Skip to main content
. 2021 Jul 21;12:720049. doi: 10.3389/fimmu.2021.720049

Table 1.

Roles of inflammasome in cigarette smoke-related diseases and physiopathological disorders.

Reference Year Disease/disorder Sample/Subjects Effect of cigarette smoke on inflammasome
Mahalanobish et al. (21) 2020 COPD Mouse lung tissue and BALF, human alveolar epithelial cells Induce endoplasmic reticulum stress and mitochondrial dysfunctions, and further activate NLRP3 inflammasome
Rumora et al. (22) 2020 COPD Human bronchial epithelial cells, monocyte-derived macrophages, and THP-1 cells Increase NLRP3 and IL-1β
Rumora et al. (23) 2021 AECOPD Human bronchial epithelial cells, monocyte-derived macrophages, and THP-1 cells Increase NLRP3 and IL-1β
Ji et al. (24) 2020 AECOPD Rat lung tissue and BALF, human bronchial epithelial cells Increase caspase-1, NLRP3, IL-1β and IL-18
Ozretic et al. (25) 2019 COPD Human peripheral blood mononuclear and lung fibroblast cells NLRP1 rs12150220 coding polymorphisms are associated with COPD disease severity
Nachmias et al. (26) 2019 COPD/AECOPD Human alveolar epithelial cells Increase NLRP3 and IL-1β
Wang et al. (27) 2019 COPD Human bronchial and alveolar epithelial cells Induce oxidative stress injury, promote Ca2+ influx, and increase caspase-1, NLRP3, IL-1β and IL-18
Colarusso et al. (28) 2019 AECOPD Human peripheral blood mononuclear cells Increase AIM2/caspase-1/caspase-4 in IL-1α-induced TGF-β release
Cao et al. (29) 2018 COPD Mouse lung tissue and BALF Induce ROS production and increase NLRP3, cleaved-IL-1β and cleaved-caspase-1
Wang et al. (30) 2018 AECOPD Human peripheral blood mononuclear cells, bronchial tissues, serum and BALF Increase NLRP3, caspase -1, ASC, IL-18 and IL-1β
Singh et al. (31) 2018 COPD Human alveolar epithelial cells Increase NLRP10, NLRP12, caspase-1, IL-1β, and IL-18
Kaur et al. (32) 2018 COPD Mouse lung tissue, human alveolar epithelial cells Increase NLRP10, caspase-1, IL-1β, and IL-18
Faner et al. (33) 2016 COPD/AECOPD Human lung tissue of stable COPD, human sputum and plasma of AECOPD Stable COPD: NLRP3 inflammasome is primed, but not activated; both caspase-1 and ASC were mostly inactive
Yang et al. (34) 2016 COPD Mouse BALF AECOPD: Caspase-1, oligomeric ASC, and associated cytokines (IL-1β, IL-18) were significantly increased
Di Stefano et al. (35) 2014 COPD Human bronchial mucosa and BALF Increase IL-1 and IL-18
Rotta et al. (36) 2013 AECOPD Mouse macrophage cells, human alveolar macrophages and human lung tissue NLRP3 inflammasome is not activated in patients with stable COPD
Pauwels et al. (37) 2011 COPD Mouse lung tissue Increase NLRP3, caspase-1 and IL-1β
Mortaz et al. (38) 2011 COPD Human bronchial epithelial cells CS-induced inflammation occurred independently of IL-1β activation by the NLRP3/caspase-1 axis
Zhang et al. (39) 2018 ALI Mouse lung tissue, mouse alveolar macrophages Increase caspase-1 and IL-1β
Increase NLRP3, caspase-1 and IL-1β
Mehta et al. (40) 2020 Atherosclerosis Human THP-1 monocytes, macrophages, and foam cells Activate MyD88/NF-κB pathway and increase NLRP3, caspase-1, IL-1β, and IL-18.
Wu et al. (41) 2018 Atherosclerosis Mouse aortic tissue, human aortic endothelium cells Induce ROS production and increase NLRP3, ASC, caspase-1, pro-caspase-1, IL-1β, and IL-18
Yao et al. (42) 2019 Atherosclerosis Rat vascular smooth muscle cells, rat aortic tissue Induce ROS production and increase NLRP3
Zheng et al. (43) 2020 Kidney injury Mouse kidney tissue, human kidney cells Induce NLRP6 inflammasome activation via alpha7 nicotinic acetylcholine receptor
Wu et al. (44) 2020 Bladder dysfunction Human bladder tissue, human bladder urothelial cells Induce oxidative stress injury and the activation of NLRP3 inflammasome
Buscetta et al. (45) 2020 Macrophage dysfunction Human monocyte-derived macrophages and THP-1 cells Inhibit NLRP3, caspase-1, IL-1β, and IL-18 acting mainly at the transcriptional level, and increase the caspase-1 activity via an NLRP3-independent and TLR4-TRIF-caspase-8-dependent pathway
Singh et al. (46) 2019 Podocyte injury Mouse podocyte cells Induce ROS production and increase the colocalization of NLRP3 with ASC, caspase-1 activity, and IL-1β production
Zhang et al. (47) 2019 Endothelial barrier dysfunction Mouse microvascular endothelial cells and mouse coronary arterial endothelium Increase HMGB1 and enhance cathepsin B-dependent NLRP3 inflammasome activation
Chen et al. (48) 2019 Endothelial barrier dysfunction Human umbilical vein endothelial cells Increase caspase-1, NLRP3, and IL-1β
Wang et al. (49) 2019 Endothelial dysfunction Rat carotid artery tissue, human umbilical vein endothelial cells Activate ROS/NLRP3 axis
Ye et al. (50) 2019 Oral leukoplakia Rat oral mucosal epithelium Reduce expression of the NLRP3 and diminish the secretion of IL-1β and IL-18 maturing by the NLRP3 inflammasome
Han et al. (51) 2017 Ubiquitin-mediated proteasomal processing Human monocyte THP-1 cells and mouse lung tissue Decrease NLRP3 protein abundance via increased ubiquitin-mediated proteasomal processing

COPD, chronic obstructive pulmonary disease; BALF, bronchoalveolar lavage fluid; NLRP, nucleotide binding oligomerization domain and leucine, rich repeat containing receptor; IL, interleukin; AECOPD, acute exacerbation of chronic obstructive pulmonary disease; AIM, absent in melanoma; TGF, transforming growth factor; ASC, apoptosis associated speck like protein containing a caspase recruitment domain; TLR, Toll like receptor; TRIF, Toll/IL, 1receptor domain containing adaptor inducing interferon, beta; ROS, reactive oxygen species; HMGB1, high mobility group box 1.