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Abstract

RNA molecules play critical roles in cellular functions at the level of gene expression and 

regulation. The intricate 3D structures and the functional roles of RNAs make RNA molecules 

ideal targets for therapeutic drugs. The rational design of RNA-targeted drug requires accurate 

modeling of RNA-ligand interactions. Recently a new computational tool, RLDOCK, was 

developed to predict ligand binding sites and binding poses. Using an iterative multiscale sampling 

and search algorithm and a energy-based evaluation of ligand poses, the method enables efficient 

and accurate predictions for RNA-ligand interactions. Here we present a detailed illustration of 

the computational procedure for the practical implementation of the RLDOCK method. Using 

Flavin mononucleotide (FMN) docking to F. nucleatum FMN riboswitch as an example, we 

illustrate the computational protocol for RLDOCK-based prediction of RNA- ligand interactions. 

The RLDOCK software is freely accessible at http://https://github.com/Vfold-RNA/RLDOCK.
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1 Introduction

RNA molecules play essential roles in cellular functions at the level of protein synthesis,1 

gene regulation,2 nucleotide modification,3 and functional response to environmental 

changes.4 In particular, non-coding RNAs directly participate in tumorigenesis and 

neurological, cardiovascular and many other human diseases.5 For example, RNAs are 

implicated in a number of diseases such as Huntington’s disease and AIDS.

RNA molecules fold up to form complicated tertiary structures that consist of different 

motifs at various levels of complexity, such as stem-loop, hairpins, bulges, and pseudoknots. 

Highly structured regions of RNA with an array of different structural motifs can serve as 
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an ideal receptor and druggable target for small molecules (ligands).8-10 The drugability of 

RNA is particularly appreciated if the protein target lacks suitable ligand-binding pockets.

The drugability of RNA structures has inspired tremendous efforts to develop RNA-based 

therapeutic strategies.6, 7 So far, many ligands have been discovered to target RNA 

through various mechanisms. For example, amino- glycoside antibiotics target bacterial 

ribosomal RNA with high affinity and specificity to inhibit protein synthesis,11-13 ribocils 

selectively bind to Flavin mononucleotide (FMN) riboswitch to terminate gene expression 

and subsequently inhibit further bacterial infection,14 anthraquinone derivatives target HIV 

transactivation response element to inhibit viral replication.15 Moreover, designed ligand-

RNA aptamer complexes can potentially enhance therapeutic applications. For example, 

experiments indicated that a complex of a modified RNA aptamer and tetramethylrosamine 

(a fluorescent malachite green analogue) can regulate the cell cycle of S.cerevisiae.16 An 

accurate computational tool for predicting ligand-RNA interactions can greatly facilitate in 

vitro selection of RNA aptamers that bind to a specific ligand and ligands that bind to a 

specific RNA aptamer to optimize intended aptamer structures.17

Over the past decades, various experimental methods, such as X-ray crystallography,18 

nuclear magnetic resonance (NMR) spectroscopy,19 and cryo-electron20 microscopy, have 

been used to determine biologically important RNA-ligand complex structures, As of 

December 2020, there have been more than 400 experimentally determined RNA-ligand 

complexes structures deposited in the Protein Data Bank21 (PDB) database, of which more 

than 75% were discovered over the past decade. These structures have provided much 

needed data for understanding RNA-ligand interactions and developing structure-based 

discovery of drugs.

In parallel with the experimental advances in structure determination of RNA-ligand 

complexes, substantial efforts have been devoted to the computational modeling of RNA-

ligand binding. The computational efforts can be mainly classified into two categories: 

data-driven and physics-based models. Machine learning as a data-driven approach has 

been extensively applied to the study of RNA-ligand docking. Additionally, other data-

driven models, such as DrugScoreRNA22, 23 and LigandRNA,24 predict ligand binding using 

statistical potentials derived from the structural data of the known RNA-ligand complexes. 

Physics-based approaches such as DOCK625 and MORDOR,26 however, employ physical 

energy functions for ligand-RNA interactions and predict the ligand-RNA complex by 

minimizing the energy. The different approaches have shown significant success for different 

RNA-ligand systems.27 However, in general, the accuracy for an RNA-ligand model is 

lower than that of protein-ligand docking models, and the performance cannot meet the 

requirement for drug design and other applications such as virtual screening and selection 

of ligands and RNA aptamers for the intended aptamer-ligand complex structures.17 One 

of the key problems is that, compared with protein-ligand complexes, we have far less 

known RNA-ligand complex structures.28 The insufficient number and diversity of known 

RNA-ligand complex structures can directly impact the reliability of both the data-driven 

and the physical approaches, which rely on the structural data to optimize model parameters. 

In recent years, as more and more RNA-ligand complexes structures are determined,29 we 
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can realistically expect continuous improvements in the accuracy of computational models 

for RNA-ligand binding.

Given the limited availability of known structures, physics-based approaches become an 

attractive alternative. For a physics model, complete sampling and accurate scoring for 

the binding modes (also referred to as binding poses) are two key bottlenecks.25, 30 To 

tackle these bottleneck problems, we recently developed the RLDOCK model30 (http://

https://github.com/Vfold-RNA/RLDOCK). The RLDOCK model has two key components. 

First, the model employs a novel multi-tier screening algorithm that enables an iterative 

exhaustive search for the binding sites and ligand conformations. Second, the scoring of 

the different binding modes is based on a comprehensive physics-based energy function. In 

this Methods paper, we focus on the detailed illustration of the computational procedure for 

the practical implementation of RLDOCK. As an application of the RLDOCK, we show 

the computational prediction for the binding mode of FMN (ligand) docking to F.nucleatum 
FMN riboswitch (RNA; PDB21 identifier: 2yie31).

In Fig. 1 we show the pipeline of the RLDOCK method. The main algorithm of RLDOCK 

has two components: the sampling of the possible ligand binding modes and the scoring 

of the different binding modes. In RLDOCK, sampling is guided by scoring (energy) 

function. Therefore, in what follows, we first describe the scoring function then introduce 

the sampling method.

2 Method

2.1 Preparation of the system

The RLDOCK model uses the 3D structure of the RNA and the chemical structure of the 

ligand as the input information. Depending on the flexibility of the ligand molecule, the 

model generates an ensemble of 3D conformers for the ligand.

1. An initial structure of a ligand can be generated from its 2D chemical 

information using cheminformatics tools such as Open Babel32 and OMEGA 

TK.33 Staring from the initial ligand structure, we generate diverse 3D 

conformers for the ligand and group structurally similar ligand conformers into 

clusters. Here the structural similarity is measured by the root-mean-square 

deviation (RMSD) of the heavy atoms between the structures. On a workstation 

powered with an AMD Ryzen Threadripper 1950X 16-Core Processor and 64 

GB RAM, we generate an ensemble of 30 diverse conformers for a ligand.

2. Using UCSF Chimera,34 we prepare the input RNA and ligand structures as 

mol2 files. The files contain not only the atomic coordinates but also the 

partial charges carried by the atoms. Unlike proteins, RNAs are highly charged, 

therefore, electrostatic interaction is critical for ligand-RNA binding and the 

charge assignments are important for the model.

2.2 Scoring function

The scoring function in RLDOCK is based on the free energy change upon ligand binding 

to the RNA. The total free energy of the system comprises the following components: (a) 

Jiang and Chen Page 3

Methods. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the mutual van der Waals (VDW) Ulj and (b) Coulomb Ue interaction energies between 

ligand and RNA atoms, (c) the polar hydration energy, which is decomposed into self-

polarization energy Uself of the RNA and ligand atoms and the mutual polarization energy 

Upol between the different charged atoms, (d) the nonpolar hydration energy Usa, (e) the 

hydrogen-bond energy Uh, and (f) the intramolecular VDW interaction energy between 

ligand atoms Uinternal. The hydration energies are calculated based on the generalized Born 

approximation with the solvent-accessible surface area (GB/SA model).35-40 For a given 

RNA-ligand binding mode i, the total energy score is given by the following formula; See 

Appendix A for a detailed illustration of each energy term.

Si = clj × ΔUlj + ce × ΔUe + cℎ × ΔUℎ + csa × ΔUsa + cpol × ΔUpol +
cself

R × ΔUself
R + cself

L × ΔUself
L + cinternal

L × ΔUinternal
L , ##(1)

where the weight coefficients41 c are introduced to account for the correlation between 

the different components, and the superscripts R and L denote the RNA and the ligand, 

respectively.

The evaluation of the scoring function (energy) for each sampled ligand binding mode is 

computationally demanding. Therefore, an effective method to speed up energy calculation 

is a critical ingredient in the RLDOCK model. RLDOCK uses two methods to achieve a fast 

energy calculation.

2.2.1 Grid-based Lennard-Jones (LJ) energy map—One of the approaches used 

in RLDOCK is to pre-tabulate the energy values for pairwise interactions, specifically, the 

VDW interaction energy, which, as shown in Appendix A, is in the form of a Lennard-Jones 

(LJ) potential. The basic strategy is to discretize the 3D space and pre-compute the LJ 

interaction energy between all the RNA atoms and a ligand atom placed at a grid site. In 

practice, we discretized the space with a grid spacing of 0.2Å and place common atom types 

(C, N, O, P, S, etc) at each grid. The LJ energy values for the different atom types on each 

grid site gives the grid energy map. For a given binding mode, the mutual VDW energy can 

be quickly evaluated by summing up the grid energies over the grids occupied by the ligand 

atoms.

2.2.2 A simplified scoring function—The solvent-accessible surface area (SASA) 

and the Born radii of the atoms are sensitive to the structure of the RNA-ligand complex 

and hence need to be computed/updated for each ligand-RNA binding mode generated in 

the sampling process. Therefore, the time-consuming SASA and Born radii calculations 

become the most time-demanding steps in the whole computational process. In RLDOCK, 

the problem is resolved by applying an initial crude screening process where the following 

simplified and fast calculations for the SASA and Born radii can be used.

1. The calculation of SASA, which is determined by the molecular shape, is 

intrinsically a many-body problem. As an approximation, we simply add up the 

SASA changes of each pair of ligand-RNA atoms and ignore the existence of 

other atoms in the calculation of each ligand-RNA atom pair.
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2. We neglect the ligand docking-induced changes in the Born radii and the self-

polarization energy ΔUself
R  for RNA.

3. We use the VDW radii to approximate the Born radii of the bound ligand atoms.

The above approximations can lead to an increase in the computational efficiency of 

thousands of folds.

2.2.3 Method for parameter optimization—The scoring function contains 8 weight 

coefficients. We determine the coefficients by minimizing the difference between the 

predicted and the experimentally determined binding modes for a training set. Our training 

set contains 30 RNA-ligand complexes deposited in the PDB; See Appendix B. The 30 cases 

are selected to cover a diverse range of different RNA and ligand types. In the training set, 

the RNA sizes range from 516 to 2337 heavy atoms and the ligand sizes vary from 10 to 52 

heavy atoms, with an average of 1318 and 25 atoms for RNA and ligand, respectively.

For each of the 30 ligand-RNA complexes, a ligand binding mode ensemble is generated. 

The coordinated descent method42 is applied to optimize the weight coefficients. Repeated 

application of the coordinate descent method results in multiple sets of putative weight 

coefficients, and the set that corresponds to the minimum RMSD between the predicted and 

the experimentally determined ligand pose are selected: clj = 3.30, ce = 1.32, ch = 1.32, csa = 

1.26(0.30), cpol = 1.38(0.36), cself
R = 4.98(0.00), cself

L = 2.78(0.58), cinternal
R = 0.66. The values 

in the parentheses refer to the parameter used for the simplified scoring function above.

2.3 Sampling and scoring ligand-RNA binding modes

We use four variables, R, L, A, and O, to describe a ligand pose. Here the ligand atom A 
(referred to as the anchor atom) is fixed at position R (referred to as the anchor site), and 

the ligand pose is generated by the 3D rotation O of the ligand conformer L about A. As 

shown below, RLDOCK uses a multi-tier sieving process to search for the ligand binding 

pose efficiently.

2.3.1 Global sampling of the anchor sites

1. We configure the RNA structure in a box whose six boundaries are 3Å away 

from the outermost atoms of the RNA, and discretize the box space with a simple 

cubic lattice of grid size 0.5Å.

2. We search for all the possible anchor sites that involve no steric clashes with a 

ligand or an RNA atom and reside inside a pocket of the RNA structure.

a. To probe the steric clash, we place a virtual sphere of radius 2 Å the 

grid sites and let the sphere traverse the RNA surface to detect the 

atomic overlap. The clash-free grid sites are kept as the viable anchor 

sites R.

b. To identify the RNA pockets, on each anchor site selected above, 

we move the sphere 6Å along the six directions of the egocentric 

coordinates: left and right; front and back; up and down. If the test 

Jiang and Chen Page 5

Methods. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probe meets any RNA atom in at least five directions, the anchor site 

is considered to be inside a pocket and would be forwarded to the next 

step; see Fig.2A.

2.3.2 Sampling binding modes based on the ligand-RNA van der Waals 
interactions—In this step, we use the RNA-ligand VDW interaction energy (LJ potential) 

to sample and select plausible poses. We note that this step is primarily a shape-based 

selection as the LJ potential is a soft potential for the volume exclusion.

1. For each anchor site R selected in the previous step, we enumerate all the 

possible L, A, and O, and find the minimum LJ energy LJ1(R). We keep 300 

anchor sites R from the top-300 lowest LJ1(R) energies.

2. For each R site selected above, for each given ligand conformer L, we sample all 

the possible A and O, and find the minimum LJ energy LJ2(R, L). We keep the 3 

ligand conformers L from the top-3 lowest LJ2(R, L) energies.

3. For each (R, L) pair selected above, for each ligand atom A as the anchor atom, 

we sample all the possible rotations O about A and find the minimum LJ energy 

LJ3(R, L, A). We keep the anchor atoms A from the top-3 lowest LJ3(R, L, A).

Here we rotate the ligand around 500 uniformly orientated axes with a 10° increment in 

the rotation angle. The rotations result in a total of 36×500 = 18000 ligand orientations. In 

summary, the LJ potential-guided sampling leads to a total of 300 × 3 × 3 × 18000 ~ 5 × 107 

binding modes.

2.3.3 Scoring binding modes based on the full ligand-RNA interaction 
energy.—As shown below, we use a two-step approach to efficiently score the ~ 5 × 107 

binding modes.

1. Initial coarse-grained scoring of the ligand orientations. For each of the 300 

anchor sites R selected above, using the aforementioned simplified energy 

function, we quickly select the top-10 poses. This step leads to a pool of 300 

× 10 = 3000 potential binding modes; See Fig. 3A.

2. Further refinement using the rigorous energy function. We re-score the 3000 

binding modes using the original rigorous energy function; See Fig. 3B.

2.3.4 Clustering of the binding modes.—Starting from the top-ranked binding 

mode, we cluster the ligand poses according to the structural similarity. We use 2 Å as 

the RMSD cutoff a cluster. The top-scored pose in each cluster is chosen to represent the 

cluster. This step leads to a list of ranked binding modes (ligand poses). The top ligand pose 

is output as a mol2 file for visualization.

3 Application of the RLDOCK model

As an illustration, we apply RLDOCK to predict the FMN (ligand) pose in the FMN-F. 

nucleatum FMN riboswitch (RNA) complex. The ligand FMN contains 31 heavy atoms. We 

prepare an input ensemble of 30 conformers for the ligand. The global sampling procedure 
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predicts 2205 anchor sites. Anchoring each of the 31 heavy atoms to the 2205 sites for each 

of the 30 ligand conformers results in a total of 2205 × 30 × 31 × 18000 ~ 3.7 × 1010 binding 

modes. Subsequent LJ energy-based sampling and ranking of above binding modes leads to 

a list of top-300 anchor sites. As shown in Fig. 2, the selected binding sites are indeed in the 

pocket region.

For each of the 300 selected anchor sites, the simplified scoring function selects the top-10 

binding poses from the ~ 5 × 107 candidates; See Fig. 3A. Subsequent re-scoring using the 

rigorous energy function gives the re-ranked 3000 binding modes. Finally, the clustering 

procedure leads to the final 527 ranked binding modes; See Fig. 3B. The predicted top-

ranked FMN ligand pose is within 2.0Å (RMSD) from the crystal structure; See Fig. 3C and 

D.

The executable file for RLDOCK is available at https://github.com/Vfold-RNA/RLDOCK. 

Here are some tips for a successful implementation of RLDOCK.

• For a larger RNA (atoms ~ 3 × 104) RLDOCK requires a computing power with 

larger RAM (≥ 128G) and more CPU threads (≥ 32).

• For a large flexible ligand (rotatable bonds > 12), we suggest generating multiple 

ensembles of ligand conformers instead of a single large ensemble.

4 Conclusion

Using a novel multi-scale method for global sampling and energy-guided search for ligand 

binding pose, the RLDOCK method can successfully predict RNA-ligand near-native 

binding modes; See Tables 1 and 2. As shown in Table 1, RLDOCK can successfully 

predict the binding mode within the top-10 poses with a success rate of 70% for all the 

three data sets tested. For the training set and Test set 2, the top-ranked binding mode can 

give successful hits for more than 50% of the cases. For Test set 1, which contains 200 

RNA-ligand cases, the success rate of the top-ranked pose is less than 40%, suggesting the 

need for further refinement of the method.

As shown in Table 2, compared with other docking models, RLDOCK has a better 

performance on a validation set of 38 RNA-ligand complexes. The promising performance 

of RLDOCK indicates that it may serve as a new valuable tool for predicting RNA-ligand 

interactions in the discovery of lead compounds as RNA-targeted drugs and the selection of 

ligand-bound RNA aptamers.

However, the applicability of the RLDOCK method is challenging for large RNAs and 

ligands. For systems with a large RNA such as the ribosomal RNA (~ 5 × 104 atoms) or a 

large flexible ligand (rotatable bonds > 12), The time-consuming sampling of the binding 

modes causes prohibitive low computational efficiency of the method. Further improvement 

in the computational efficiency is possible. For example, the rDock model applies the 

genetic algorithm to generate initial ligand conformers and refine the conformer ensemble 

“on-the-fly” using Monte Carlo simulation.43 Another major challenge for the application 

of the RLDOCK model stems from RNA conformational flexibility. Unlike a protein, 

an RNA molecule often folds into multiple conformers with comparable stabilities. RNA 
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conformational multiplicity and the resultant flexibility of RNA binding pockets can affect 

ligand binding affinity. The conformational heterogeneity can also negatively influence the 

crystal packing of RNA structures and challenge the structure determination for ligand-RNA 

complexes. The current version of RLDOCK assumes a rigid RNA structure and cannot treat 

RNA conformational changes upon ligand binding. The RLDOCK method here, combined 

with an RNA folding model, however, may provide a promising new method to treat 

ligand-induced RNA conformational changes.
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Appendix

Appendix A. Energy terms in the scoring function

(a) VDW interaction energy Ulj

The Lennard-Jones (LJ) potential ΔUlj is applied to represent VDW interaction:

ΔUlj = ∑
r

∑
l

σrl
rrl

12
− σrl

rrl

6
. #(2.)

Here the subscripts r and l denote the atom of RNA and ligand, respectively. rrl represents 

the distance between the two atoms and σrl = 0.8(Rr + Rl) is the equilibrium distance, where 

Rr (Rl) is the radii of RNA (ligand) atom. A cut-off distance rcut = 2.5(Rr + Rl) is applied in 

the LJ potential calculation.

(b) Coulomb interaction Ue

The electrostatic interaction ΔUe is the Coulomb interaction between RNA and ligand 

atoms:

ΔUe = ∑
r

∑
l

ZrZle2

εcrrl
. #(3.)

Here Zr and Zl denote the electric charges of the atoms r in RNA and l in ligand, 

respectively, rrl is the distance between atoms, e is the electronic charge, εc (=20 in our 

calculation) is the dielectric constant of the RNA-ligand complex.

(c) Polar hydration energy

Polar hydration interaction is decomposed into the mutual polarization energy Upol and 

self-polarization energy Uself of the RNA and ligand atoms.

Mutual-polarization energy—The mutual polarization energy change ΔUpol is obtained 

as below:
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ΔUpol = Upol
complex − Upol

RNA + Upol
ligand , #(4.)

where Upol
complex, Upol

RNA, and Upol
ligand are the mutual polarization of the complex, the RNA 

alone, and the ligand alone, respectively. We estimate the three mutual polarization energies 

from the GB model:35-40

Upol = 1
2

1
εw

− 1
εc

∑
ij

ZiZje2

rij2 + BiBjexp −
rij2

4BiBj

,
#(5.)

where εw (=78) denotes the dielectric constant of water. The dielectric constant εc is 

assumed to be the same for the bound and the unbound RNA and ligand. The subscripts i 
and j (i ≠ j) represent respective molecule (complex, RNA alone, or ligand alone). rij denotes 

the distance between these two atoms. Bi and Bj are the Born radii of atoms i and j.

For an atom i in the RNA-ligand complex, RNA alone, or ligand alone, its Born radius is 

calculated as follows:

1
Bi

= 1
ai −

1
2 ∑

j
Aj #(6.)

and 1
Ai

= 1
Lij

− 1
Uij

+
Sj

2aj2

4rij
− rij

4
1

Lij
2 − 1

Uij
2 + 1

2rij
ln Lij

Uij
, #(7.)

where Lij =
1 if ai ≥ rij + Sjaj

max (ai, rij − Sjaj) if ai < rij + Sjaj
#(8)

and Uij =
1 if ai ≥ rij + Sjaj

rij + Sjaj if ai < rij + Sjaj
#(9)

Here ai and aj denote the VDW radii of atoms i and j, respectively. rij is the distance between 

atoms i and j. Sj is the structural scaling factor and is equal to 1 if there is no overlap 

between the atoms. In general, Sj < 1 in the RNA-ligand complex, RNA alone, or ligand 

alone.

Self-polarization energy—The self-polarization energies ΔUself
R  of the RNA and ΔUself

L

of the ligand are calculated as the following:
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ΔUself
R = 1

εw
− 1

εc
∑r

1
Br

a − 1
Br

b Zr
2e2

ΔUself
L = 1

εw
− 1

εc
∑l

1
Bl

a − 1
Bl

b Zl
2e2,

#(10.)

Here Br(or l)
b  and Br(or l)

a  denote the Born radii of atom r(or l) in the RNA (or ligand) before 

and after the ligand-RNA docking, respectively.

(d) Nonpolar hydration energy Usa

The nonpolar hydration energy ΔUsa is evaluated according to the change in the solvent-

accessible surface area (SASA):45-47

ΔUsa = σ × ΔSA, #(11)

where ΔSA is the total SASA change before and after the ligand docking.

ΔSAcomplete = SAcomplex − (SARNA + SAligand), #(12)

Here SAcomplex denotes the SASA of the RNA-ligand complex for the given pose (R, L, A, 
O). SARNA and SAligand are the SASA of the RNA alone and ligand alone, respectively.

In the simplified scoring function, the sum of the SASA change for each ligand-RNA atom 

pair gives the approximate total SASA change:

ΔSAsimply = ∑
r

∑
l

ΔSArl, #(13.)

where ΔSArl denotes the SASA changes of the RNA atom r and the ligand atom l upon 

binding.

We choose σ = 0.0054 kcal/(mol · Å2) for the empirical atomic solvation parameter σ.48

(e) Hydrogen-bond interaction energy Uh

The hydrogen-bond interaction energy ΔUh between the RNA and ligand is calculated as:

ΔUℎ = ∑
r

∑
l

uℎ(rrl), #(14)

where uh(rrl) is the hydrogen-bond energy of an RNA-ligand atom pair. We evaluate the 

hydrogen-bond energy via an empirical formula:49
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uℎ(rrl) =

−1 rrl < rmin

−1 + rrl − rmin
rmax − rmin

rmin < rrl < rmax

0 rrl ≥ rmax

. #(15.)

Here rmin = 0.8(Rr + Rl and rmax = 1.3(Rr + Rl).

(f) Ligand intramolecular VDW interaction energy Uinternal

We also use LJ potential to evaluate ligand intramolecular VDW interaction:

ΔUinternal
L = ∑i

L ∑j(j ≠ i)
L σij

rij

12
− σij

rij

6
. #(16.)

Here i and j denote a non-bonded heavy atom pair in the ligand, rij is the distance between 

the two atoms, and σij = 0.8(Ri + Rj) is the equilibrium distance, where Ri and Rj are the 

radii of atom i and j, respectively. A cut-off distance rcut = 2.5(Ri + Rj) is applied here for the 

LJ potential.

The VDW radii and the structural scaling factors for various atom types can be obtained 

from http://www.rbvi.ucsf.edu/chimera/current/docs/UsersGuide/midas/vdwtables.html and 

Ref. 39, respectively.

Appendix B. List of data sets

List of PDB IDs for RNA-ligand complexes in the data sets

Training set

1AKX 1ET4 1F27 1LVJ 1PBR 1J8G

1KOC 1QD3 1Y26 2ET4 2FD0 2BE0

2BEE 2F4T 2KTZ 2O3X 2XO1 3DIX

3FO4 3GES 3SUH 3SUX 3SKL 4LVW

4LW0 4FEJ 4FEO 4NYB 4KQY 5C45

Test set 1

1AJU 1AM0 1ARJ 1BYJ 1DDY 1EHT

1EI2 1EVV 1F1T 1FMN 1FUF 1FYP

1I7J 1I9V 1J7T 1KOD 1LC4 1MWL

1NBK 1NEM 1NTA 1NTB 1O15 1O9M

1Q8N 1RAW 1TN1 1TN2 1TOB 1UTS

1UUD 1UUI 1XPF 1YKV 1YLS 1YRJ

1ZZ5 292D 2A04 2AU4 2B57 2EES

2EET 2EEU 2EEW 2ESI 2ESJ 2ET3

2ET5 2ET8 2F4S 2F4U 2FCX 2FCY
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Training set

2FCZ 2G5K 2G5Q 2G9C 2GCV 2GDI

2GIS 2GQ5 2HOP 2JUK 2KD4 2KGP

2KU0 2KX8 2KXM 2L1V 2L8H 2MIY

2MXS 2N0J 2OE5 2OE8 2PWT 2QWY

2TOB 2W89 2XNW 2XNZ 2XO0 2YDH

2YIE 3B4B 3B4C 3C3Z 3C44 3C5D

3C7R 3D0U 3D2X 3DIG 3DIL 3DIM

3DIO 3DIY 3DIZ 3DJ0 3DJ2 3DS7

3DVV 3DVZ 3DW4 3DW6 3E5C 3E5E

3E5F 3F2Q 3F2T 3F4G 3F4H 3FO6

3FU2 3G4M 3GAO 3GCA 3GER 3GOG

3GOT 3GX2 3GX3 3GX5 3GX6 3GX7

3IQN 3IQR 3IRW 3K1V 3LA5 3NPN

3NPQ 3OWI 3OWZ 3Q3Z 3Q50 3RKF

3S4P 3SD3 3SKI 3SKR 3SKT 3SKW

3SKZ 3SLM 3SLQ 3TD1 3TZR 3WRU

4AOB 4B5R 4ERL 4F8U 4F8V 4FE5

4FEL 4FEN 4FEP 4FRG 4GPW 4GPX

4GPY 4JF2 4K32 4L81 4LVV 4LVX

4LVY 4LVZ 4LX5 4LX6 4NYA 4NYC

4NYD 4NYG 4OQU 4P20 4PDQ 4QK8

4QK9 4QKA 4QLM 4QLN 4RZD 4TS0

4TS2 4TZX 4TZY 4WCQ 4WCR 4XNR

4YAZ 4YB0 4YB1 4ZC7 5C7U 5C7W

5NDH 5NEF

Test set 2

1AJU 1AM0 1BYJ 1EHT 1EI2 1F1T

1F27 1FMN 1FYP 1J7T 1KOC 1KOD

1MWL 1NBK 1NEM 1PBR 1Q8N 1TOB

1UTS 1UUD 1UUI 1XPF 1Y26 2BE0

2BEE 2ET8 2F4U 2FCZ 2FD0 2GDI

2O3X 2OE5 2PWT 2TOB 3D2X 3GX2

3SUX 4P20
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Highlights

• RLDOCK is a novel computational tool that predicts RNA-ligand interactions 

using a multiscale sampling method.

• A global search algorithm enables the complete sampling of ligand binding 

sites.

• An energy-guided coarse-grained sampling method facilitates a fast search for 

ligand conformations and orientations.

• A physics-based energy function successfully scores and ranks different 

binding modes.

• A two-step scoring approach leads to a substantial speed-up in the 

computational prediction of the ligand-binding mode.

• RLDOCK is a valuable new tool for RNA-targeted drug discovery.

Jiang and Chen Page 16

Methods. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
The workflow of the RLDOCK model.
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Figure 2: 
(A) Visualization of the binding sites for F.nucleatum FMN riboswitch (PDB21 identifier: 

2yie31). Dots in yellow denote the possible binding sites based on consideration of steric 

clash. Dots in red denotes the top-300 selected candidate binding sites based on LJ energy. 

(B) is an enlarged view of a region surrounded by a red rectangle of (A). The crystal 

structure of the ligand is displayed with green as a reference.
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Figure 3: 
The intermediate results obtained from the scoring module for F.nucleatum FMN riboswitch 

(PDB21 identifier: 2yie31). (A) The top-3 poses scored by the simplified scoring function. 

(B) The top-3 poses scored by the complete, rigorous scoring function. (C) The percentage 

of the near-native poses among the top-100 poses predicted by the simplified and the 

complete scoring functions, respectively. Here “near-native” means the RMSD is less than 

2.0 Å with respect of the experimentally determined pose. (D) The correlation between 

the final score given by RLDOCK and the RMSD with respect of crystal structure for the 

predicted poses after clustering.
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Table 1:

The success rate of RLDOCK for different data sets
a

Data set Number of cases Top 1 Top 3 Top 10

Training set30 30 50.0% 70.0% 86.7%

Test set 130 200 39.0% 56.5% 72.5%

Test set 224b 38 55.3% 60.5% 71.0%

a
In this table, a prediction is successful if the best RMSD of the top binding modes is less than 2.0Å with respect to the native binding mode.

b
The four ribosomal RNA cases are excluded from the 42 RNA-ligand complexes.
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Table 2:

The success rate of Test set 224 for the different docking models
a

Docking model Top 1 Top 3

RLDOCK30 55.3% 60.5%

DOCK625b 36.8% 44.7%

rDock43c 28.9% 47.4%

rDock_solv43c 39.5% 55.3%

AutoDock Vina44d 31.6% 44.7%

a
A prediction is successful if the best RMSD of the top binding modes is less than 2.0Å with respect to the native binding mode.

b
The data is obtained from Ref. 24.

c
For rDock and rDock solv, the cavity is defined using the reference ligand method, the radius of outer sphere is set as 5, and a final 50 

runs-per-ligand rDock job is performed.

d
The centroid of the native ligand binding pose is set as the center of the docking box. The size of the docking box is set as 20Å ×20Å ×20Å
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