
Trimming the Vascular Tree in Tumors: Metabolic and Immune 
Adaptations

Elizabeth Allen, Rindert Missiaen, Gabriele Bergers
KU-Leuven and VIB-Center for Cancer Biology, 3000 Leuven, Belgium

Abstract

Angiogenesis, the formation of new blood vessels, has become a well-established hallmark of 

cancer. Its functional importance for the manifestation and progression of tumors has been further 

validated by the beneficial therapeutic effects of angiogenesis inhibitors, most notably ones 

targeting the vascular endothelial growth factor (VEGF) signaling pathways. However, with the 

transient and short-lived nature of the patient response, it has become evident that tumors have the 

ability to adapt to the pressures of vascular growth restriction. Several escape mechanisms have 

been described that adapt tumors to therapy-induced low-oxygen tension by either reinstating 

tumor growth by vascular rebound or by altering tumor behavior without the necessity to reinitiate 

revascularization. We review here two bypass mechanisms that either instigate angiogenic and 

immune-suppressive polarization of intratumoral innate immune cells to facilitate VEGF-

independent angiogenesis or enable metabolic adaptation and reprogramming of endothelial cells 

and tumor cells to adapt to low-oxygen tension.

Neovascularization, the formation of new blood vessels, has been defined by Hanahan and 

Weinberg (2011) as one of the six pivotal hallmarks of cancer because it is a necessary 

process to enable sufficient oxygen supply for an expanding tumor and to dispose of waste 

products. Vascular sprouting is the most prominent mechanism by which new vessels arise 

from preexisting capillaries or postcapillary venules. Thereby, endothelial cells become 

activated by and move toward a gradient of proangiogenic factors, forming expanding 

sprouts with proliferating endothelial stalk cells and migrating tip cells at the leading edge 

until tip cells anastomose with cells from neighboring sprouts to connect the newly formed 

vessel structures. Consequently, vascular growth is terminated and vessels mature and 

stabilize with the formation of a basement membrane and recruitment and embracement of 

pericytes (Carmeliet 2005; Adams and Alitalo 2007). Numerous activating and inhibiting 

factors including the vascular endothelial growth factor (VEGF), fibroblast growth factor 

(FGF), and angiopoietin tyrosine kinase receptor families and various members of the CXC 

and CC chemokines orchestrate this multistep process (Bergers and Benjamin 2003; Santoni 

et al. 2014). However, although blood vessel formation is tightly regulated during 

physiological conditions, tumors have lost the appropriate balances between positive and 

negative angiogenic controls. Once tumor angiogenesis is induced, it remains activated 
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leading to a continually and abnormally expanding tumor vasculature (Baluk et al. 2005; 

Carmeliet 2005). As a consequence, tumor vessels become leaky, aggravating tumor cell 

intravasation and dissemination and causing a sluggish and irregular blood flow that, 

together with an expanding tumor mass, increases inter-stitial pressure and hypoxia, further 

exacerbating an an giogenic response (Jain 2002; Carmeliet and Jain 2011; Potente et al. 

2011).

There is increasing evidence that angiogenesis and inflammation, although being distinct 

and separable processes, are closely related events that are in part regulated by common 

chemokines. Indeed, VEGF, one of the most prominent angiogenic factors, which is over-

expressed in numerous tumor types, not only promotes angiogenesis but also conveys 

suppressive effects on different immune cell constituents (Motz and Coukos 2011). VEGF 

blocks dendritic cell maturation, enhances the expression of the negative checkpoint 

regulator programmed cell death ligand 1 (PDL1) on dendritic cells, and activates antigen-

specific regulatory T cells (Tregs) in a neuropilin-1 (NRP1)-dependent manner (Gabrilovich 

et al. 1996; Motz and Coukos 2011). Further, VEGF generates an immune-suppressive 

vasculature by enhancing PDL1 expression and reducing intercellular adhesion molecule 1 

(ICAM1) and vascular cell adhesion molecule 1 (VCAM1) on endothelial cells to diminish 

leukocyte–endothelial interactions and consequently block infiltration of cytotoxic T cells 

into the tumor (Griffioen et al. 1996; Bouzin et al. 2007; Motz and Coukos 2013).

Recognition of tumor angiogenesis as a hallmark of cancer, together with the functional 

importance of VEGF in tumor angiogenesis and immune suppression, has led to the 

development of various VEGF and VEGF receptor inhibitors (Jayson et al. 2016) 

Consequently, bevacizumab (Avastin, Genentech/Roche), a VEGF ligand-trapping 

monoclonal antibody, was the first U.S. Federal Drug Administration (FDA)-approved 

antiangiogenic drug followed by the angiokinase inhibitors sorafenib (Nexavar, Bayer), 

sunitinib (Sutent, Pfizer), and axitinib (Inlyta, Pfizer) and others, that target the VEGF 

receptor (VEGFR) tyrosine kinases and other receptor tyrosine kinases (RTKs) (Ferrara 

2004; Jain 2014; Vasudev and Reynolds 2014; McIntyre and Harris 2015). Although these 

antiangiogenic drugs have produced encouraging and favorable effects in a subset of cancer 

patients, they have only increased progression-free survival but have had little effect on 

overall survival. The basis for these treatment limitations lies in part in the development of 

multiple forms of adaptive resistance to angiogenic inhibitors in which tumors either 

reinstate growth by neovascularization (Casanovas et al. 2005; Shojaei and Ferrara 2008; 

Rivera and Bergers 2015), bypass the need for revascularization by co-opting blood vessels, 

or become more invasive or undergo metabolic reprogramming to withstand the deleterious 

effects of therapy (Rubenstein et al. 2000; Ebos et al. 2007; Bergers and Hanahan 2008; 

Paez-Ribes et al. 2009; Lu et al. 2012; Sennino et al. 2012). Importantly, several of these 

adaptation mechanisms are triggered by hypoxia that is generated by therapy-induced 

vascular pruning of tumors (Bergers and Hanahan 2008; McIntyre and Harris 2015). The 

molecular responses to hypoxia are predominantly mediated by a family of hypoxia-

inducible factors (HIFs), which are composed of an α and a β subunit, and become 

stabilized and active under low-oxygen tension (Liao and Johnson 2007; Semenza 2011; 

Palazon et al. 2014). HIF proteins coordinate an extensive transcriptional program that 

ensures metabolic and vascular adaptation to low-oxygen tension by producing a plethora of 
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factors implicated in different aspects of cellular homeostasis, including survival, 

metabolism, invasion, and angiogenesis. In this review, we will discuss two hypoxia-

dependent adaptation mechanisms that enable tumors to escape the effects of antiangiogenic 

therapy: (1) the recruitment and polarization of innate immune cells to recreate a 

proangiogenic and immune-suppressive environment and, (2) metabolic reprogramming of 

tumor and host cells to endure tumor propagation in the absence of revascularization.

INNATE IMMUNE CELLS DRIVE RESPONSE AND RELAPSE TO 

ANTIANGIOGENIC THERAPY

Intratumoral hypoxia drives the mobilization and retention of various bone marrow–derived 

cells (BMDCs) where they become an additional source of chemokines and cytokines to 

support tumor progression by promoting angiogenesis and suppressing antitumor immunity 

(Coussens et al. 2000; Giraudo et al. 2004; Lin et al. 2006; Shojaei and Ferrara 2007b; Du et 

al. 2008). Under normal conditions, innate immune cells first display immune-stimulatory 

characteristics to eliminate potential infections when they enter sites of tissue injury but then 

become immune-suppressive and angiogenic to hinder excessive inflammation and allow 

tissue repair with the formation of blood vessels and reepithelialization (Kasuya and Tokura 

2014). Tumors, however, co-opt and modify the tissue repair program to escape immune-

surveillance by converting innate immune cells from an immune-stimulating to an immune-

suppressive and angiogenic phenotype (Motz and Coukos 2011).

Although tumors can inherently produce myeloid cell–recruiting factors (e.g., G-CSF, 

CSF-1, GM-CSF), hypoxia activates many of these molecules and pathways that not only 

attract innate immune cells but also endorse their angiogenic and immune-suppressive 

characteristics (Schioppa et al. 2003; Staller et al. 2003; Murdoch et al. 2004; Grunewald et 

al. 2006; Du et al. 2008; Casazza et al. 2013). VEGF is one of the most prominent hypoxia-

regulated angiogenic factors that in addition to affecting endothelial cells can also serve as a 

mobilizer and chemoattractant for myeloid cells via VEGF receptor 2 (VEGFR2) on 

monocytes (Dineen et al. 2008). Further, CXCL12 (SDF1α), implicated in the retention of 

myeloid cells, is induced by HIF-1α (Grunewald et al. 2006; Du et al. 2008), as is its 

chemokine receptor CXCR4 (Schioppa et al. 2003; Staller et al. 2003). Semaphorin3A 

(Sema3A) is another hypoxia-induced factor in tumors that is implicated in macrophage 

recruitment and subsequent angiogenesis. Sema3A mediates Nrp-1-dependent signaling of a 

PlexinA1/PlexinA4/VEGFR1 holoreceptor complex that leads to VEGFR1 activation in 

tumor-associated microphages (TAMs) and their subsequent migration into hypoxic regions 

where they secrete various immune-suppressive and proangiogenic factors. Upon TAM 

arrival in the hypoxic environment, Nrp1 expression is repressed, which terminates the 

migratory response of TAMs to Sema3A. Interestingly, hypoxia-dependent Nrp1 repression 

is facilitated by HIF2α -mediated activation of the nuclear factor κB (NF-κB) pathway. Loss 

of Nrp-1 on macrophages prevents TAM infiltration in hypoxic regions and thereby 

maintains an immune-stimulatory phenotype, resulting in delayed tumor growth, which is in 

turn characterized by impaired vascularization and improved antitumor immunity (Casazza 

et al. 2013).
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Given that hypoxia is a major driver of myeloid-cell recruitment (Du et al. 2008; Mazzieri et 

al. 2011), it is conceivable that antiangiogenic therapy-induced hypoxia also induces factors 

that mobilize cells from the bone marrow and attract them to the tumor site. Indeed, several 

preclinical studies have now shown that tumor-associated innate immune cells sustain 

angiogenesis during anti-angiogenic therapy, by stimulating VEGF-independent pathways. 

For example, macrophages induce the expression of various angiogenic molecules, including 

FGF-1,2, MMP9, and Ang2, in response to angiogenic blockade (Casanovas et al. 2005; 

Fischer et al. 2007; Rigamonti et al. 2014), and Gr1+ immune cells were found to convey 

resistance to anti-VEGF treatment via secretion of the angiogenic PKR-1/2 ligand Bv8 

(Shojaei and Ferrara 2007a,b). Notably, the different intratumoral myeloid cell populations 

found in tumors (i.e., macrophages, neutrophils, and myeloid-derived suppressor cells 

[MDSCs]) share redundant functions in angiogenesis and immune modulation and therefore 

can compensate for each other, leading to an oscillating pattern between immune-cell 

populations when specific myeloid subpopulations are targeted (Rivera et al. 2015). What 

these studies also revealed is that VEGF/VEGFR blockade could endorse an angiostatic and 

immune-stimulating phenotype in all of the intratumoral myeloid cells accompanied with the 

up-regulation of CXCL14 and other angiostatic chemokines, and that this ability was indeed 

a requirement for the efficacy of antiangiogenic therapy (Fig. 1A). Because of therapy-

induced hypoxia, however, tumors were able to produce factors (e.g., SDF1a and IL-6) that 

activated phosphoinositide 3-kinase γ (PI3Kγ) signaling in myeloid cells and converted 

them back into an immune-suppressive and angiogenic state that also disabled their 

repolarization, which resulted in a proangiogenic tumor relapse (Fig. 1A; Rivera et al. 2015). 

Congruent with these findings, recent studies have shown that PI3Kγ signals through Akt 

and mammalian target of rapamycin (mTOR) inhibited NF-κB while stimulating C/EBPβ 
activation, thereby inducing a transcriptional program that promotes immune suppression 

(Kaneda et al. 2016). The functional significance of innate immune cells in regulating 

angiogenesis is further underscored by the observation that the percentage of PI3K-activated 

myeloid cells in tumors dictated the degree of therapeutic response to angiogenic blockade 

(Fig. 1B). Congruently, pharmacological inhibition of myeloid PI3Kγ/δ improved and 

sustained the tumor response to antiangiogenic therapy by converting innate immune cells to 

an angiostatic and immune-stimulatory state associated with enhanced cytotoxic T-cell 

infiltration and activity (Fig. 1B; Rivera et al. 2015). Emerging from these studies is the 

proposition that angiogenesis and inflammation are functionally interregulated and that 

immune cells play a pivotal role in regulating both processes. It also underscores the tumor’s 

vigilance to conserve an immunosuppressive and angiogenic milieu to overcome growth 

restrictions and escape immune surveillance.

METABOLIC ENDOTHELIAL CELL ADAPTATION DURING ANGIOGENESIS 

AND ANGIOGENESIS BLOCKADE

Cancer cells are highly metabolically active, thus they require an adequate vasculature to 

ensure a constant supply of oxygen and nutrients. In addition, endothelial cells (ECs) 

undergo metabolic changes when they become activated to form new vessels. Thus targeting 

metabolic pathways in endothelial cells may be an additional and alternative strategy, 

because metabolism in these cells not only fuels vascular expansion but also regulates the 
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very formation of blood vessels (Rivera and Bergers 2014). Indeed, such a strategy has 

proven to inhibit angiogenesis in in vitro sprouting models and induced vessel normalization 

in tumors (De Bock et al. 2013; Schoors et al. 2015; Cantelmo et al. 2016). Cells use 

different metabolic programs to convert exogenous molecules to amino acids, nucleotides, 

and lipids depending on their metabolic needs (Lunt and Vander Heiden 2011; Mihaylova 

and Shaw 2011). Accordingly, functional differences in an giogenic and quiescent ECs 

mandate a different metabolic program. Angiogenic ECs require efficient biomass and 

adenosine triphosphate (ATP)-producing systems to proliferate and migrate (De Bock et al. 

2013; Schoors et al. 2015), whereas quiescent ECs, which are exposed to the oxidative 

environment of the bloodstream, maintain their cellular homeostasis by optimizing the 

protective mechanisms involved in redox homeostasis and repair mechanisms (Wang et al. 

2010; De Bock et al. 2013). Thus, it is conceivable that the angiogenic switch goes hand-in-

hand with a metabolic switch, and that this metabolic switch can be an attractive therapeutic 

target.

In oxygen-rich conditions, the majority of nonproliferating cells rely on oxidative 

metabolism (Vander Heiden et al. 2009). However, despite the higher ATP yield of oxidative 

phosphorylation and their exposure to very high oxygen levels, ECs divert the majority of 

pyruvate to lactate (≈99%) in a process called “aerobic glycolysis” or the “Warburg effect” 

(Wang et al. 2011; De Bock et al. 2013). ECs rely on glycolysis for >85% of total ATP 

synthesis, and ECs lining blood vessels show glycolytic flux rates that are much higher than 

most healthy cells and comparable to those of various cancer cell types (Culic et al. 1997; 

Vander Heiden et al. 2009; De Bock et al. 2013).

Activation of ECs with growth factors induces proliferative and migratory capacities that 

require high ATP synthesis rates. EC activation increases the glycolytic flux by 35%–40% 

(De Bock et al. 2013) and pharmacological inhibition of glycolysis using 3-(3-

pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), which targets 6-phosphofructo-2-kinase/

fructose-2,6-bisphosphatase-3 (PFKFB3), lowers glycolytic flux to prevent sprouting, and 

reduces migration and proliferation of ECs. Consequently, PFKFB3 inhibition targets both 

stalk and tip cells to impair vessel sprouting in vitro and produces vascular defects in the 

postnatal mouse retina (De Bock et al. 2013; Xu et al. 2014). In addition, the glycolytic 

intermediate, glucose-6-phosphate, can be diverted to the pentose phosphate pathway (PPP) 

to produce ribose-5-phosphate for nucleotide synthesis and the reducing factor nicotinamide 

adenine dinucleotide phosphate (NADPH). Thus, the PPP has the potential to stimulate 

biomass production for proliferation or to maintain redox homeostasis (Anastasiou et al. 

2011; Lunt and Vander Heiden 2011). Accumulating evidence suggests that the PPP plays a 

regulatory role in ECs, because inhibition of glucose-6-phoshate dehydrogenase (G6PD), the 

rate-limiting enzyme of the oxidative branch of the PPP and a NADPH-producing enzyme, 

increased ROS levels in ECs (Leopold et al. 2001), whereas its overexpression had the 

opposite effects (Leopold et al. 2003), implying that the PPP in ECs can have a potential 

protective function and serve as a therapeutic target.

As alternative to glycolysis, certain cell types with high energy demand (e.g., 

cardiomyocytes, skeletal muscle cells, and certain cancer cells) rely on fatty acid-β-

oxidation (FAO) as an energy source or to maintain redox homeostasis (Missiaen et al. 

Allen et al. Page 5

Cold Spring Harb Symp Quant Biol. Author manuscript; available in PMC 2021 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2017). Because ECs show such a high glycolytic flux, it is not surprising that ECs have a 

low oxidative metabolism (De Bock et al. 2013). Surprisingly, pharmacological inhibition of 

mitochondrial FAO with etomoxir impaired in vitro sprouting in a retinal model, suggesting 

an important role for FAO in ECs during angiogenesis. This effect was not due to reduced 

ATP synthesis or affected redox homeostasis; rather FAO inhibition selectively impaired EC 

proliferation but not migration (Schoors et al. 2015). 13C-palmitate tracing experiments 

revealed that ECs use fatty acids (FAs) to significantly fuel the tricarboxylic acid (TCA) 

cycle with carbons. Carbons derived from palmitate were also detected in the intracellular 

deoxyribonucleotide (dNTP) pool, and this labeling was impaired by FAO inhibition, 

indicating that FAO plays an essential role in the de novo synthesis of dNTPs in ECs, a 

requirement for proliferation (Schoors et al. 2015).

In tumors, excessive VEGF and hypoxia induces endothelial dysfunction, resulting in 

irregularly shaped, leaky, and incompletely perfused tumor blood vessels. VEGF signaling 

increases glycolysis in ECs by inducing GLUT1 and PFKFB3 expression and inhibition of 

VEGF signaling resulted in reduced glycolysis (Yeh et al. 2008; De Bock et al. 2013). 

Interestingly, freshly isolated tumor endothelial cells (TECs) show a higher glycolytic flux 

than normal endothelial cells (Cantelmo et al. 2016). In contrast to conventional 

antiangiogenic therapies that aim to inhibit tumor vessel growth, an emerging strategy is to 

normalize tumor vessels to restore blood vessel perfusion, thereby reducing metastasis and 

increasing chemotherapeutic delivery. Notably, partial inhibition of the glycolytic flux using 

low doses of 3PO induced vessel normalization, also a consequence of anti-VEGF treatment 

(Batchelor et al. 2013). Therefore, it is conceivable that the normalization effect of anti-

VEGF treatment could in part be attributed to reduced glycolytic flux in TECs. 

Unfortunately, studies on the metabolic profile of tumor endothelial cells are limited, and the 

effect of antiangiogenic therapy on EC metabolism has yet to be investigated.

METABOLIC TUMOR CELL ADAPTATIONS TO ANTIANGIOGENIC THERAPY

As summarized in the preceding text, multiple modes of adaptive or evasive resistance to 

therapies targeting tumor angiogenesis have been reported, but only heighted invasiveness 

has been clearly implicated as an adaptive resistance mechanism in glioblastoma (GBM) (Lu 

and Bergers 2013, and references therein). Intriguingly, Bjerkvig and colleagues explored 

the metabolic response to antiangiogenic inhibition (AI) therapy using bevacizumab in 

xenograph models of GBM and linked therapy with increased anaerobic glycolysis and 

oxidative stress. In addition, they found evidence for increased glutamine consumption that 

could potentially be used to fuel the TCA cycle (glutaminolysis) and reduce production of 

reactive oxygen species (Fack et al. 2015). The authors validated their observations by 

studying a panel of paired human GBM biopsy samples taken before and after bev acizumab 

treatment that showed increased expression of a key glycolytic enzyme that converts 

pyruvate to lactate (LDHA), most strikingly up-regulated in the invasive margins of the 

treated tumors (Fack et al. 2015). It is interesting to note that others have postulated that 

tumor acidity/high lactate levels may promote local invasion (Estrella et al. 2013). Moreover, 

they found that the response of GBM to bevacizumab therapy is not mediated by clonal 

selection mechanisms but is rather an adaptive response. Indraccolo and colleagues studied 

the response to long-term antiangiogenic therapy and found that it can induce a stable 

Allen et al. Page 6

Cold Spring Harb Symp Quant Biol. Author manuscript; available in PMC 2021 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



glycolytic phenotype in tumor xenographs derived from cells they had classified as highly or 

poorly glycolytic, and that the highly glycolytic cells became more rapidly resistant to 

antiangiogenic therapy. They describe this phenomenon as metabolic evolution; however, it 

is as yet unclear whether it is the consequence of epigenetic modulation of driver genes, 

selection of a highly glycolytic population, or an adaptive response to therapy (Curtarello et 

al. 2015).

The existence of metabolic symbiosis in cancer was reported by Sonveaux, Feron, Dewhirst, 

and colleagues to arise spontaneously in certain transplant tumor models, and, in a series of 

publications, they have described a symbiotic state that conveys decreased reliance on 

circulating glucose and limits damage from secreted lactate (Semenza 2008; Sonveaux et al. 

2008; Kennedy et al. 2013). In this model, cancer cells are compartmentalized in conditions 

of vascular insufficiency into comparatively hypoxic and normoxic compartments based on 

their proximity to functional blood vessels. In spite of their close proximity to the 

vasculature, normoxic cells import and catabolize lactate, thereby sparing glucose for 

hypoxic cells to import and catabolize glycolytically, resulting in the production and 

secretion of high levels of lactate. This symbiotic relationship was originally described in 

certain highly metabolically active tissues, including muscle and brain (Brooks 2002). In 

tumors, the relationship has been extended to interactions between tumor cells and cancer-

associated fibroblasts (CAFs), ECs, and macrophages (Nakajima and Van Houten 2013, and 

references therein).

Three companion reports describe an unanticipated new mode of adaptive resistance to 

antiangiogenic therapy, metabolic symbiosis, which is induced in response to potent 

antiangiogenic therapies that cause vascular collapse and consequent hypoxia (Fig. 2; Allen 

et al. 2016; Jimenez-Valerio et al. 2016; Pisarsky et al. 2016). The reports all show induction 

and expression patterns of lac-tate and glucose transporters consistent with the notion of 

metabolic symbiosis induced in response to different antiangiogenic therapies in preclinical 

and clinical samples (Fig. 2). The Christofori group showed that gene expression analysis of 

isolated tumor cells treated with long-term antiangiogenic therapy (nintedanib) revealed a 

hyperglycolytic signature during the relapse phase, which was characterized by a lack of 

revascularization and characteristic expression patterns of lactate and glucose transporters. 

Resistance to nintendanib could be overcome in the PyMT orthotopic preclinical model 

using the glycol ysis inhibitor 3PO, which targets PFKFB3 (Pisarsky et al. 2016). Moreover, 

symbiosis and tumor progression was blocked in a breast cancer model by genetically 

suppressing lactate export in antiangiogenic-treated tumors, strengthening the rationale for 

the development of inhibitors targeting lactate export in the clinic (Pisarsky et al. 2016). In 

the study from the Hanahan laboratory using a spontaneous mouse model of pancreatic 

neuroendocrine tumor (PanNET), mTOR signaling was also found to be up-regulated in 

normoxic tumor regions, and nuclear magnetic resonance (NMR) analysis confirmed lactate 

catabolism in cultured normoxic tumor cells and tumors in a branched pathway involving 

glutamine metabolism (glutaminolysis). This pathway is enhanced in antiangiogenic 

(sunitinib)-treated tumors (Allen et al. 2016), reminiscent of the effects of bevacizumab on 

GBM (Fack et al. 2015). Moreover, normoxic PanNET cells cultured with lactate and 

glutamine up-regulate mTOR signaling, which can be reversed with mTOR inhibitors, 

impairing lactate uptake, or by inhibiting enzymes involved in glutaminolysis. In addition, 
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combination antiangiogenic (sunitinib or axitinib)/mTOR inhibition delays tumor 

progression and significantly extends survival, in part by blocking lactate catabolism in 

conjunction with gluta-mine, and by changing the expression of glucose transporters (Fig. 2; 

Allen et al. 2016). Furthermore, the Cassanovas group produced evidence corroborating the 

existence of metabolic symbiosis as a resistance mechanism by studying renal cell 

carcinoma (RCC) orthoxenografts and paired human RCC biopsies samples taken before 

and after sunitinib treatment (Jimenez-Valerio et al. 2016). The authors found an up-

regulation and redistribution of key glycolytic and lactate transporters in the antiangiogenic-

treated tumors consistent with the notion of metabolic symbiosis and also found that mTOR 

inhibition in concert with antiangiogenic therapy with sunitinib could disrupt the symbiotic 

patterning and delay tumor progression; critically, the combination was associated disruption 

of symbiosis in a patient responding to therapy (Jimenez-Valerio et al. 2016). Thus, in the 

preclinical PanNET model, sunitinib is apparently inducing two distinctive modes of 

adaptive resistance—metabolic symbiosis, and the perivascular invasive migration of cancer 

cells at tumor margins (Paez-Ribes et al. 2009). It is presently unclear whether these 

invading cancer cells also induce symbiosis or whether secreted lactate plays a direct role in 

the invasion into the surrounding tissue (Estrella et al. 2013).

Noel and colleagues performed a compelling study assessing the metabolic consequences of 

withdrawing AI therapy in preclinical breast cancer models, which revealed enhanced lipid 

metabolism concomitant with reduced glycolysis (Sounni et al. 2014), implicating altered 

lipid metabolism as a potential mechanism of resistance during “rest periods” for patients on 

antiangiogenic therapy. Both knockdown and pharmacological inhibition of fatty acid 

synthase (FASN) activity in tumor cells and pharmacological inhibition of FASN with 

orlistat reversed the tumor rebound and metastasis upon sunitinib withdrawal. In another 

series of experiments that highlights the role of fatty acid (FA) metabolism in response to 

hypoxia/antiangiogenic treatment, Harris and colleagues (Bensaad et al. 2014) showed that 

hypoxia or bevacizumab treatment could induce formation of lipid droplets in breast and 

glioblastoma xenograph models under the control of HIF1α signaling. Critically, they found 

that oxidation of these FA stores could provide ATP to tumor cells under conditions of 

hypoxia or reoxygenation, and reduce levels of toxic reactive oxygen species. In this case, 

increased FA uptake, rather than de novo synthesis, was essential to this process and 

controlled by two different fatty acid binding proteins, FABP3 and FABP7. Furthermore, 

knockdown of these genes impairs tumor growth (Bensaad et al. 2014), providing the 

rationale for another potential drug target.

CONCLUSION

Although drugs targeting the VEGF pathway did not fulfill initial expectations, their 

development has been a seminal first step in targeting tumor vessels to impair tumor growth, 

providing pivotal information about how tumors react to vessel growth restriction. They 

further have revealed several escape mechanisms that open new avenues for the assessment 

of combinatorial treatment modalities aimed at targets within these evasive pathways. For 

example, various antiangiogenic immune therapies are currently tested in the clinic, 

specifically in combination with checkpoint inhibitors such as CTLA4 or PD1/PDL1 

antibodies, showing encouraging results (Garber 2014; Schoenfeld and Dranoff 2011; 
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NCT02669173, NCT03066427). Ongoing and future studies will reveal which 

antiangiogenic immunotherapies will more robustly promote an enduring immune-

stimulatory milieu and inhibit tumor angiogenesis that could lead to prolonged survival in 

cancer patients. In line with the concept of targeting evasion mechanisms, targeting 

endothelial cell metabolism is a new and promising avenue that may circumvent growth 

factor–mediated resistance, and some of the agents currently used in the clinic, like a next-

generation derivative of 3PO, ACT-PFK-158, which targets the glycolytic activator PFKFB3, 

may have enduring antiangiogenic and vasculature normalization effects. In addition, 

inhibitors of FAO/CPT1 are currently in the clinic for other indications, most prominently 

angina, including oxfenicine, perhexiline, and ranolazine (Missiaen et al. 2017, and 

references therein). Moreover, disruption of induced metabolic pathways might also have 

value in extending the duration of efficacious responses by traditional antiangiogenic 

therapies, or potentially antiangiogenic therapy could be used to create a “conditional lethal” 

metabolic state in tumors, leading to selection and targeting of the newly adapting variants 

(Bensaad and Harris 2013). Although metabolic symbiosis induced by sunitinib/axitinib can 

be disrupted by mTOR or glycolysis inhibitors, the significant reductions in tumor burden 

translate into a relatively modest survival benefit in preclinical studies. In spite of the 

positive outcome of combination therapy using sunitinib with the rapalog everolimus in the 

aforementioned clinical study (Jimenez-Valerio et al. 2016), other clinical studies using this 

combination have shown limited benefit, which may be attributable to high toxicity (Molina 

et al. 2012). Alternative and potentially attractive strategies may be to use antiangiogenics in 

combination with compounds that directly inhibit lactate transport, such as AZD3965 and 

7ACC2 (Bola et al. 2014; Draoui et al. 2014; Polanski et al. 2014), or glutaminolysis, like 

CB-839 (Momcilovic et al. 2017). There are increasing numbers of agents in the clinic to 

target FA metabolism, including those that target FA synthase like orlistat and TVB-2640 

(Jones and Infante 2015), and doubtless many more in the pipeline in coming years.
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Figure 1. 
(A) Tumors responsive to antiangiogenic inhibition (AI) are infiltrated by Th2-type myeloid 

cells, which promote an immunosuppressive and proangiogenic phenotype. Treatment with 

antiangiogenic therapy leads to reduced vessel density and increased hypoxia, and cytokine 

release transiently shifts the population to a Th1 immune-stimulatory/angiostatic phenotype, 

leading to cytotoxic T-lymphocyte (CTL) influx, increased apoptosis, and tumor stasis/

reduction. Activation of phosphoinositide 3-kinase γ (PI3Kγ) in myeloid cells repolarizes 

the immune population back to a Th2* phenotype that is now highly immune suppressive 

and angiogenic and unresponsive to continued antiangiogenic inhibition, leading to vascular 

rebound and regrowth. RTK, receptor tyrosine kinase; TLR, Toll-like receptor; GPCR, Gαi 

protein-coupled receptor. (B) AI-resistant tumors consist of PI3Kγ-independent, immune 
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suppressive, and angiogenic Th2 cells (orange), and PI3Kγ-dependent, highly immune-

suppressive, and angiogenic Th2* cells (red). Single AI treatment results in a shift of Th2 

cells to the angiostatic and immune stimulatory Th1 cells (blue), creating an intermediate 

response. In addition, single PI3Kγ inhibitor treatment shifted Th2* to Th1 cells, leaving the 

Th2 cell population unaffected and also producing an intermediate response. In contrast, 

combination AI/PI3Kγ inhibition stimulated a shift of Th2 cells to Th1 cells and eradicated 

the highly immune-suppressive and angiogenic Th2* cells. This treatment produces an 

angiostatic and immune-stimulatory effect, resulting in an enhanced response.
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Figure 2. 
Schematic representation of angiogenesis inhibitor (AI)-induced metabolic symbiosis and 

the effect of mammalian target of rapamycin (mTOR) inhibition. (Left) Treatment with an 

AI causes vascular collapse to produce normoxic, hypoxic, and necrotic regions, based on 

their proximity to functional blood vessels. (Middle, mTOR”on.”) Tumor cells in hypoxic 

regions up-regulate expression of the glucose transporter GLUT1, increase glycolysis, and 

export lactate via MCT4. In parallel, mTOR-expressing normoxic tumor cells spare glucose 

and import lactate via MCT1 to fuel O2-dependent oxidative phosphorylation (OxPHOs). 

(Right, mTOR”off”) Disruption of symbiosis via mTOR inhibition disrupts lactate 

catabolism in normoxic cells, which can produce increased intracellular lactate 

concentrations, reduced extracellular lactate clearance, and increased acidosis. Furthermore, 

mTOR inhibition up-regulates GLUT2 expression in normoxic cells, which can increase 

glucose consumption by the normoxic cells to reduce its availability for the hypoxic 

compartment.
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