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Urban scaling analysis, the study of how aggregated urban features vary with
the population of an urban area, provides a promising framework for discover-
ing commonalities across cities and uncovering dynamics shared by cities
across time and space. Here, we use the urban scaling framework to study
an important, but under-explored feature in this community—income inequal-
ity. We propose a new method to study the scaling of income distributions by
analysing total income scaling in population percentiles. We show that income
in the least wealthy decile (10%) scales close to linearly with city population,
while income in the most wealthy decile scale with a significantly superlinear
exponent. In contrast to the superlinear scaling of total income with city popu-
lation, this decile scaling illustrates that the benefits of larger cities are
increasingly unequally distributed. For the poorest income deciles, cities
have no positive effect over the null expectation of a linear increase. We
repeat our analysis after adjusting income by housing cost, and find similar
results. We then further analyse the shapes of income distributions. First, we
find that mean, variance, skewness and kurtosis of income distributions all
increase with city size. Second, the Kullback–Leibler divergence between a
city’s income distribution and that of the largest city decreases with city popu-
lation, suggesting the overall shape of income distribution shifts with city
population. As most urban scaling theories consider densifying interactions
within cities as the fundamental process leading to the superlinear increase
of many features, our results suggest this effect is only seen in the upper deciles
of the cities. Our finding encourages future work to consider heterogeneous
models of interactions to form a more coherent understanding of urban scaling.
1. Introduction
Throughout human history, the global urban population has grown continu-
ously. More than half of the global population is currently urbanized, placing
cities at the centre of human development [1]. It is estimated that by 2030,
the number of megacities, cities with more than 10 million inhabitants, will
increase from 10 to approximately 40 [1]. Thus, there is an urgent need for a
quantitative and predictive theory for how larger urban areas affect a wide var-
iety of city features, dynamics and outcomes [2,3]. Perhaps most critically, we
need this theory to address how larger cities positively and negatively affect
socioeconomic outcomes and the quality of life of individuals.

Previous research has demonstrated power-law-like relationships between
urban population (also referred to as size later in the text) and many urban fea-
tures such as GDP, patents, crime and contagious diseases that persist globally
[4–8]. These relationships can often be described by

Y ¼ Y0Nb, (1:1)

where Y is an urban feature, such as GDP or number of crime instances, N is the
population of the city, Y0 is a constant and β is the scaling exponent. For many
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urban outputs, the scaling exponent β is greater than 1,
suggesting greater rates of productivity (in both the positive
and negative sense) in more populated cities. These obser-
vations, known as urban scaling, suggest that a small set
of mechanisms significantly influence a variety of urban
features across diverse cities [9,10]. Understanding these
mechanisms has important implications for developing
more prosperous and safer cities. In this framework, desirable
aspects with β > 1 have positive returns to scale, while desir-
able aspects with β < 1 have a less than linear return to scale,
demonstrating a diseconomy of scale. Similarly, for undesir-
able features β > 1 shows a diseconomy of scale since the
associated per capita costs would be increasing with city size.

One important aspect of urban features that remains
under-explored in the urban scaling framework is economic
inequality. Inequality has fundamental implications for indi-
viduals’ quality of life and the productivity and stability of
societies [11]. Past research has heightened debate about
economic inequality and its relationship with economic
growth and general welfare [12–18]. Many have raised con-
cern of its negative effects on political stability [12,19],
crime [20] and corruption [21]. It has been shown that more
unequal places have higher murder rates, grow more
slowly, and the correlation between area-level inequality
and population growth is positive [22]. Economic inequality
is usually measured in terms of the dispersion in the distri-
bution of income or wealth, such as in the Gini coefficient.
Some past research has noted larger cities are correlated
with increasing Gini coefficient in income distribution [23–
25], but it remains unclear if there are systematic relationships
between other features of the income distributions and urban
area size. Furthermore, characterizing distributions by a
single metric may lose important information [12]—for
example, does being poor in bigger cities correspond to a
higher or lower standard of living than being poor in a
smaller city?

A few recent studies [26,27] have investigated the scaling
of total income in various income brackets in Australia. These
studies find that the total income in lower income brackets
scales sublinearly or linearly, while higher brackets scale
superlinearly, suggesting greater income agglomeration in
the higher income categories in more populated cities.
While these studies are informative and provide a new
measure for inequality in terms of absolute income (instead
of relative income, as in the Gini coefficient), a limitation is
that this measure confounds inequality with average
income, which increases with city population. In particular,
the ‘equal’ situation in this new measure of inequality is
when the total income for all income brackets scales linearly.
However, given that total income scales superlinearly in cities
globally [4,5], this ‘equal’ situation is unlikely to occur. For
example, even if the shapes of income distributions remain
identical, income bracket aggregations follow distinct scaling
relationships as a result of differences in mean. Figure 1a,c
illustrates this behaviour using simulated log-normal distri-
butions. While the measure of inequality proposed in
[26,27] can be valuable for some applications, it would be
useful to untangle the increase in mean from the greater
dispersion in income.

In this manuscript, we address a few keys questions: (1)
how does income inequality (adjusted for shifting average
income) systematically change with city size? (2) How differ-
ent is the income of rich and poor people (measured by
percentiles of the population) in small and large cities, and
how does this difference scale with city size? (3) Are poor
people in a larger city better off than poor people in a
small city, after adjusting by the cost of living? How about
the same for rich people?

Here, we propose a new method to study the scaling of
inequality by analysing total income scaling in population
percentiles. We show that income in the least wealthy
decile (10%) scales almost linearly with city size, while that
in the most wealthy decile scales with a significantly super-
linear exponent. This illustrates that the benefits of larger
cities are increasingly unequally distributed, and for the
poorest income deciles, city growth has no positive effect
on income growth over the null expectation of a linear
increase. We find that these results hold after adjusting for
cost of living as proxied by housing cost. We then introduce
systematic considerations of the entire distribution of income
to show which income distribution features are changing
with city size. We find that the mean, variance, skewness
and kurtosis of the income distribution all scale syste-
matically with city size. We introduce a KL-divergence
procedure to systematically compare all moments and find
that comparisons with the largest cities also demonstrate a
systematic scaling with city size, indicating that the overall
shape of income distribution is radically shifting with city
size. Finally, we discuss how these observations can be con-
nected with the proposed mechanisms underlying urban
scaling.
2. Data and methods
2.1. Data and income distribution estimation
The primary dataset used in our analysis is the 2015 Ameri-
can Community Survey conducted by the US Census
Bureau (see electronic supplementary material for more
detail). We use the income data reported on the level of
census tracts, small local areas of on average 4500 people,
of which on average 2300 reported income. In order to aggre-
gate census tracts into cities, we gather the geographical
definitions of urban areas from the United States Office of
Management and Budget, which include Metropolitan Stat-
istical Areas and Micropolitan Statistical Areas. We perform
a spatial join between urban area outlines and census tract
outlines. All census tracts which intersect a given urban
area are assigned to that urban area. Census tracts which
intersect multiple urban areas are assigned to both. The
population of an urban area is defined as the sum of their
census tracts’ populations. In our study sample, we analyse
urban areas (also referred to as cities) with a population
greater than 100 000.

We infer the individual-level income distribution in cities
by applying the Gaussian kernel density estimator with a
widened Silverman bandwidth function on the census-
tract-level data. This method assumes income in each
census tract is distributed as a Gaussian. The mean equals
the average income of the census tract, and the standard
deviation is calculated as a function of the number of data
points. Aggregating the Gaussian probability density func-
tions (PDFs) for each census tract in the city produces an
estimated income PDF for the city. Examples of the estimated
individual-level income distribution for a few cities are
shown in figure 2.
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Figure 1. Illustration comparing two methodologies—scaling obtained from grouping by income bracket (a,c) and that by decile (b,d ). Using simulated log-normal
income distributions in two scenarios—log-mean increases with city size while log-variance remains the same (a,b), and log-mean and log-variance both increases
with city size (c,d ). The income distributions are illustrated on a log-scale. The income-bracket grouping (a,c) leads to differences in the groups’ income scaling for
both scenarios, and fails to distinguish whether larger cities have more dispersion in their income distributions. The decile grouping (b,d ) leads to the differences in
the groups’ scaling observed only when the dispersion increases with the population. The insets show how scaling exponent (β) varies with income groups (bracket
or decile).
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2.2. Analysis of income scaling in deciles
We propose a new method to investigate the scaling of
income aggregated by deciles in each city (i.e. the bottom
10%, the next 10% and so on). The number of individuals
in decile n of city i is, N(n)

i ¼ Ni=10, where Ni is the population
of city i.

The total income in decile n of city i, Y(n)
i is,

Y(n)
i ¼

X
j[D(n)

yi,j, (2:1)

where D (n) are the individuals in income decile n, and yi,j is
the income of individual j in city i. See electronic supplemen-
tary material for more details on the decile assignment in our
computational implementation.

Figure 1c,d illustrates this method on simulated log-
normal income distributions. Panel c represents the situation
in which cities shift in log-mean with city size, but do not
shift in log-standard deviation, and panel d represents the
situation in which cities increase both log-mean and log-stan-
dard deviations with city size. We consider the former case
an example of the ‘equal’ situation, and this method should
lead to no variation in scaling exponents across deciles. Vari-
ations in scaling exponent only occur for the latter case. We
also contrast the results of our method with that of the group-
ing by income bracket method in figure 1a,c, where variations
in scaling exponents occur for both scenarios.

We group the data of income distributions of each city into
deciles: the 10% of the population which reports the lowest
income is grouped into the first decile (decile 1), and likewise
for all 10 deciles up to the 10% of the population which has
the highest income (decile 10). We then estimate the scaling
exponent of total income for all deciles. We estimate the
scaling exponent, β, and corresponding confidence intervals,
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Figure 2. Examples of the estimated income distributions using census tract
data. Income is measured in US dollars. The three metropolitan areas shown
are: New York–Newark–Jersey City, NY–NJ–PA, population 20 316 622; Min-
neapolis-St Paul-Bloomington, MN-WI, population 3 670 397; Santa Fe, NM,
population 204 396.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210223

4

by performing an ordinary least square regression of the log-
transformed variables, log (Y(n)

i ) ¼ b log (N(n)
i )þ c, and β and

c are the fitted parameters. This methodology is consistent
with previous research such as [4].

2.3. Adjusting income by housing cost
In order to normalize income by the cost of living, we calcu-
late total housing cost in a census tract as cost = 12 (urent r +
uown o), where the average monthly rent r, the average
monthly owner costs o, and the number of units of each
type urent and uown are all taken from the 2015 American
Community Survey (see electronic supplementary material
for more detail and access information). We then repeat the
decile-grouped analysis on income adjusted for housing
cost, as well as analyse how the proportion of income spent
on housing varies with city size in each decile.

2.4. Analysis of distributions
We further analyse how the shapes of the income distri-
butions vary with city population. We first compute the
first four statistical moments, mean, variance, skewness and
kurtosis, for income distributions of each city, and analyse
how they vary with population. We then compute the Kull-
back–Leibler (KL) divergence between each city’s income
distribution and that of the largest city (New York–
Newark–Jersey City area). The KL divergence measures
how different one distribution is from another, while the
zero value indicates the two distributions are identical, and
a greater value indicates more divergence. Mathematically,
the KL divergence between two discrete distributions of
random variable x, P(x) and Q(x) is,

KL(PkQ) ¼
X
x

P(x) log
P(x)
Q(x)

� �
: (2:2)

3. Results
3.1. Scaling of income in deciles
The results for scaling of income aggregated in deciles are
summarized in figure 3. For the lowest two deciles, the scaling
exponent β is linear or slightly sublinear (0.97). For upper
deciles, β is consistently superlinear, as high as 1.16 when com-
pared with the scaling exponent of total income in our dataset,
β = 1.07. This shows that scaling effects are not equivalent for
all segments of the population. The poorest two deciles in
bigger cities make about the same income as their counterparts
in smaller cities, while the wealthiest eight deciles in bigger
cities make more than their counterparts in smaller cities,
where the difference increases with the decile.

3.2. Scaling of decile income adjusted by housing cost
While the differences in income scaling that we have ident-
ified are important, they are not necessarily grounded in
differences in the experiences of urban residents—cost of
living can vary drastically across and within US cities, and
if cost of living is changing in the exact same way as
income, differences in income scaling between groups begin
to lose meaning. In order to understand whether the differ-
ences in income scaling we see between deciles create
differences in affordability and purchasing power, we look
at changes in housing cost with city size.

We find that aggregate housing cost scales faster than
aggregate income for every decile, implying that while
income per person increases with city size, larger cities may
still be overall less affordable. This difference is more dra-
matic for the poorer deciles—in the bottom decile, housing
cost scales with β = 1.11 while income scales with β = 1.01;
in the top decile, housing cost scales with β = 1.29 while
income scales with β = 1.27. This is visualized in figure 4a—
income exponents begin to catch up to housing cost expo-
nents in richer deciles, but income exponents are never as
high as housing cost exponents. Perhaps more intuitively, in
figure 4b, we can see that the ratio between total housing
cost and total income grows with city size for every decile,
but more dramatically for poorer deciles. Together, these
results imply a widening gap between richer and poorer
residents in affordability of cities with city size.

3.3. Analysis of income distribution characteristics
We further analyse how income distributions vary with
urban area population by studying the statistical moments
of the income distributions. We first examine the first four
moments: mean, variance, skewness and kurtosis.

The scaling of the four moments of the estimated individ-
ual income distribution for all cities in our data is shown in
figure 5. The first moment, the mean, shows the well-charac-
terized urban agglomeration effect: per capita income
increases with city size [4]. The second, and third moments
both increase similarly with city population, suggesting a
widening of the distribution and increasing asymmetry
with greater urban population. This can also be qualitatively
observed in the example distributions in figure 2. Lastly, the
kurtosis also increases with population size, showing an
increasingly heavy tail with greater urban population.

We find a stronger relationship for higher statistical
moments, indicating that for larger American cities, there is
a more evident increase in the third and fourth moments.
This means that there is a stronger increase in the growing
tail of the distribution, in comparison to the first two statisti-
cal moments. This gives us an interesting indication of the
distribution of economic benefits.

Another useful perspective on the scaling of the income
distributions is to compare large and small cities using
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measures that consider the entire distribution through the
KL divergence. Figure 6 shows the KL divergence between
each US city and the largest city, as a function of the log-
transformed city population. The KL divergence, in general,
decreases with increasing city population, and approaches
zero as the population approaches that of the largest city.
This behaviour suggests that as cities get smaller, their
income distributions are increasingly dissimilar to that of
the largest city. The Pearson correlation between the two
variables in figure 6 is −0.259, while the Spearman correla-
tion is −0.718. The Pearson correlation measures the linear
correlation between two variables, while the Spearman
correlation measures the rank correlation, and assesses how
well the relationship between two variables can be described
by a monotonic function, regardless of linearity [28]. This
finding suggests that population and the KL divergence
tend to change together, but not necessarily at a constant
rate. While we can identify a general scaling trend, our data
also exhibit frequent outliers and deviations.

4. Discussion
Here, we proposed a new method to study the scaling of
income distributions and income inequality in urban areas.
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The aggregated income in income deciles scales systemati-
cally with city size. The bottom decile scales with an
exponent slightly below 1 and the top decile with an expo-
nent of β = 1.15. This result suggests that the benefits of
larger cities are increasingly unequally distributed, and for
the poorest income deciles, cities have no positive effect
over the null expectation of a linear increase. Much has
been written about the apparent increasing gains of large
cities [4,5], such as greater GDP, higher wages and more
patents per capita. Our results show that the increasing benefits
of city size are not evenly distributed to people within those
cities. We further show systematic variations in distribution
characteristics. Besides greater mean, distributions of bigger
cities also exhibit greater spread, greater asymmetry and hea-
vier tails. These perspectives can be explicitly connected to
traditional measures of income inequality, such as the Gini
coefficient. Like the Gini coefficient, our method characterizes
the overall dispersion of income distributions (figure 7), but it
also provides more detailed information that is not character-
ized by Gini, such as how the urban agglomeration effect
alters the incomes of relatively poor or rich people differently.

Since income distribution data represent a sub-sample of
the population, it is important to consider how sub-sampling
may affect the scaling exponents [29]. We performed a robust-
ness check and found that our conclusions are not affected
by the sampling effect described in [29]—see electronic
supplementary material for more details.

Our qualitative conclusions, at first glance, appear to clo-
sely align with those of Sarkar et al. [26,27], which analyse
Australian income data. While both studies observe inequal-
ity, the two studies define inequality differently. Sarkar et al.
uses a non-scale-adjusted method and study income aggre-
gated in income brackets, while we use a scale-adjusted
method and aggregate by income deciles. The baseline
‘equal’ situation is different in the two methods. In Sarkar
et al., equality requires the proportion of individuals in each
income bracket to remain the same as city size changes,
and inequality can appear when the average income
increases with city population, even without changes to the
shape of the distribution. In our method, equality requires
the dispersion in the income distribution to remain the
same, regardless of changes in average income. Thus, our
methodology allows us to distinguish between increasing
income variance and increasing mean income, while Sarkar’s
does not. Furthermore, the scale-adjusted approach is impor-
tant when comparing income with other urban indicators,
such as housing costs. Since the average of both variables
scale with city population, and sometimes with different
exponents, it is important to use the scale-adjusted approach
to derive meaningful comparisons.

Our paper offers new contributions to the literature. First,
we develop a new method to study income inequality in the
urban scaling framework, which untangles the systematic
shift in mean from the study of income inequality. This
method enables us to study how income agglomeration
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effects vary between relatively rich and poor people, after
accounting for the systematically increasing mean with popu-
lation size. Second, our analysis including housing cost
demonstrates that despite agglomeration effects on income,
bigger cities are less affordable for people of all deciles in
the sense that they spend proportionally more of their
income on housing; this is especially true for lower-income
people. Third, our analysis extends beyond the single-
parameter characterization of income inequality. We analyse
more complex properties of income distributions through
analysing statistical moments and KL divergence, and
reveal systematic variations with city size. Fourth, our results
suggest new directions for understanding mechanisms of
urban agglomeration effects—it is important to extend
beyond theories considering homogeneous densifying
interactions to those which account for heterogeneity.

Understanding the underlying mechanisms of why
inequality is systematically scaling with city size is of great
future interest with many potential implications. Urban scal-
ing theory in general proposes densifying interactions within
cities as the fundamental process leading to the superlinear
increase of many features [3,9,10,30,31]. Our analysis shows
that the superlinear scaling is not seen within all subsections
of the city. The superlinear scaling of total wealth is driven by
the top income deciles, and is not matched proportionally by
the lowest deciles. This adds another dimension to consider-
ations of the underlying mechanisms of urban scaling theory:
what processes are leading to the increasingly unequal distri-
bution of wealth in larger cities? We explored the idea of city
heterogeneity as an indirect proxy for heterogeneous inter-
action rates. One hypothesis of the mechanism driving
superlinear scaling of income with city size is that larger
cities foster more and more diverse social and economic inter-
actions, creating opportunities for the exchange of ideas and
resources. Existing literature credits superlinear growth of
income in cities to more opportunities for social contacts
and interactions in large cities [4,9]. Increased social contact
with city size has been empirically confirmed [32], and ties
between individual’s exposure to diverse social connections
and economic outcomes have been shown empirically as
well [33]. Together, this seems to suggest that cities that are
better mixed either physically or virtually, allowing diverse
parts of the population to be exposed to one another,
should be overperforming with respect to urban scaling.
We hypothesize that cities with high levels of economic seg-
regation, inhibiting mixing between diverse populations, will
underperform with respect to income scaling. Our finding
encourages future work to consider heterogeneous models
of interactions, as those clustered in space or social/work cir-
cles, to form a more coherent understanding of urban scaling.
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