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Critical role of oxidized LDL 
receptor‑1 in intravascular 
thrombosis in a severe influenza 
mouse model
Marumi Ohno1, Akemi Kakino2, Toshiki Sekiya1, Naoki Nomura1, Masashi Shingai1, 
Tatsuya Sawamura2 & Hiroshi Kida1*

Although coagulation abnormalities, including microvascular thrombosis, are thought to contribute 
to tissue injury and single- or multiple-organ dysfunction in severe influenza, the detailed mechanisms 
have yet been clarified. This study evaluated influenza-associated abnormal blood coagulation 
utilizing a severe influenza mouse model. After infecting C57BL/6 male mice with intranasal 
applications of 500 plaque-forming units of influenza virus A/Puerto Rico/8/34 (H1N1; PR8), an 
elevated serum level of prothrombin fragment 1 + 2, an indicator for activated thrombin generation, 
was observed. Also, an increased gene expression of oxidized low-density lipoprotein (LDL) receptor-1 
(Olr1), a key molecule in endothelial dysfunction in the progression of atherosclerosis, was detected 
in the aorta of infected mice. Body weight decrease, serum levels of cytokines and chemokines, viral 
load, and inflammation in the lungs of infected animals were similar between wild-type and Olr1 
knockout (KO) mice. In contrast, the elevation of prothrombin fragment 1 + 2 levels in the sera and 
intravascular thrombosis in the lungs by PR8 virus infection were not induced in KO mice. Collectively, 
the results indicated that OLR1 is a critical host factor in intravascular thrombosis as a pathogeny of 
severe influenza. Thus, OLR1 is a promising novel therapeutic target for thrombosis during severe 
influenza.

Influenza is a respiratory disease and remains a major health concern, causing approximately half a million deaths 
per year globally1. Influenza virus, a causative pathogen of influenza, infects and proliferates in the epithelial cells 
of respiratory tissues. In response to virus proliferation, host innate immunity is induced and triggers proinflam-
matory responses2. Although the detailed mechanisms of influenza pathogenesis are poorly understood, severe 
influenza is characterized by tissue edema and single- or multiple-organ dysfunction, one of the lethal pathologi-
cal conditions3,4. Given the previous findings on sepsis-induced organ dysfunction5, microvascular thrombosis is 
considered to contribute to tissue injury and multiple-organ dysfunction syndrome in severe influenza. In fact, 
an imbalance between coagulation and fibrinolysis during severe influenza has been confirmed in mouse and 
ferret models6,7. Furthermore, the increased risk of acute myocardial infarction and venous thromboembolism 
after acute infectious diseases, including influenza, and the prolonged prothrombin time (PT) in human clini-
cal cases further suggest that abnormal blood coagulation caused by viral infection also occurs in humans4,8–10. 
Therefore, the elucidation of the detailed mechanisms of abnormal blood coagulation during severe influenza 
would provide novel and important insights into the further understanding of influenza pathogenesis.

Oxidized low-density lipoprotein (LDL) receptor-1 (OLR1) is originally identified as a receptor for oxi-
dized LDL in vascular endothelial cells11. Previous studies have demonstrated that OLR1 mediates vascular 
endothelial cell damage and atherosclerosis and the enhancement of vascular permeability caused by oxidized 
LDL12,13. Furthermore, a wide range of physiological functions of OLR1 far beyond cardiovascular diseases has 
been elucidated, for example, in the regulation of inflammatory responses to endotoxin14,15. In a lung injury 
mouse model, intraperitoneal injection of endotoxin rapidly increases OLR1 protein expression in the lungs, 
and induced OLR1 activates inflammatory nuclear factor-κB (NF-κB) signaling, leukocyte accumulation, and 
hyperpermeability in the lungs15. Also, OLR1 expressed in vascular endothelial cells promotes the attachment 
of activated platelets to the cells and endothelial dysfunction16,17, which could change the vascular wall into 
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prothrombotic. These previous findings led to the hypothesis that OLR1 is a bridge between inflammation and 
abnormal blood coagulation and plays an important role in influenza pathogenesis.

This study evaluated influenza-associated abnormal blood coagulation utilizing a severe influenza mouse 
model that was previously established18. Furthermore, blood coagulation profiles were compared between wild-
type (WT) and Olr1 global knockout (KO) mice to investigate the roles of OLR1 as a host factor in cytokine 
production, coagulation abnormality, and lung intravascular thrombosis during influenza.

Results
Activated thrombin generation in a severe influenza mouse model.  The effect of influenza virus 
infection on the blood coagulation system of the host was investigated in a severe influenza mouse model, in 
which weight loss of 25% or more, a criterion for a humane endpoint, is induced within 7 days of infection18. 
PR8 virus was intranasally infected to male mice at a dose of 500 plaque-forming units (PFUs)/mouse, and 
samples were collected at 1, 3, and 6 days post-infection (dpi). Body weight changes at each sampling point 
were 99.9% ± 0.4% in control mice and 99.8% ± 0.5% in infected mice at 1 dpi, 101.1% ± 0.7% in control mice 
and 86.1% ± 0.4% in infected mice at 3 dpi, and 101.5% ± 0.9% in control mice and 74.0% ± 0.7% in infected 
mice at 6 dpi. Significant body weight loss was observed in infected mice, compared to control mice, at 3 and 6 
dpi [p < 0.0001, two-way analysis of variance (ANOVA)]. In addition to body weight loss, infected mice showed 
ruffled fur, lower motor activity, and dehydration at 6 dpi. Measurements of blood coagulation parameters were 
performed with whole-blood, and sera were collected at 1, 3, and 6 dpi for samples at a very early stage, the onset 
of a symptom, and the lethal phase during influenza, respectively.

The international normalized ratio of PT (PT-INR) and prothrombin fragment 1 + 2 concentrations were 
examined as blood coagulation parameters. As shown in Fig. 1a, the PT-INR level, a clinical index of the dura-
tion of blood coagulation, was elevated in PR8 virus-infected mice at 3 and 6 dpi (0.90 ± 0.03 in control mice 
and 1.16 ± 0.09 in infected mice at 3 dpi, p < 0.05, two-way ANOVA; 0.89 ± 0.02 in control mice and 1.46 ± 0.11 
in infected mice at 6 dpi; p < 0.0001, two-way ANOVA). A time-dependent elevation of the PT-INR level in the 
host with severe influenza was also indicated (p < 0.0001, two-way ANOVA). Moreover, the serum level of pro-
thrombin fragment 1 + 2, a specific indicator of activated thrombin generation, drastically increased in infected 
mice (Fig. 1b). The levels were 3.89 ± 2.79 ng/mL in control mice and 2.08 ± 2.08 ng/mL in infected mice at 1 
dpi, 2.66 ± 2.17 ng/mL in control mice and 26.04 ± 14.48 ng/mL in infected mice at 3 dpi, and 5.77 ± 3.48 ng/
mL in control mice and 143.77 ± 14.62 ng/mL in infected mice at 6 dp. A significant difference between control 
and infected mice was observed only in samples collected at 6 dpi (p < 0.0001, two-way ANOVA). These results 
clearly showed that abnormal blood coagulation demonstrated by both prolonged PT and increased thrombin 
generation from prothrombin is induced in the host at the lethal phase of severe influenza. On the other hand, 
PR8 virus infection at 25 PFU did not induce the elevation of serum prothrombin fragment 1 + 2 or PT-INR in 
6 days in our preliminary experiment. Therefore, subsequent experiments were conducted using lethal infection 
conditions of 500 PFU to investigate blood coagulation abnormalities in severe influenza.

The elevation of expression of Il6, Icam1, and Olr1 genes in the aorta and lungs of mice during 
severe influenza.  Endothelial dysfunction was considered involved in the induction of abnormal blood 
coagulation during severe influenza. Thoracic aorta and lung samples from control and PR8 virus-infected mice 
were collected at 1, 3, and 6 dpi, and gene expression related to inflammation and endothelial functions was 
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Figure 1.   Blood coagulation parameters in control versus PR8 virus-infected mice at 1, 3, and 6 dpi. Mice were 
intranasally inoculated with PBS control or PBS comprising PR8 virus, and whole-blood and serum samples 
were collected for the measurement of (a) PT-INR [n = 11 (PR8-6 dpi group) or 12 (the other groups)] and (b) 
prothrombin fragment 1 + 2 [n = 6 (PR8-6 dpi group) or 8 (the other groups)], respectively, at 1, 3, and 6 dpi. (a 
and b) Values are represented by box-and-whiskers plots as follows: the central line in the box is the median, 
the bottom and top lines of the box are the first and third quartiles, respectively, whiskers are the minimum 
to maximum values. In each panel, white and gray boxes indicate data from control and PR8 virus-infected 
mice at 1, 3, and 6 dpi, respectively. **p < 0.01, ****p < 0.0001, two-way ANOVA using a multiple-comparison 
correction, control versus PR8 virus-infected mice at each time point. PT-INR, international normalized ratio of 
prothrombin time; PR8, influenza virus A/Puerto Rico/8/34; dpi, days post-infection.
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investigated (Fig. 2). Interleukin-6 (Il6), a proinflammatory cytokine, was significantly increased by 15.8- and 
3.6-fold in the aorta (Fig. 2a) and by 228.46- and 63.78-fold in the lung (Fig. 2d) of infected mice at 3 and 6 dpi, 
respectively (p < 0.0001, two-way ANOVA). Intercellular adhesion molecule-1 (Icam1), which encodes adhesion 
molecules for leukocytes, was expressed at slightly but significantly increased levels in the infected mouse aorta 
(1.69- and 1.49-fold at 3 and 6 dpi, respectively, p < 0.05, two-way ANOVA; Fig. 2b), whereas its expression in 
the lungs was significantly increased only at 3 dpi (2.53-fold, p < 0.0001, two-way ANOVA; Fig. 2e). OLR1, an 
endothelial receptor for LDL, is a key player in oxidized LDL-induced atherogenesis and endotoxin-induced 
inflammation14,19. Interestingly, aortic Olr1 expression was significantly increased in PR8 virus-infected mice by 
5.6- and 3.0-fold at 3 and 6 dpi, respectively (p < 0.0001, two-way ANOVA; Fig. 2c). The lung of infected mice 
also showed a significant level of induction of Olr1 at 3 dpi (1.33-fold, p < 0.05, two-way ANOVA; Fig. 2f). Also, 
expression levels of Il6 and Olr1 were significantly correlated in samples collected at 3 dpi (aorta, R2 = 0.8585, 
p < 0.0001; lung, R2 = 0.6488, p < 0.05; linear regression analysis). Aortic samples collected at 6 dpi also showed 
a weaker but significant correlation between the levels of these genes (R2 = 0.4516, p < 0.0005, linear regression 
analysis). Given its critical role in endotoxin-induced inflammation and endothelial dysfunction14,17, OLR1 was 
hypothesized to be involved in local and systemic inflammation as well as abnormal blood coagulation observed 
in mice with severe influenza. This hypothesis led to conduct influenza virus infection experiments in Olr1 KO 
(KO) mice, which was previously established19, to confirm whether this host factor is involved in those patho-
logical events.

Similar body weight loss and virus titer in the lungs of Olr1 KO mice upon influenza virus 
infection to those in WT mice.  PR8 virus was intranasally infected to WT and KO mice at a dose of 
500 PFU/mouse. Blood coagulation parameters and serum cytokine levels as well as the histopathological 
changes in the lungs were also evaluated. Both mice showed significant body weight losses from 3 dpi onward 
(p < 0.0001, two-way ANOVA; Fig. 3a). At 6 dpi, body weight changes were 103.2% ± 0.2% in WT-control mice, 
78.8% ± 0.9% in WT-PR8 virus-infected mice, 103.5% ± 0.7% in KO-control mice, and 80.7% ± 0.8% in KO-PR8 
virus-infected mice. No significant difference was detected in body weight losses between WT and KO mice at 
any time points (p > 0.05, two-way ANOVA). All infected mice were euthanized at 6 dpi for a humane endpoint 
indexed by weight loss, but the hair gloss looked better in KO mice, and they were more active than WT mice. 
The average lung virus titers of WT and KO mice at 3 and 6 dpi were 4.16 × 105 ± 0.90 × 105 in WT mice and 
4.94 × 105 ± 0.58 × 105 in KO mice at 3 dpi and 2.78 × 104 ± 0.41 × 104 in WT mice and 3.04 × 104 ± 0.77 × 104 in KO 
mice at 6 dpi (Fig. 3b). No significant difference was detected between WT and KO at both time points ((p > 0.05, 
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Figure 2.   Expression of inflammation-related genes in the aorta and lungs. Mice were intranasally inoculated 
with PBS control or PBS comprising PR8 virus, and (a–c) aortic and (d–f) lung samples were collected at 1, 3, 
and 6 dpi. (a and d) Il6 , (b and e) Icam1, and (c and f) Olr1 gene expression was normalized with that of 18S 
from real-time PCR analyses. (a–f) Gene expression of PR8 virus-infected mice is presented as the fold changes 
relative to those of control mice at each time point. Bars represent the mean ± SEM of 11(PR8-3 dpi and PR8-6 
dpi groups) or 12 (the other groups) animals for aorta and 4 animals for lung, respectively. White and black 
bars indicate data from control and PR8 virus-infected mice, respectively. * p < 0.05, **p < 0.01, ****p < 0.0001, 
two-way ANOVA using a multiple-comparison correction, control versus PR8 virus-infected mice at each time 
point. PR8, influenza virus A/Puerto Rico/8/34; dpi, days post-infection.
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two-way ANOVA). These results indicated that the absence of OLR1 did not affect the infection and replication 
of the virus in the lungs, at least under this experimental condition.

Restored blood coagulation abnormalities during severe influenza in Olr1 KO mice.  Upon 
PR8 virus infection, the PT-INR level was significantly elevated from 0.89 ± 0.01 to 1.53 ± 0.05 in WT mice 
(p < 0.0001, two-way ANOVA) and 0.87 ± 0.02 to 1.23 ± 0.09 in KO mice (p < 0.0005, respectively, two-way 
ANOVA) in Fig. 4a. When comparing WT and KO mice, a significant difference in the infection-induced PT-
INR level was detected (p < 0.01, two-way ANOVA). In contrast, elevated serum prothrombin fragment 1 + 2 was 
observed only in infected WT mice (95.524 ± 29.8 ng/mL), whereas the value was not altered in KO mice after 
virus infection (Fig. 4b). These results indicated that the host factor OLR1 plays an important role in pathologi-

a b

Figure 3.   Effect of OLR1 on virus infection-induced body weight decrease and lung viral replication. WT 
and KO mice were intranasally inoculated with PBS control or PBS comprising PR8 virus, and (a) body 
weight change and (b) lung virus titers were evaluated. (a) The body weight change of mice was calculated 
as a percentage of the original weight. Symbols represent mean ± SEM (WT-control, n = 9; WT-PR8, n = 9; 
KO-control, n = 6; KO-PR8, n = 8). Circles and triangles indicate data from WT and KO mice, respectively. Open 
and closed symbols indicate PBS control and PR8 virus-infected mice, respectively. No significant difference 
was detected between WT and KO mice at each time point by two-way ANOVA. (b) At 3 and 6 dpi, mice were 
euthanized for the collection of lung samples, and plaque assays on MDCK cells were performed to calculate the 
lung viral titers in each sample (n = 5). Values are represented by box-and-whiskers plots as follows: the central 
line in the box is the median, the bottom and top lines of the box are the first and third quartiles, respectively, 
whiskers are the minimum to maximum values. White and gray boxes indicate data from WT and KO mice, 
respectively. No significant difference was detected between WT and KO mice in each treatment group by two-
way ANOVA. (a and b) PR8, influenza virus A/Puerto Rico/8/34; PFU, plaque-forming unit; dpi, days post-
infection; WT, wild type mice; KO, Olr1 knockout mice; ND, not detected; NS, not significant.

a b

Figure 4.   Effect of OLR1 on virus infection-induced blood coagulation abnormalities. WT and KO mice were 
intranasally inoculated with PBS control or PBS comprising PR8 virus, and whole-blood and serum samples 
were collected for the measurement of (a) PT-INR (WT control, n = 9; WT PR8, n = 9; KO control, n = 7; KO 
PR8, n = 7) and (b) prothrombin fragment 1 + 2 (n = 4), respectively, at 6 dpi. (a and b) Values are represented 
by box-and-whiskers plots as follows: the central line in the box is the median, the bottom and top lines of 
the box are the first and third quartiles, respectively, whiskers are the minimum to maximum values. In each 
panel, white and gray boxes indicate data from control and infected mice, respectively. **p < 0.01, ***p < 0.0005, 
****p < 0.0001, two-way ANOVA using a multiple-comparison correction. PR8, influenza virus A/Puerto 
Rico/8/34; WT, wild type mice; KO, Olr1 knockout mice; ND, not detected.
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cal blood coagulation during severe influenza. Particularly, thrombin generation from prothrombin in mice with 
severe influenza was considered critically regulated by OLR1.

Similar cytokine responses in Olr1 KO mice upon influenza virus infection to those in WT 
mice.  In contrast, influenza virus infection-induced systemic inflammation was not affected by the absence 
of OLR1 (Fig. 5). Proinflammatory cytokine and chemokine IL-6 (Fig. 5a), interferon-γ-induced protein-10 (IP-
10; Fig. 5b), monocyte chemoattractant protein-1 (MCP-1; Fig. 5c), and macrophage inflammatory protein-1β 
(MIP-1β; Fig. 5d) were detected in PR8 virus-infected KO mice at very similar levels to those in infected WT 
mice. For example, the serum IL-6 levels were 3.68 ± 1.73 pg/mL in WT-control mice, 218.4 ± 32.9 pg/mL in 
WT-PR8 virus-infected mice, 0.39 ± 0.24 pg/mL in KO-control mice, and 217.0 ± 28.7 pg/mL in KO-PR8 virus-
infected mice. Two-way ANOVA demonstrated only effects of virus infection on all cytokines and chemokines 
(p < 0.0001) but not in the presence or absence of OLR1 (p > 0.05). Consistently, there was no difference in the 
induced levels of Il6 gene expression in the aorta and lungs between WT and KO mice (Supplemental Fig. S1). 
The results further suggested that OLR1 is dispensable for local cytokine production. Collectively, these results 
revealed that OLR1 plays a role in the activation of thrombin generation in severe influenza without affecting the 
production of inflammatory cytokines.

Suppression of the influenza‑induced thrombosis in the lungs of Olr1 KO mice.  Pulmonary 
inflammation and thrombus formation in the lungs at the lethal phase of influenza were further investigated 
utilizing the severe influenza mouse model, and the results from WT mice were compared to those from KO 
mice (Fig. 6). No apparent difference was found in the microscopic observation of the lungs between WT and 
KO mice (Fig. 6a, b). The degree of lung inflammation caused by PR8 virus infection was examined in hema-
toxylin and eosin (HE)-stained sections from WT and KO mice sacrificed at 6 dpi when mice showed severe 
body weight losses. Lungs from both WT and KO mice demonstrated obvious peribronchial inflammation, 
inflammatory cells in alveoli, thickened alveolar walls, and alveolar hemorrhage after virus infection (Fig. 6c, 
d). Also, leukocytes in the vascular intima and perivascular spaces were observed in infected mice (Fig. 6c, d, 
inserts), suggesting activated leukocyte migration. No clear difference was observed between WT and KO mice. 
This result was compatible with serum cytokine data representing similar systemic cytokine secretion in KO 
mice to that in WT mice.

control

PR8

Figure 5.   Effect of OLR1 on virus infection-induced systemic inflammation. WT and KO mice were 
intranasally inoculated with PBS alone or PBS comprising PR8 virus, and serum samples were collected at 6 
dpi. Serum levels of (a) IL-6, (b) IP-10, (c) MCP-1, and (d) MIP-1β were measured by a multiplex assay. (a–d) 
Bars represent the mean ± SEM of 3 (KO control group) or 8 (the other groups) animals. In each panel, white 
and black bars indicate data from control and PR8 virus-infected mice, respectively. **p < 0.01, ***p < 0.005, 
****p < 0.0001, two-way ANOVA using a multiple-comparison correction. WT, wild type mice; KO, Olr1 
knockout mice; NS, not significant.
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To confirm thrombus formation associated with severe influenza, phosphotungstic acid hematoxylin (PTAH) 
staining was performed, in which fibrin is stained in blue and thrombi can be visualized as well as fibrin deposi-
tion. As shown in Fig. 6e,f, increased intravascular thrombus formation in the lungs of WT mice infected with 
PR8 virus was indicated by multiple fibrin clots in blood vessels (Fig. 6e, arrows). In contrast to WT-infected 
mice, only sporadic thrombi were found in blood vessels of KO-infected mice similar to those in the uninfected 
groups, although HE staining indicated severe pulmonary inflammation in KO mice (Fig. 6f). Intravascular 
fibrin deposition observed in the lungs of infected KO mice seemed due to the clotting of residual blood in the 
blood vessels of the lungs after euthanasia, as they were found mainly in small veins, even in areas of less severe 
inflammation as in uninfected mice. The average numbers of clots [± standard error of the mean (SEM)] in the 
lung sections were 6.5 ± 2.7 in WT-control mice (n = 4), 53.8 ± 4.5 in WT-infected mice (n = 4), 7.7 ± 2.9 in KO-
control mice (n = 3), and 9.8 ± 3.3 in KO-infected mice (n = 4). The number was significantly larger only in the WT 
infection group, compared to those in other groups (p < 0.0001, two-way ANOVA). These results demonstrated 
a critical role of OLR1 in severe influenza-induced intravascular thrombus formation in the lungs.

Discussion
This study demonstrated prolonged PT and increased thrombin generation from prothrombin at the lethal phase 
of severe influenza in a mouse model. The results were consistent with previous findings in mouse and ferret 
influenza models6,7. Also, this study revealed a significant induction of aortic Olr1 and its critical contribution to 
the thrombin generation and intravascular thrombosis in the lungs of mice with severe influenza. The important 
physiological roles of OLR1 have already been demonstrated in platelet activation, endothelial dysfunction, leu-
kocyte migration, plaque formation, and atherosclerosis as a consequence of these pathological events12,14,16,20. In 
the context of acute coronary syndrome as a result of the progression of atherosclerosis, OLR1 has been thought 

Figure 6.   Effect of OLR1 on virus infection-induced inflammation and intravascular thrombosis in the 
lungs. WT and KO mice were intranasally inoculated with PBS alone or PBS comprising the PR8 virus. Lung 
samples were collected at 6 dpi, fixed in 4% paraformaldehyde, embedded in paraffin, and cut in 5 μm. For 
histopathological analyses, sections were stained with (a–d) HE or (e and f) PTAH. (a) WT control, (b) KO 
control, (c and e) WT infected with PR8 virus, and (d and f) KO infected with PR8 virus. Scale bars, 100 μm. 
(c and d) Arrowheads in inserts indicate the leukocytes in the vascular intima. (e and f) Arrows indicate 
the intravascular clots stained in blue by PTAH. Images are representative of 3 (KO control) or 4 (the other 
groups) per group. PR8, influenza virus A/Puerto Rico/8/34; WT, wild type mice; KO, Olr1 knockout mice; HE, 
hematoxylin and eosin; PTAH, phosphotungstic acid hematoxylin.
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to be involved in prothrombotic pathways induced by oxidized LDL21. Also, this study shows that OLR1 is criti-
cally involved in the first step of thrombus formation by promoting thrombin production in severe influenza. 
Although the detailed molecular mechanism needs to be elucidated, OLR1 induced in the vascular cells of mice 
infected with influenza virus may have promoted adhesion between platelets and the endothelial surface, as 
reported previously16, and increased thrombin generation by activated platelet. The contribution of OLR1 to PT 
prolongation in severe influenza was also demonstrated in this study. Suppose consumptive coagulopathy is the 
cause of PT prolongation as already suggested in a ferret influenza model7, the suppression of thrombin formation 
in KO mice would have reduced the consumption of coagulation factors, resulting in only mild PT prolongation.

Interestingly, increased intravascular fibrin clotting was not evident in other tissues of infected mice, e.g., the 
liver (data not shown), despite the elevation of circulating thrombin. Therefore, not only circulating thrombin but 
also factors associated with virus infection and/or a severe inflammatory response in the lung during influenza 
appear involved in a stable fibrin clot formation. For example, integrating previous reports on influenza and 
thrombus formation, increased expression of tissue factor, externalization of phosphatidylserine, and decreased 
blood flow velocity induced in the lungs by influenza virus infection are considered to promote thrombus forma-
tion preferably in the tissue22–25.

OLR1 expression is very low under normal conditions and upregulated in response not only to its ligand 
oxidized LDL26 but also various stimuli, such as lipopolysaccharide (LPS)27–29. Several transcription factors 
have been reported to regulate Olr1 transcription. Given the genetic regulation of Olr1 by inflammatory cas-
cades through the activation of the transcription factor NF-κB30,31, influenza virus infection-induced systemic 
cytokine secretion could have induced Olr1 in this study. A strong positive correlation between gene expression 
levels of Olr1 and Il6 suggested a link between OLR1 and inflammation. Because inflammation in the lungs and 
elevated blood cytokine levels in KO mice were similar to those in WT mice after virus infection, OLR1 does 
not regulate inflammatory responses but is a downstream factor induced by inflammation in the present experi-
mental condition. The detailed mechanisms of Olr1 induction by influenza virus infection remain elucidated. 
In addition to systemically secreted cytokines, of course, the possibility that the virus directly infects the cells of 
blood vessels32 and induces Olr1 needs to be taken into account. However, given that Olr1 is induced by various 
factors, its expression may have been induced by others aside from inflammatory molecules, such as oxidized 
LDL, angiotensin II, and metabolic abnormalities26,33,34, which have been previously reported to be induced dur-
ing acute influenza18,35,36. Further studies on the mechanisms of Olr1 induction by a viral infection will provide 
insights into biological responses to and pathogenesis of infectious diseases far beyond just cytokine induction.

Influenza virus infection-induced lung inflammation and systemic cytokine secretion were not affected by the 
absence of OLR1 in this study. However, OLR1 was involved in endotoxin-induced acute lung inflammation in 
a previous study in which an anti-OLR1 antibody pretreatment completely blocked immune cell activation and 
infiltration into the lungs after intraperitoneal injection with endotoxin15,37. This difference may reflect a patho-
physiological difference between the host response to endotoxin and that to virus infection. In septic models, 
the administered LPS binds to Toll-like receptor (TLR) 2/4 on the cell membrane and causes an inflammatory 
response by activating NF-κB signaling in each cell in the first step. OLR1 has been reported to colocalize and 
cooperate with TLR2 to activate inflammatory responses by the outer membrane protein A of Gram-negative 
bacteria38. Furthermore, OLR1 functions as a bacterial receptor that enhances the adhesion of Gram-negative and 
Gram-positive bacteria to cells39. Therefore, because OLR1 is involved in the very early steps of TLR-mediated 
signaling on the cell membrane, the absence of OLR1 and its blockade may have strongly suppressed the inflam-
matory responses in the septic model. In contrast, during viral infection, virus entry into cells occurs first, and 
various viral molecules, such as viral membrane glycoproteins, viral constituent proteins, and nucleic acids, 
activate inflammation-related transducing cascades inside the infected cells, leading to the activation of NF-κB 
and other transcription factors to promote cytokine production40. Especially in the case of the influenza virus, at 
least two pathways thought to be independent of TLR2/4 have been reported to activate NF-κB: (1) endoplasmic 
reticulum stress induced by the overload of viral protein hemagglutinin41 and (2) double-stranded RNA-activated 
protein kinase42. Therefore, cytokine production in viral infection could be activated independently on OLR1. 
WT and KO mice showed a similar degree of weight loss after virus infection. This may be due to anorexia caused 
by increased circulating cytokines43. When focusing on biological responses after cytokine induction, weight 
loss does not seem to be a good indicator of the severity of the disease.

In summary, the findings indicated that influenza virus infection induces Olr1 gene expression in the vas-
cular system to promote thrombin generation and resultant intravascular clotting in the lungs. Thus, OLR1 is 
a promising novel therapeutic target to suppress the prothrombotic state during severe influenza. In addition, 
thrombosis has been observed to occur in many viral infections and is thought to be involved in the symptoms 
and severity of the diseases, including coronavirus disease 201944. The importance of OLR1 in thrombosis should 
be considered in a wide range of infectious diseases.

Materials and methods
Virus.  Influenza virus A/Puerto Rico/8/34 (H1N1; PR8) was kindly provided by the National Institute of 
Infectious Diseases (Tokyo, Japan). The virus was propagated in 10-day-old embryonated chicken eggs at 35 °C 
for 48 h, and aliquots of collected allantoic fluids were stored at − 80 °C until further analysis.

Mice.  The Olr1 KO mice B6.129P2-Olr1tm1Saw (KO mice in this manuscript) were generated as previously 
reported19. Male C57BL/6 mice purchased from Hokudo (Sapporo, Japan) and KO mice kindly given by Dr. 
Sawamura were kept in a BSL-2 laboratory and a clean room, respectively, at the International Institute for 
Zoonosis Control, Hokkaido University, under standard laboratory conditions (room temperature 22 °C ± 2 °C, 
relative humidity 50% ± 10%) and a 12/12 h light/dark cycle. For infectious experiments, KO mice were trans-
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ferred to a BSL-2 laboratory and kept during experiments. Mice were administered a standard CE-2 chow diet 
purchased from CLEA Japan (Sapporo, Japan) with water ad libtum. Experiments were performed on 9- to 
14-week-old male mice.

Virus infection and sample collection.  Virus infection and sample collection was carried out as previ-
ously reported18. PR8 virus particles at 500 PFUs in 50 µL phosphate-buffered saline (PBS) or PBS only (control) 
were intranasally inoculated into mice under inhalation anesthesia with isoflurane. Body weight was monitored 
daily. At 1, 3, or 6 dpi, mice were euthanized by overdose of isoflurane followed by cervical dislocation, and their 
blood, liver, and aorta, samples were collected. Blood samples were incubated at room temperature for 1 h to clot 
and then centrifuged at 1000g for 20 min at 4 °C. Supernatants were collected as serum and stored at − 20 °C until 
further analysis. Tissue samples were stored in TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA) 
at − 80 °C until further analysis. This study was carried out in compliance with the ARRIVE (Animal Research: 
Reporting of In Vivo Experiments) guidelines except for blinding. Investigators could not be blinded because 
genetically modified animals because of the obligation to clearly indicate on the cage cards the treatment of ani-
mals, including viral infection, and the genetic modification information of the animals.

Measurement of coagulation parameters.  Whole-blood samples collected from mice were immedi-
ately used for PT-INR measurement with a CoaguChek Pro II (Roche Diagnosis, Mannheim, Germany) using a 
PT test strip. The concentrations of prothrombin fragment 1 + 2 in thawed serum samples were measured with 
a Mouse Prothrombin Fragment 1 + 2 ELISA kit (LS Bio, Seattle, WA, USA) according to the manufacturer’s 
instructions. Serum samples were diluted tenfold in a sample dilution reagent provided by the kit.

Measurement of selected gene expression using real‑time polymerase chain reaction 
(PCR).  Total RNA was extracted from tissue samples using TRIzol and was used for cDNA synthesis using 
High-Capacity cDNA Reverse Transcription Kits (Thermo Fisher Scientific) according to the manufacturer’s 
instructions. Il6 (Mm00446190_m1), Icam1 (Mm00516023_m1), and Olr1 (Mm00454582_m1) gene expression 
was quantified using real-time PCR with a StepOne Real-Time PCR System (Applied Biosystems, Foster City, 
CA, USA) with indicated TaqMan probes (Applied Biosystems). The obtained gene expression was normalized 
to 18S (Mm03928990_g1) from the same samples, and relative expression was calculated using the comparative 
Ct method (ΔΔCt).

Measurement of the serum levels of cytokines and chemokines.  Measurement of cytokines and 
chemokines in serum samples was carried out as previously reported18. The serum levels of IL-6, IP-10, MCP-1, 
and MIP-1β were determined using a MAGPIX Milliplex kit (Merck, Darmstadt, Germany) according to the 
manufacturer’s instructions. Briefly, 25 μL serum samples, standards, and controls were added to a 96-well plate 
comprising an equal amount of assay buffer for serum samples or serum matrix for standards and controls. Next, 
magnetic beads coated with antibodies against the target cytokines were added to each well, and the plates were 
incubated on a plate shaker overnight at 4 °C. After washing with washing buffer in the kit, the samples were 
reacted with biotinylated detection antibodies for 1 h and then with streptavidin–phycoerythrin for 30 min. 
After washing and the addition of loading buffer from the kit, the samples were analyzed by the MAGPIX system 
(Luminex, Austin, TX, USA).

Measurement of lung viral titers.  Mice were euthanized at 3 and 6 dpi, and their lung samples were 
collected and homogenized in 1 mL RPMI-anti medium [RPMI-1640 (Thermo Fisher Scientific) with 100 U/
mL penicillin (Sigma-Aldrich), 100 µg/mL streptomycin (Sigma-Aldrich), and 20 µg/mL gentamicin (Thermo 
Fisher Scientific)]. After centrifugation at 3,000 rpm for 10 min, the supernatants were collected and stored at 
− 80 °C until further analysis. For plaque assays, monolayers of MDCK cells were prepared by seeding 1.2 × 106 
cells in 3 mL RP10 medium (RPMI-1640) supplemented with 10% inactivated fetal bovine serum (GE Health-
care UK Ltd., Little Chalfont, Buckinghamshire, UK), 1 mM sodium pyruvate (Thermo Fisher Scientific), 50 µM 
2-mercaptoethanol (Merck), 100 U/mL penicillin, 100 µg/mL streptomycin, and 20 µg/mL gentamicin in each 
well of the tissue culture six-well plate and incubated overnight at 37  °C in 5% CO2. The monolayers were 
washed with RPMI-anti, and 125 µL tenfold serially diluted lung lysates were added to each well. The viruses 
were allowed to adsorb to the monolayers for 45 min, with shaking of the plates at 15 min intervals. Then, 3 mL 
prewarmed overlay medium consisting of Leibovitz L-15 with glutamine at pH 6.8 (Thermo Fisher Scientific) 
supplemented with 0.028% (w/v) NaHCO3 (Merck), 100 IU/mL penicillin, 100 mg/mL streptomycin, 0.1% (w/v) 
TPCK-treated trypsin (Merck), and 0.9% (w/v) agarose (BD Biosciences, Franklin Lakes, NJ, USA) were added 
to each well. The plates were then incubated at 37 °C in 5% CO2 for 3 days. Plaques on the monolayers were then 
counted without staining.

Histopathological analyses.  At 1, 3, or 6 dpi, mice were euthanized, and their lung samples were col-
lected, immersion fixed in 4% paraformaldehyde, embedded in paraffin, and cut in 5 μm. Slides were stained 
with HE or PTAH after dewaxing in xylene and rehydration in decreasing ethanol concentrations. HE-stained 
lung sections were microscopically evaluated to assess the character and severity of pathologic lesions. Fibrin 
deposition and clotting were evaluated in PTAH-stained sections.

Ethical statement.  All mouse experiments were performed with approval (approval# 17-003) from the 
Animal Care and Use Committee of Hokkaido University following the Fundamental Guidelines for Proper 
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Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction 
of the Ministry of Education, Culture, Sports, Science and Technology in Japan. Body weight losses were moni-
tored daily after infection, and mice were humanely euthanized when weight loss reached 25%.

Statistical analysis.  Statistical analyses were performed using Prism 7 (GraphPad Software, San Diego, 
CA, USA). Differences were identified using two-way ANOVA with a correction for multiple comparisons if 
necessary and considered significant when p < 0.05. Data are the mean ± SEM.
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