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Chelicerate arthropods exhibit dynamic genome evolution, with ancient
whole-genome duplication (WGD) events affecting several orders. Yet, gen-
omes remain unavailable for a number of poorly studied orders, such as
Opiliones (daddy-long-legs), which has hindered comparative study. We
assembled the first harvestman draft genome for the species Phalangium
opilio, which bears elongate, prehensile appendages, made possible by
numerous distal articles called tarsomeres. Here, we show that the
genome of P. opilio exhibits a single Hox cluster and no evidence of WGD.
To investigate the developmental genetic basis for the quintessential trait
of this group—the elongate legs—we interrogated the function of the Hox
genes Deformed (Dfd) and Sex combs reduced (Scr), and a homologue of Epider-
mal growth factor receptor (Egfr). Knockdown of Dfd incurred homeotic
transformation of two pairs of legs into pedipalps, with dramatic shortening
of leg segments in the longest leg pair, whereas homeosis in L3 is only
achieved upon double Dfd + Scr knockdown. Knockdown of Egfr incurred
shortened appendages and the loss of tarsomeres. The similarity of Egfr
loss-of-function phenotypic spectra in insects and this arachnid suggest
that repeated cooption of EGFR signalling underlies the independent gains
of supernumerary tarsomeres across the arthropod tree of life.
1. Introduction
The advent of genomic resources has revealed complex dynamics in the evolution of
chelicerate genomes. A group of six terrestrial orders (Arachnopulmonata), which
includes spiders, scorpions, and pseudoscorpions, exhibit an ancient shared
whole-genomeduplication (WGD), as evidencedby the architecture ofHox clusters,
analyses of synteny, patterns of microRNA enrichment, gene expression patterns
and gene tree topologies [1–6] (figure 1a). Separately, genomes of all four living
Xiphosura (horseshoe crabs) suggest a lineage-specific twofold genome duplication
in this order, with one of these duplications occurring relatively recently [7–9].
While genomes of Acariformes and Parasitiformes (mites and ticks) suggest that
these two orders were not included in the genome duplication events, they often
deviate from typical arthropod datasets. As examples, the acariform mite Tetrany-
chus urticae exhibits extreme genome compaction (90 Mb), in tandem with the loss
of many transcription factors, which has been linked to miniaturization [10]. Simi-
larly, the genome of the parasitiform mite Galendromus occidentalis exhibits an
atomized Hox cluster, degradation of synteny and high rates of intron gain and
loss [11].
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Figure 1. The significance of Opiliones in evolutionary developmental biology.
(a) Consensus phylogeny of Chelicerata (based on [5]) and inferred WGD events
in Xiphosura and Arachnopulmonata. (b) Adult male P. opilio climbing on a
twig using its prehensile tarsi. (c) Detail of the distal subdivisions (tarsomeres)
of the leg 2 tarsus. The distal terminus is to the right. White bars mark
tarsomere boundaries. Photographs: Caitlin M. Baker. (Online version in colour.)
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One group that may facilitate comparative genomics of
Chelicerata is the arachnid order Opiliones (harvestmen)
(figure 1b). In phylogenomic datasets, Opiliones exhibit
lower evolutionary rates than Parasitiformes or Acariformes,
and their placement outside of arachnopulmonates makes
this group phylogenetically significant [12,13]. Developmen-
tal transcriptomes of the emerging model species
Phalangium opilio have suggested that harvestmen do not
exhibit systemic genome duplication, as evidenced by the
absence of paralogy across the homeobox gene family [2,14]
and gene expression patterns of genes with known paralo-
gues in arachnopulmonates [2,6]. As a result, P. opilio has
proven useful for the study of chelicerate developmental
biology. However, the establishment of a genome for this
species is a key prerequisite to validating the assumption of
an unduplicated genome in this order, as well as further
advancing this model system.

Beyond its use in polarizing developmental traits on
phylogenetic trees, Opiliones also exhibit a suite of unique
characteristics that are not found in other arthropod
models. The most salient of these are the elongate walking
legs in some groups (e.g. Phalangioidea, commonly termed
‘daddy-long-legs’). Beyond the hypertrophied growth of cer-
tain leg segments, many daddy-long-legs exhibit subdivision
of the tarsus into pseudosegments called tarsomeres, with
over 100 tarsomeres in some species (figure 1c). Tarsomeres
have evolved dynamically across the arthropod tree of life,
with gains in tarsomeres across insects [15], scutigeromorph
centipedes [16] and several arachnid orders. However, the
tarsomeres of daddy-long-legs are sufficiently numerous
that they confer prehensility to the distal leg, which is used
for climbing, courtship and male–male combat (figure 1b).
The largest number of tarsomeres in Phalangioidea typically
occurs on the antenniform second leg pair, which serves as a
sensory appendage [17] (figure 1c).

These aspects of harvestman biology position them as an
opportune group for comparative study, both from the per-
spective of gene evolution before and after WGD, as well as
understanding the genetic basis for morphological conver-
gence (e.g. leg elongation; supernumerary tarsomeres).
However, no genomes are available for any Opiliones. More-
over, the developmental genetic basis for arthropod leg
elongation and tarsomere patterning is unknown outside of
insects. To test the assumption that Opiliones exhibit an
unduplicated genome, we generated a draft genome for
P. opilio and leveraged this resource to investigate the genetic
basis for leg patterning in this iconic arachnid group.
2. Material and methods
For brevity, detailed procedures, protocols and bioinformatic
commands for the following operations are provided in the elec-
tronic supplementary material.

(a) Animal husbandry
For genome sequencing, founder population specimens of
P. opilio were collected in Madison, WI, USA (43.074628,
−89.403904), and a colony was maintained as previously
described [14] (electronic supplementary material, methods).

(b) RNA sequencing
Total RNA was extracted from ca 250 µl of P. opilio embryos span-
ning an array of stages, reared from females captured in Weston,
MA, USA. RNA extraction was performed using TRIzol reagent
(ThermoFisher), following the manufacturer’s protocol. mRNA
purification, library construction and 2 × 150 bp sequencing on an
Illumina HiSeq 2500 platform follow our previous procedures [1].
The resulting 79 472 462 paired-end reads (NCBI PRJNA690950)
were combined with an older library (16 225 145 paired-end
reads sequenced on an Illumina GA II; NBCI PRJNA236471) for
annotation of protein-coding regions.

(c) Genome sequencing, assembly and annotation
Full-sibling inbred lineswere established at acolony inMadison,WI,
USA. Total genomicDNAwas isolated from two specimens (fourth-
generation male and sixth-generation female). Long-read sequen-
cing was performed on a PacBio Sequel platform (Pacific
Biosciences) using v. 2.1 chemistry. The single-molecule real-time
(SMRT) Cells were sequenced on 16 cells with 360 min movie
lengths. Short-read sequencing was performed on an Illumina
HiSeq 2500 with a 350 bp insert size. Long reads were assembled
using Canu v. 1.7 [18]. Contigs were processed using two rounds
of scaffolding with SSPACE-LongRead v. 1.1 [19], followed by gap
filling with PBJelly v. 15.8 [20] and further polishing with Pilon
v. 1.23 [21]. Haplotypic duplicates were identified and removed
with Purge_dups v. 1.2.3 [22]. Prior to annotation, a custom repeat
library was constructed using RepeatModeler open-1.0.11 [23].
Identified repeats were masked with RepeatMasker open-4.0.6.
[23]. For annotation, gene predictions generated with BRAKER2
v. 2.1.5 [24] used previously generated RNA-Seq reads from develo-
pmental transcriptomes (NCBI PRJNA236471; PRJNA690950; [12]).
A genome browser was generated using MakeHub [25].

(d) Orthology inference, phylogenetic analysis and
discovery of microRNAs

Homologues of Egfr were identified with tBLASTn [26], using
query protein sequences of arthropod species for which Egfr
expression has been previously studied. Sequence accession
data are provided in the electronic supplementary material,
table S1 and methods). An initial BLAST search for miRNA
families in the genome of P. opilio and seven other chelicerates
(electronic supplementary material, table S2) used as queries
the miRNAs previously reported from the spider Parasteatoda
tepidariorum, the tick Ixodes scapularis and the mite T. urticae
[3,5]. To recover unique putative harvestmen miRNAs, we con-
ducted a second search using miRNA families not known in
spiders, ticks or mites, but which were shared by at least three
mandibulate outgroups.
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Figure 2. Hox genes and microRNAs support an unduplicated genome in the daddy-long-legs P. opilio. (a) Hox gene-containing scaffolds to scale. miRNAs mir-10
and iab-4 are represented by vertical bars. Hox genes are depicted in coloured boxes, and other predicted genes in grey boxes. (b) Hox clusters in selected arthropod
genomes (after [5,31]). (c) Comparative analysis of miRNA families and orthologue copy numbers in P. opilio and other chelicerates supports retention of single
copies of several families in harvestmen, in contrast to duplication found in arachnopulmonates. Columns correspond to individual miRNA families, with colours
representing a different number of paralogues. miRNAs in bold are duplicated in P. opilio and most other chelicerates. 1: Araneae; 2: Scorpiones; 3: Pseudoscorpiones;
4: Xiphosura; 5: Opiliones; 6: Acariformes; 7: Parasitiformes. (Online version in colour.)
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(e) Cloning, in situ hybridization and double-stranded
RNA microinjection

Cloning of gene fragments, in situ hybridization and embryonic
microinjections with dsRNA followed our previous procedures
[14,27] (electronic supplementary material, tables S3 and S4). Proto-
cols for fluorescent gene expression assays using hybridization
chain reaction (HCR) followed Bruce et al. [28]. For harvestman
RNAi experiments, approximately two-thirds of each egg clutch
was injected with dsRNA and the remaining third with water
(negative control). Details of the phenotype scoring strategy are
provided in the electronic supplementary material.

3. Results
(a) Phalangium opilio draft genome assembly
The draft assembly of the P. opilio genome comprises
580.4 Mbp (37.5% GC content) in 5137 scaffolds (N50: 211
089) and 8349 contigs (N50: 127 429; electronic supplemen-
tary material, figure S1 and table S5). The predicted
genome repetitiveness is 54.4% and estimated heterozygosity
is 1.24%. The number of predicted genes after filtering steps is
20 315, which was further refined with a 98% similarity
threshold and manual curation to a final gene set of 18 036.
This is comparable to predicted gene sets for the tick
I. scapularis (20 486) and the mite T. urticae (18 414) [10,29].
An assessment using the arthropod set of benchmarking
universal single-copy orthologues (BUSCOs) [30] indicates
95.1% completeness (electronic supplementary material,
figure S1 and table S5). Contamination assessment based on
sequence coverage and GC content supports a relatively con-
tamination-free assembly. The detailed description of the
genome is provided in the electronic supplementary material,
figures S1–S3.
(b) The genome of Phalangium opilio reveals the
absence of Arachnopulmonata-specific whole-
genome duplications

To assess whether P. opilio exhibits ancient WGD, we first
examined the architecture of Hox clusters in this species.
We discovered one 480 kb scaffold that bore six Hox genes,
with the remaining four Hox genes occurring on individual
scaffolds (figure 2a,b). In addition to the small size, these scaf-
folds contained very few or no adjacent genes, suggesting
that the position of these four Hox genes outside of the
main cluster is an artefact of fragmentary assembly. On the
larger 480 kb scaffold, microRNAs mir-10 and iab-4 were
located adjacent to Dfd and abdA, respectively, which reflect
conserved positions with respect to other arthropods [32]
(figure 2a). The complete peptide sequences of all 10 Hox
genes corresponded to previous partial sequences predicted
from developmental transcriptomes [14].

We separately examined the genome for evidence of
duplicates in genes with known arachnopulmonate-specific
paralogues and spatio-temporal subdivisions of expression
patterns, focusing on four leg patterning genes (dachshund,
homothorax, extradenticle and spineless [4,6,33]) and three reti-
nal determination network genes (sine oculis, Optix and
orthodenticle [34–36]). These genes all occurred as single-
copy in the harvestman genome (electronic supplementary
material, table S6).

We next examined the distribution of families of micro-
RNAs (miRNAs), noncoding RNAs with important
regulatory roles in animals. miRNAs have been shown to
exhibit the signature of genome duplication in both Arachno-
pulmonata and Xiphosura [3,5]. Thirty conserved miRNA
families were identified in the P. opilio genome (figure 2c).
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Among them, only families mir-2, mir-29, mir-87 and mir-263
had two homologues in Opiliones (figure 2c). These micro-
RNAs, with the exception of mir-29, are also duplicated in
most other chelicerates and outgroup arthropods, (electronic
supplementary material, table S2), suggesting the origin of
paralogues at the arthropod common ancestor (figure 2c).
The presence of duplicated mir-29 in harvestmen, horseshoe
crabs and a subset of Arachnopulmonata suggests separate
independent duplication events in these lineages, although
this parsimonious inference is contingent upon the resolution
of the position of these groups in arachnid phylogeny. In
sum, we found no evidence of miRNA duplications in the
harvestman genome that were exclusively shared either
with Arachnopulmonata or Xiphosura.

(c) Deformed and Sex combs reduced are necessary for
leg fate specification in Phalangium opilio

Deformed homologues of arachnids are typically expressed in
the four leg-bearing segments (L1–L4), whereas Sex combs
reduced is expressed from L2 segment onwards (figure 3a;
electronic supplementary material, figure S4) [4,14,37]. In
the spider P. tepidariorum (a member of Arachnopulmonata),
the two Dfd paralogues have divergent expression patterns;
only Ptep-DfdA is expressed in the legs and expression
levels are uniform across L1–L4 [4]. Knockdown of Ptep-
DfdA results in homeotic L1-to-pedipalp transformation
[38]. No functional data exist for any single-copy homologue
of Dfd in Arachnida, and no functional data exist for Scr in
Arachnida altogether. Intriguingly, Po-Dfd is also expressed
in L1–L4, but much more strongly in L2 (the longest leg
pair) than the other three leg pairs, particularly during leg
elongation [14]. Scr is expressed in L3 and L4, but its
expression is much stronger in L3 [14].

We first investigated the function of Dfd (Po-Dfd) through
embryonic RNAi, via microinjection of double-stranded RNA
(dsRNA) (electronic supplementary material, figure S5).
Upon completion of embryogenesis, 33% (n = 84/248) of
RNAi hatchlings exhibited leg-to-pedipalp homeosis affect-
ing L1 and L2 (figure 3b,c; electronic supplementary
material, figure S5). Complete leg-to-pedipalp homeotic
transformation (figure 3c,j ), only observed in L1, was evi-
denced by the loss of the metatarsus (segment specific to
arachnid leg; absent in pedipalp), the presence of pedipalp-
specific setal spurs, the loss of the leg-specific tooth of the
distal claw (figure 3e,f,i,j) and the undivided tarsus. Partial
transformation was evidenced by a defective or absent meta-
tarsus (figure 3g–k). Strongly affected L2 also exhibited a
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fusion of tibia and patella segments (figure 3k). Importantly,
L3 and L4 were unaffected (figure 3h,l ). The majority (n =
73/84) of Po-Dfd knockdown phenotypes exhibited mosai-
cism, with one side of the body more strongly affected
(bilateral mosaics), so we further classified homeotic individ-
uals in mosaic classes. This tabulation considered whether a
given half presented no homeosis (wild-type), homeosis in
both L1 and L2, homeosis in L1 only, or in L2 only (electronic
supplementary material, figure S5). This analysis revealed
that the most frequent homeotic conditions were having
both legs affected (88/168 halves), followed by L1 only
(30/168 halves) and L2 only (2/168 halves) (figure 3q; elec-
tronic supplementary material, figure S5). In halves with
both legs affected, L1 was always more strongly transformed
than L2. Notably, knockdown of Po-Dfd resulted in dramatic
shortening of the transformed appendages, and particularly
for transformed L2 (compare figure 3g,k). Reduced Po-Dfd
expression was observed overall in embryos injected with
Po-Dfd dsRNA and correlated with the side presenting
homeotic transformation in mosaic embryos (electronic
supplementary material, figure S6).

Next, to investigate a possible role of Scr in the identity of
L3 and L4, we performed RNAi against Po-Scr. Despite verifi-
able decreased expression (electronic supplementary material,
figure S6), we detected no phenotypic effects on dsRNA-
injected embryos (five clutches, n = 540 embryos), suggesting
that Scr may exhibit functional redundancy in arachnids. We
therefore performed a double knockdown of Po-Dfd and
Po-Scr. Mortality was high (153/176), but double RNAi
resulted in partial leg-to-pedipalp transformation affecting
L1, L2 and L3 (n = 8/176) (figure 3d, m–q; electronic
supplementary material, figure S5).

Taken together, these results suggest that Po-Dfd is necess-
ary for conferring leg identity of the L1 and L2 segments, and
that both Dfd and Scr are necessary for the identity of the L3
segment.

(d) Epidermal growth factor receptor is necessary for
distal leg patterning in the daddy-long-legs

A notable component of leg morphology in daddy-long-legs is
the repeated subdivision of the tarsus, the distalmost leg seg-
ment. In insects, EGFR signalling is involved in tarsal fate
specification [39–41], but it is unknown if this signalling path-
way is necessary for leg patterning in chelicerates (figure 4a).
Upon surveying the P. opilio genome, we discovered two
Egfr paralogues in the harvestman (electronic supplementary
material, figure S7). One of these, Po-EgfrB, lacks the trans-
membrane and intracellular domains seen in other Egfr
homologues (electronic supplementary material, figure S8).
A 30 UTR for Po-EgfrB was assembled in both embryonic tran-
scriptomes and corroborated by the genome assembly,
disfavouring fragmentary assembly as a possible explanation
for missing domains. We therefore focused on Po-EgfrA, the
paralogue containing all known Egfr functional domains.

In early limb bud stage, Po-EgfrA is expressed in a strong
circular domain around the stomodeum, in a strong ring at
the base of each appendage and in a weak stripe along the
ventral midline (figure 4b; electronic supplementary material,
figure S9). In later stages, additional expression domains
occur in the developing eye field, in a strong domain in the
medial bridge of the developing brain, and in rings at the
boundaries of the segments (podomeres) of the developing
appendages (figure 4c,d; electronic supplementary material,
figure S9). To investigate EGFR signalling further, we surveyed
the expression of a homologue of pointed, an ETS transcription
factor that acts as an EGFR signal effector [42]. In early limb
bud stages, the single-copy Po-pnt is expressed in the ventral
ectoderm and the distal tip of the appendages (figure 4e; elec-
tronic supplementary material figure S9). Similar to the beetle
T. castaneum [43], in later stages, Po-pnt is also expressed in
the head lobes, and groups of cells in the appendages, particu-
larly in the distal region, forming rings (figure 4f,g; electronic
supplementary material, figure S9).

RNAi against EgfrA resulted in 39.6% (n = 36/91) of
hatchlings exhibiting segmentation and appendage defects
(figure 4h–t; electronic supplementary material, figure S10);
all affected embryos were bilateral mosaics (figure 4i,j ) and
defects correlated with reduced Po-EgfrA expression in
embryos (electronic supplementary material, figure S11).
Po-EgfrA dsRNA-injected hatchlings showed defects of
antero-posterior (body) segmentation, with dorsal tissue
fusion on the side of the body affected (n = 29/36), correlating
with a characteristic curved shape of the body of mosaic indi-
viduals (figure 4i). Defects of the eyes (n = 25/36) ranged
from a small reduction in size to complete absence (figure 4j ).

The appendages exhibited an array of defects in terminal
structures (figure 4k–t). The chelicera showed the reduction
of the fixed finger, movable finger or both (n = 11/36)
(figure 4o); the pedipalp showed a reduced claw (n = 19/36)
(figure 4p); and, in the case of all legs, the claw and tarsome-
res were reduced (n = 26/36) (figure 4q,r). Most notably, a
subset of weakly affected individuals (n = 10) showed a con-
dition in which the distalmost tarsomeres were fused and
the claw was missing, or just the claw was missing (figure 4t).
Segmental fusions in limbs occurred in a subset of hatchlings
(n = 14/36) (figure 4q). The proximal segment of the appen-
dages (coxa) showed defects ranging from reduction in size
to complete proximal fusion of adjacent appendage coxae
(n = 34/36) (figure 4s), which correlated with the strong
ring of expression at the base of all appendages.

These results are broadly consistent with expression and
functional data available for Egfr homologues in insect
models [43–46]. The loss-of-function phenotypic spectrum
in P. opilio suggests that EgfrA may underpin both leg
elongation and tarsomere morphogenesis in daddy-long-legs.
4. Discussion
(a) Genomics and Hox-logic in a phylogenetically

significant arachnid model
Spatio-temporal subdivision of expression domains of
duplicated developmental patterning genes are systemic in
Arachnopulmonata, as established by gene expression surveys
in model spiders, scorpions and whip spiders [1,2,4,47]. This
phenomenon makes arachnopulmonates an ideal taxon for
investigating the role of gene duplication in generating body
plan disparity. Identifying subfunctionalization or neofunctio-
nalization of duplicates requires a clear inference of the
ancestral single-copy homologue’s expression pattern and
function. In this regard, P. opilio has played a central role in
polarizing developmental phenomena, given its phylogenetic
position, low evolutionary rate and tractability in the
laboratory [2,6,48].
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Nevertheless, the assumed unduplicated condition of the
Opiliones genome has not been rigorously tested. The effi-
ciency of developmental transcriptomes in discovering
paralogy is a function of sequencing depth and sampling
strategy, and thus transcriptomes frequently fail to capture
paralogues [1,2,5]. As a first step in validating the use of
P. opilio as an effective outgroup to Arachnopulmonata, we
assembled and interrogated the genome of P. opilio, which
revealed no evidence of systemic genome duplication
events previously reported for arachnopulmonates or horse-
shoe crabs. Together with the genome architecture of model
systems like I. scapularis and T. urticae, the condition of the
harvestman genome strongly supports the inference that an
unduplicated genome is the ancestral condition for arachnids.

Having established that Hox genes of P. opilio are bona fide
single-copy, we targeted the first functional datapoints for
single-copy Hox genes in any arachnid species, focusing on
genes that pattern walking leg identity. We were able to
show that the knockdown of Po-Dfd affects the identity of
legs 1 and 2. This discovery is significant for two reasons.
First, two copies of Dfd occur in spiders and these exhibit
subdivision of expression pattern, with Ptep-DfdA being
expressed throughout leg tissues and ventral ectoderm, and
Ptep-DfdB mostly restricted to the ventral ectoderm [4]. It
has been shown that the spider paralogue Ptep-DfdA is
necessary for repressing pedipalp identity on a single-body
segment (L1); there is no effect on L2 [38]. Compared to the
Po-Dfd RNAi phenotype, these data are congruent with the
hypothesis that arachnopulmonate Dfd paralogues have
undergone subfunctionalization. Further functional studies
of DfdB paralogues in arachnopulmonates are necessary to
test this scenario, specifically targeting DfdB (alone and also
through double knockdown with DfdA). Second, segments
affected by Dfd knockdown in harvestman (L1 and L2) are
positionally homologous to those affected by Dfd knockdown
in pancrustaceans (mandibular and maxillary segments
[49–51]). These results bring further support for the notion
that the establishment of some Hox anterior boundaries pre-
dates the evolution of tagmata, with further substantiation
from Hox anterior boundaries in Onychophora [52].
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Furthermore, we found that the knockdown of Po-Scr
alone has no discernible phenotype, whereas the double
knockdown of Po-Dfd and Po-Scr resulted in homeotic trans-
formation of L1–L3 into pedipalps. These data suggest
functional redundancy of Scr in L3, paralleling the dynamics
of Ubx and abdA in insects; the knockdown of abdA alone has
a limited effect on homeotic abdominal-to-thoracic segment
transformations, whereas the double knockdown of both
these genes results in more complete transformations of
abdominal segments into thoracic identities [53]. Similar
functional redundancy has been shown for Antp-1 and
Ubx-1 in the spider P. tepidariorum [54].

As these experiments show, P. opilio has the potential to
serve as an informative outgroup to Arachnopulmonata for
the study of paralogue divergence after duplication. In
addition to newly generated genomic resources, the effective-
ness of single and double RNAi in this system makes P. opilio
an opportune point of comparison for future investigations of
arachnid body plan evolution.

(b) A conserved role for epidermal growth factor
receptor signalling in appendage patterning across
Arthropoda

In the fruit fly Drosophila melanogaster, EGFR-Ras signalling is
responsible for patterning the legs in two phases. First, EGFR
signalling begins with a distal expression (central in the leg
disc) of the EGFR ligands in the leg disc [40,41]. The
reduction of EGFR signalling results in progressively greater
deletion of more distal leg structures, which is consistent with
a distal-to-proximal requirement gradient of EGFR signalling
by downstream tarsal patterning genes, and with a distal
source of EGFR signalling [15,40,41]. A distal source of
EGFR signalling is also in accordance with the distal-to-prox-
imal requirement for EGFR signalling in the regenerating leg
of the cricket G. bimaculatus [45]. In P. opilio, 72% (n = 26/36)
of the hatchlings resulting from RNAi against Egfr exhibited
defects in the tarsus. These defects ranged from the absence
of claws and distal tarsomere fusions, to complete failure to
form all tarsal subdivisions. The spectrum of increasingly
severe defects from distal-to-proximal observed upon Egfr
knockdown in P. opilio suggests that daddy-long-leg tarsome-
res are patterned by a gradient of EGFR signalling similar to
D. melanogaster and G. bimaculatus. This conclusion is further
supported by the expression of the EGFR signalling
effector Po-pnt, which we showed to occur on the tip of the
developing appendages at the limb bud stage.

In a second phase, EGFR ligands are expressed as rings at
the boundaries of embryonic tarsomeres [39]. The reduction
or upregulation of EGFR signalling at this later stage in
D. melanogaster results in defects in medial tarsomeres and
in failure to correctly pattern the tarsal joints [40,41]. How-
ever, in short germ insect models (e.g. beetle, water strider
and cricket), Egfr is expressed as rings at the boundaries of
all leg segments proximal to the tarsus, in contrast to rings
restricted to the tarsus in the fruit fly [43–45]. RNAi-mediated
knockdown in two insect models resulted in leg segment
truncations proximal to the tarsus [43,44]. Our data in the
arachnid P. opilio largely accord with the expression and func-
tional results in short germ insects: 38% (n = 14/36) of Po-
EgfrA RNAi phenotypes also exhibited leg segment fusions
proximal to the tarsus. The signal effector Po-pnt is also
expressed in a distal domain forming rings in later stages of
appendage development, which accords with the second
phase of expression in model insects [39,43]. Together, these
results suggest that the second role of EGFR signalling in
leg segmentation may also be conserved in P. opilio.

Disentangling the effects of early versus late EGFR signal-
ling phases in the phenotypes observed in Po-EgfrA RNAi
could be further explored by disrupting EGFR signalling in
later development, to surpass the early function in PD axis
development. We anticipate that the genome of P. opilio will
facilitate the development of more sophisticated tools for
functional genetics, toward refining the understanding of
how daddy-long-legs make their long legs.
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