa reveals
that they may have largely fuelled or modified the
biodiversity of Eurasia.
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1. Introduction
The Indian subcontinent geologically originated from
Gondwana, a Neoproterozoic supercontinent composed of
the present-day Africa, South America, Australia, Antarctica,
Arabian Peninsula, Madagascar, and the Indian subcontinent
[1]. During the breakup of Gondwana, the Indian subcontinent
became isolated from Africa around 130–160 Ma, drifted
northwards, and eventually collided with Eurasia, which
originated from Laurasia, around 35–55 Ma (figure 1a) [2–7].
Though the origin of the Indian subcontinent differs
geologically from that of Eurasia, many terrestrial animal and
plant species on it have congeneric or sister species in other
parts of Asia, especially in the Southeast [8–15].

The faunal and floral similarity between India and South-
east Asia has been attributed to dispersals from Eurasia to the
Indian subcontinent [16,17]. One hypothesis on which this
‘into-India’ biogeographic scenario is based is the ‘Satpura
hypothesis’ by S. L. Hora, an Indian ichthyologist [16,18],
which considers that the westward dispersals of Southeast
Asian fauna occurred through the central Indian Satpura hill
ranges in the Pleistocene. In contrast, it is also theoretically poss-
ible that the Indian taxa originated on the Indian subcontinent,
and that the dispersals occurred ‘out-of-India’, from India to
Southeast Asia, after the collision of the Indian plate with
Eurasia [19,20]. It is essential to evaluate the ‘into-India’ versus
‘out-of-India’ scenarios to understand how the biodiversity in
these regions of different geological originswas formed [21–25].

Fauna and flora in the Western Ghats, a mountain range
running parallel to the western coast of the Indian subconti-
nent, hold the key for the test of these two biogeographic
scenarios. The Western Ghats harbour unique, evolutionarily
distinct lineages of many taxa [26–30]. The unique fauna and
flora in the Western Ghats suggest that they have long been
isolated from other regions of the Indian subcontinent. If
this isolation predates the collision of the Indian subconti-
nent, and if the Western Ghats clade is sister to all other
clades, then the presence of their common ancestor in the
Indian subcontinent is supported, consistent with the ‘out-
of-India’ scenario (figure 1b). In contrast, if the Western
Ghats taxa are nested within a larger phylogeny consisting
of species from outside the region, and if the isolation of
the Western Ghats postdates the collision of the Indian sub-
continent, then the ‘into-India’ scenario is instead supported.

We examine which of these two biogeographic scenarios
better fits a groupof small-sized ricefishes (familyAdrianichthyi-
dae) comprising 37 species (figure 1c) distributed throughout
Southeast and East Asia, and the Indian subcontinent [31],
with one species, the Malabar ricefish, Oryzias setnai, (formerly
Horaichthys setnai, named after S. L. Hora), endemic to the
Western Ghats lowlands [32,33]. Though the endemism of O.
setnai suggests long-term isolation, no study has investigated its
phylogenetic position or evolutionary history. Using sequences
of the complete mitochondrial genomes and five nuclear genes,
we reconstruct a comprehensive phylogeny of the family Adria-
nichthyidae, including this Western Ghats endemic species, and
estimate divergence times and ancestral areas of major adria-
nichthyid lineages. We demonstrate that this family originated
in India and subsequently dispersed east as far as Wallacea,
the biogeographical transition zone between Indomalaya and
Australasia, where it there became one of the most important
elements of the region’s current freshwater ichthyofauna.
2. Materials and methods
(a) Field collections
Twenty-two adrianichthyid species were collected from throughout
the geographic range of this family (electronic supplementary
material, table S1). Full details of field collections are provided in
the electronic supplementary material.

(b) Mitochondrial and nuclear sequencing of O. setnai
Total DNA was extracted from one O. setnai individual from an
aquarium strain. The entire length of the mitogenome was
de novo assembled using long PCR (electronic supplementary
material, table S2) [34,35] and shotgun-sequencing (electronic
supplementary material, figure S1). We also Sanger-sequenced
five nuclear genes (electronic supplementary material, table S3).
Full details of sequencing are provided in the electronic
supplementary material.

(c) Whole-genome sequencing of other adrianichthyids
Whole-genome sequencing was performed for wild or laboratory
individuals of 10 adrianichthyid species (electronic supplemen-
tary material, table S1). Reads were mapped to a reference
genome assembly of O. latipes (ASM223467v1) or O. javanicus
(OJAV_1.1), and bases were called across each reference mito-
chondrial genome and across the five nuclear genes of each
reference. Each mitogenome sequence was annotated using
MitoAnnotator [36,37]. Full details of sequencing are provided
in the electronic supplementary material.

(d) Phylogenetic analysis
Sequences of the mitogenomes and the five nuclear genes were
obtained for an additional 20 adrianichthyid taxa, using
short read sequences of the whole genome retrieved from DDBJ-
DRA (electronic supplementary material, table S1); reads were
mapped to a reference genome assembly of O. celebensis
(OryCel_1.0) or O. latipes, and bases were called. For two species
(O. javanicus and O. dancena), mitogenome sequences retrieved
from DDBJ were used (electronic supplementary material, table
S1). Sequences of mitogenomes and nuclear genes of five
beloniform, seven cyprinodontiform, five atheriniform and two
cichlid (perciform) species were also retrieved from DDBJ
(electronic supplementary material, table S1).

Alignments were performed separately for each gene. For
mitochondrial genes, we excluded ambiguously aligned regions
in the rRNA and tRNA genes, the third codon positions from
the protein-coding genes, and the whole NADH dehydrogenase
subunit 6, resulting in sequences of a total 11 233 bp. Alignments
of nuclear genes resulted in sequences of a total 4204 bp. A maxi-
mum-likelihood phylogeny was estimated separately for the
mitochondrial, nuclear and concatenated sequences using raxml-
GUI v. 1.31 [38]. Full details of phylogenetic analyses are
provided in the electronic supplementary material.

(e) Divergence time estimation
Lognormal relaxed clock analyses were performed separately on
the 11 233 bp mitochondrial and 4204 bp nuclear sequences using
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Figure 1. (a) Time sequence of drifting continental blocks at each age from 200 Ma to present (map provided by and modified from [2] with permission).
(b) Schematic phylogeny under the scenario ‘out-of-India’. (c) Map depicting the geographic distributions of all species in the family Adrianichthyidae.
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BEAST v. 2.5.2 [39]. We employed three fossil records: (i)
†Mahengechromis (the minimum age 45.46 Ma) [40] for the node
between the two cichlids [41], (ii) †Rhamphexocoetus volans (the
minimum age 49.11 Ma) [42] for the branch leading to the flying-
fish [41], and (iii) †Lithopoecilus brouweri (the minimum age
5.33 Ma) [43] for the node between Oryzias sarasinorum and
Oryzias eversi [44], and the opening of the Makassar Strait, ca
45 Ma [45–47], to time-calibrate the phylogenetic tree (figure 2).
Appropriate substitution models were selected for each gene
(for rRNA and tRNA genes) and codon (for coding genes).
Full details on the divergence time estimation are provided in
the electronic supplementary material.

( f ) Ancestral area reconstruction
The geographic range of Adrianichthyidae was divided into
five geological areas: (A) Western Ghats, (B) Indian subcontinent
(excluding the Western Ghats), (C) Southeast Asia (excluding
Wallacea and New Guinea), (D) East Asia, and (E) Wallacea
and New Guinea. Using the tree obtained from the BEAST
analysis above, ancestral areas at each node of the tree were
reconstructed under different biogeographical models with
RASP v. 4.2 [48]. Likelihood under each model was estimated,
and the fit of each model to the data was compared by consulting
Akaike information criteria corrected for a small sample size. Full
details on the ancestral area reconstruction are provided in the
electronic supplementary material.
3. Results
(a) Phylogeny of Adrianichthyidae
All phylogenies revealed O. setnai to be a sister to all other
members of the family Adrianichthyidae (figure 2 and
electronic supplementary material, figure S2). The branch
of O. setnai in these phylogenies was disproportionally
longer compared with other adrianichthyids. The latter
were composed of three main clades—the ‘latipes’, ‘javanicus’,
and ‘celebensis’ species groups. The latipes species group com-
prises species distributed mainly in the inland areas of the
Indochinese Peninsula, Philippines and East Asia; the javanicus
species group occurs in the eastern part of India and through-
out Southeast Asia; and the celebensis species group is endemic
to Sulawesi Island (figure 2). Among the three species groups,
the latipes species group is sister to the other two.

(b) Divergence time estimates
Adrianichthyidae was estimated to have separated from
other members of the order Beloniformes around 89 Ma
(73–107 Ma in 95% HPD; figure 2, node 1). The divergence
time of O. setnai was estimated at around 74 (60–88) Ma
(node 2) in the late Mesozoic (see also electronic supplemen-
tary material, figure S3). Thereafter, the latipes species group
split off around 52 (45–60) Ma (node 3), and the subsequent
split between the javanicus and celebensis species groups
occurred around 47 (41–52) Ma (node 4).

(c) Reconstruction of ancestral areas
The best biogeographical model (Dispersal-Extinction Clado-
genesis with founder event speciation model: DEC + J;
electronic supplementary material, table S4) estimated that
the most probable distribution area for the common ancestor
of adrianichthyids was on the Indian subcontinent (i.e. the
Western Ghats and other parts of India) (figure 2, node 2).
The common ancestor of the latipes, javanicus and celebensis
species groups was estimated to be distributed in Southeast
Asia (node 3). Thereafter, dispersals from Southeast Asia to
East Asia and to Wallacea occurred within the latipes species
group (node 5), and in the most recent common ancestor of
the celebensis group (node 6), respectively.
4. Discussion
(a) Origin and dispersal history of the Adrianichthyidae
We found that O. setnai, endemic to the Western Ghats wes-
tern plains, is sister to all other Adrianichthyidae taxa, which
comprise threemajor groups (the latipes, javanicus and celebensis
species groups) [49,50]. Our results also reveal that the diver-
gence time of this species (60–88 Ma) predates the collision of
the Indian subcontinent with Eurasia (35–55 Ma [2–7]), and
that the common ancestor of the Adrianichthyidae was
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estimated to have been distributed on this ancient subconti-
nent. This lends credibility to the hypothesis that the split
of O. setnai occurred on the Indian subcontinental ‘raft’,
supporting the ‘out-of-India’ hypothesis.

The divergence of O. setnai and its endemism to western
India may be related to the formation of the Western Ghats
mountain ranges. The western coast of India could have
appeared as an abrupt cliff some 1000 m in elevation ca
65–90 Ma after the Indian subcontinent broke away from
Madagascar [51], becoming the present-day Western Ghats.
This long (1600 km) and high mountain range running paral-
lel to the southwestern coast of the Indian subcontinent may
have acted as a physical barrier preventing the migration of
species between the western and eastern coasts. We think
that the common ancestor of Adrianichthyidae was divided
into the west and east by this mountain range, and that the
western population would have evolved in isolation as
O. setnai. The common ancestor of the Eurasian clade
probably diverged from the eastern population.

The branch leading to O. setnai is, notably, disproportion-
ally long, indicating an acceleration in evolutionary rate
(electronic supplementary material, figure S2). This accelera-
tion might be related to the geological history of the Western
Ghats. It is well known that large-scale, long-term volcanic
eruptions occurred along the western coast of the Indian sub-
continent during its northward drift, forming the Deccan
Traps [52]. It is, therefore, no wonder that O. setnai has
repeatedly experienced strong bottlenecks caused by recurring
eruptions. According to the nearly neutral theory of molecular
evolution [53], evolutionary rates of protein-coding genes
increase with decreasing population size, which may explain
this long branch. A detailed demographic history of O. setnai
using the nuclear genome is required to test this hypothesis.

The split between the Adrianichthyidae and other mem-
bers of the Beloniformes, that is, Exocoetoidei, estimated at
73–107 Ma (figure 2, node 1), perhaps occurred in conjunc-
tion with the separation of the Indian subcontinent from
Africa and Madagascar. Since most extant species in the
Exocoetoidei: Belonidae (needlefishes), Execoetidae (flying-
fishes), Hemiramphidae (halfbeaks) and Zenarchopteridae
(viviparous halfbeaks) are marine [54], the expansion of
coastal areas following the breakup of the Indian subconti-
nent may have increased opportunities for a common
ancestor of Exocoetoidei to pioneer new habitat. In contrast,
Adrianichthyidae pioneered the inland areas of the Indian
subcontinent, and subsequently those in Eurasia, probably
spreading via coastal areas.

(b) Conclusion: Eurasian biodiversity fuelled by
‘out-of-India’ dispersals

Contrary to Hora’s hypothesis [16,18], Hora’s fish and its rela-
tives originated on the Indian subcontinent and subsequently
dispersed east into Southeast and East Asia, where they have



Table 1. Geographic distributions of taxa demonstrated to be ‘out-of-India’ by molecular studies (i.e. ‘out-of-India’ taxa demonstrated solely by taxonomic
and/or palaeontological studies are not included). Numbers represent the numbers of species in each geographic area. Bold numbers represent modes. See
electronic supplementary material, table S5 for the list of species and genera used, and their geographic ranges.

taxon [reference]

geographic area

Western
Ghats (A)

Indian
subcontinent (B)

Southeastern
Asia (C)

Eastern
Asia (D)

Wallacea and
New Guinea (E)

plants

Allioideaea [55] 0 0 0 3 0

Paliurus [56] 0 0 0 4 0

Crypteroniaceae [20] 0 2 11 1 2

Dipterocarpaceaea [57] 3 7 10 3 4

invertebrates

Theotiminae (spiders) [58] 0 1 49 7 7

Heterometrinae (scorpions) [59] 5 31 9 0 0

oriental Rhysida

(centipedes) [60]

8 6 2 0 0

tribe Dacini (fruit flies) [61] 44 78 238 75 384

freshwater fishes

Scleropages [62] 0 0 5 0 0

Notopteridae [63] 0 2 6 0 0

Channoidei [64] 5 23 22 6 0

Aplocheilidae [65] 4 6 1 0 1

Adrianichthyidae [this study] 1 2 11 4 22

amphibians

Ichthyopiidae [66] 13 11 31 1 0

Microhylidae [14] 16 22 58 13 2

Ranoideaa [67] 19 23 43 25 15

reptiles

Agamidaea [68] 8 15 26 10 10
aThe number of genera was used for the taxon.
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greatly diversified. Our review of geographic distributions
(electronic supplementary material, table S5) reveals that
other ‘out-of-India’ taxa have also diversified more or less in
Southeast and East Asia (table 1). This probably reflects that
‘out-of-India’ taxa were newcomers to Eurasia, where they
may have found empty niches and/or competitively excluded
native Laurasian taxa. The biodiversity of Eurasia may have
been largely fuelled or modified by these taxa which came
on the subcontinental raft.

Ethics. Field collections were conducted based on the Memorandum of
Agreement between the Kerala University of Fisheries and Ocean
Studies (KUFOS) and the University of the Ryukyus, the Research
Permits issued from the Ministry of Research, Technology, and
Higher Education, Republic of Indonesia (394/SIP/FRP/SM/XI/
2014 and 106/SIP/FRP/E5/Dit.KI/IV/2018), and the Memorandum
of Agreement between the Hanoi National University of Education
and the Okinawa Institute of Science and Technology Graduate Uni-
versity. Field collections in Laos and Myanmar were supported by
the Living Aquatic Resources Research Center and the Ministry of
Natural Resources and Environmental Conservation, respectively.
We followed the Regulations for Animal Experiments at the Univer-
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approved by the Animal Care Committee of the University of the
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