perspective, specialization has been taken to an absurd limit. This has occurred in the article by Fujita et al, who analyzed the asymmetric appearance of vertebral arteries with relative angulation in MR images. This effect was fully analyzed for the iliac arteries 5 years ago in an article in *Radiology* in 1987 (2).

An invitation is extended to neuroradiologists and, for that matter, to all radiologic subspecialists to rejoin the radiologic community. There is a wealth of knowledge and expertise within the broader discipline, particularly in the developing new technologies. Sometimes discovering that the wheel has already been invented is more effective than reinventing it oneself.

> R. Mark Henkelman Department of Medical Biophysics University of Toronto Toronto, Ontario, Canada

> > John Mayo Department of Radiology University of British Columbia British Columbia, Canada

References

- Fujita N, Harada K, Hirabuki N, et al. Asymmetric appearance of intracranial vessels on routine spin-echo MR images: a pulse sequence-dependent phenomenon. *AJNR: Am J Neuroradiol* 1992;13:1153–1159
- Mayo J, McVeigh ER, Hoffman N, Poon PY, Henkelman RM. Disappearing iliac vessels: an MR phase cancellation phenomenon. *Radiology* 1987;164:555–557

Reply

Before I noticed the asymmetric appearance of vertebral arteries during routine head MR examinations, I had read the article by Mayo et al in *Radiology* describing the asymmetric appearance of the iliac arteries and the theoretical analysis of the phenomenon. Therefore, it is certain that our article, which describes the identical phenomenon in the underlying physical principle, was inspired by a preliminary knowledge that originated from their article. Although the physical principle is exactly the same and the style may be similar, which frequently occurs in scientific writing, the materials included some relatively new techniques and the context was written with emphasis on neuroradiologic aspects of the phenomenon. In writing the article, I tried to take great care so that the credit for the first discovery of the phenomenon would be ascribed to them. Therefore, I believe that our article does not take credit from them, but rather it reevaluates and reinforces their work from a neuroradiologic perspective.

> Norihiko Fujita Department of Radiology Osaka University Medical School Osaka, Japan

Editor's note:

In reply to the letter from Drs. Henkelman and Mayo, *AJNR* certainly does not wish to "reinvent the wheel." In fact, every effort is made not to republish material that has appeared in other journals. However, the issue here appears to be one that resembles the difference between theoretical and applied mathematics. As Dr. Fujita acknowledges, Drs. Henkelman and Mayo described the phenomenon. Dr. Fujita properly acknowledged their report in his bibliography and further confirmed their work by applying it in another situation. I think it is legitimate science to give further credence to a theory by applying it to a similar but different anatomic location, much in the way that an applied mathematician would show that a theorem is valid by showing its practical application.

From a purely informational standpoint, it might be unlikely that neuroradiologists would have read the article by Mayo et al on the basis of the heading under which it appeared. The first authors called it a "disappearing vessel" whereas the later authors referred to an "asymmetric appearance" of vessels.

Erratum

Lee R. Guterman's name was omitted from the byline of the March 1993 issue article, "Intraarterial Papavarine as an Adjunct to Transluminal Angioplasty for Vasospasm Induced by Subarachnoid Hemorrhage" (*AJNR: Am J Neuroradiol* 1993;14:346–347). Dr. Guterman, of the Department of Neurosurgery of the School of Medicine and Biomedical Sciences at the State University of New York at Buffalo, should have been listed as second author, between coauthors Kimberly Livingston and Leo N. Hopkins.