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Abstract
Observing how humans and robots interact is an integral part of understanding how they can effectively coexist. This ability to
undertake these observations was taken for granted before the COVID-19 pandemic restricted the possibilities of performingHRI
study-based interactions. We explore the problem of how HRI research can occur in a setting where physical separation is the
most reliable way of preventing disease transmission. We present the results of an exploratory experiment that suggests Remote-
HRI (R-HRI) studies may be a viable alternative to traditional face-to-face HRI studies. An R-HRI study minimizes or eliminates
in-person interaction between the experimenter and the participant and implements a new protocol for interacting with the robot
to minimize physical contact. Our results showed that participants interacting with the robot remotely experienced a higher
cognitive workload, which may be due to minor cultural and technical factors. Importantly, however, we also found that whether
participants interacted with the robot in-person (but socially distanced) or remotely over a network, their experience, perception
of, and attitude towards the robot were unaffected.
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1 Introduction

COVID-19 has disrupted the world since it was declared a
pandemic by the World Health Organization (WHO) in
March 2020, with governments enforcing strict physical lock-
downs in their countries to limit the spread of the SARS-CoV-
2 virus. These disruptions have inflicted economic, social,
educational, and psychological costs across all strata of soci-
ety. The global labor market lost 8.8% of its working hours in
2020 – approximately 225million full-time jobs (International
Labour Organization, 2021). Women, and more so minority
women, have seen issues with pay inequity, reproductive
healthcare and poverty exacerbated by the pandemic (United
Nations, 2020). Children have lost on average 66% of the
academic year due to COVID-19 school lockdowns
(UNESCO, 2021), which negatively affect their health, well-
being and their education.

Vaccinations are being distributed and administered glob-
ally and some countries are seeing their case numbers fall.

Unfortunately, a majority of countries are still experiencing
significant community transmission, while new SARS-CoV-2
variants are being detected and monitored (Cabecinhas et al.,
2021). These new variants are making it increasingly difficult
to determine how long it will be before the world returns to
normal because early evidence indicates that these variants
reduce the efficacy of some of the existing vaccines and ther-
apeutics (Wang et al., 2021).

COVID-19 has significant negative outcomes in the
elderly, especially those with comorbidities (Killerby
et al., 2020; Price-Haywood et al., 2020; Stokes et al.,
2020). Unfortunately, as a simple Google Scholar search
can show, most HRI research is based on these popula-
tions. Recognizing this problem, Feil-Seifer et al. (2020)
propose nine research questions that must be addressed in
order for human-centered research like HRI to proceed in
the face of the pandemic.

One area they identify is the need to establish methodolo-
gies that would allow for realistic and ethical HRI research
during the pandemic (Feil-Seifer et al., 2020). This is impor-
tant since most of the work on assistive and companion robot-
ics is conducted with the elderly and communities with
existing health problems (Robinson et al., 2013; Martinez-
Martin & del Pobil, 2018; Oh & Oh, 2019; Al-Taee et al.,
2016; Blanson Henkemans et al., 2017; Schneider &
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Kummert, 2018; Barata, 2019), and it is these populations that
are most at risk as the virus spreads (CDC, 2020).

Presently, studies where different participants need to
touch the same robot is a challenge because common surfaces
must be routinely sanitized, and constantly disinfecting a ro-
bot might potentially damage interfaces like its screen and
sensors. HRI studies that involve at-risk populations where
participants may suffer from any combination of mental, emo-
tional, or physical impairment or disease, entering their living
areas is still very limited or restricted - even where residents
may be fully vaccinated. To address these pandemic-related
problems, this paper proposes a methodology called Remote
Human-Robot Interaction (R-HRI) where the participant is
either: (a) physically with the robot but separated by no more
than one or two meters or (b) the participant is in a physically
different location than the robot. The public health measures
as stipulated in (World Health Organization and others, 2020)
for controlling viral transfer are met under this proposal. This
includes reduction in contact with common surfaces, which in
this case means not touching the robot, as well as reduction in
congregating people from different households in a common
indoor space.

2 Background

We will examine the two main methods that form the founda-
tion for the R-HRI study: usability test and remote usability
testing. These methods have been used effectively to assess
user experience with software systems, including robots with
remote usability being just as effective as in-person usability
testing.

2.1 Usability Testing

The term usability testing, which we differentiate here by re-
ferring to it as conventional usability testing, is frequently
broadly applied to techniques that test products, devices,
websites and processes as in (Kim et al., 2005; Fang &
Holsapple, 2011; Dörndorfer & Seel, 2020; Lee et al.,
2020). This, however, is usually an incorrect application of
the term. Usability testing, in the conventional sense, means
gathering the target user-community of the program under test
into a lab where a moderator watches them as they perform
tasks to expose usability flaws (Rubin & Chisnell, 2008).
Processes like system evaluations by experts, or system
walkthroughs do not require representative users, and there-
fore do not qualify as usability testing.

Conventional usability testing uses classical experimental
methods ranging from large formal experiments with complex
test designs, to informal qualitative studies with one partici-
pant. The purpose and resources across these methodologies
differ. Typically, participants, following conventional

usability testing protocol, are encouraged to speak aloud as
they work. This helps the moderator to gain insight into each
participant’s thought processes as well as recognize any pos-
sible misunderstandings as they interact with the system
(Rubin & Chisnell, 2008).

Although this approach has several benefits, one of which
is high-quality quantitative data, it also has significant disad-
vantages. High costs, difficulty designing environments that
match end users’ environments, and, most significantly, find-
ing a representative group of participants that can be in the lab
are all impediments to a rigorous usability test. The fact that
software is sold and marketed globally aggravates the last
problem because a diverse pool of participants from around
the world is a critical requirement - regardless of where the
program is sold (Hartson et al., 1996).

2.2 The Promise of Remote Usability Testing

The rapid uptick in the accessibility and quality of software
designed to promote knowledge sharing and community col-
laboration lead to Remote Usability Testing (RUT) becoming
a viable alternative to conventional usability testing.
Computer-based video, online collaborative tools and net-
work technologymatured enough to provide the technological
foundation for remote testing facilities (Hammontree et al.,
1994; Thompson et al., 2004). Instead of in-lab usability test-
ing, interactive prototypes were tested remotely using tradi-
tional “thinking aloud” strategies with a combination of online
logging, shared windowing tools and recording the verbal
responses of the participant via the telephone. All modern
video conferencing and online collaborative systems can be
used to perform RUT. They easily provide screen sharing and
other collaborative features out-of-the-box and facilitate the
space and/or time separation requirement between evaluator
and participant as defined in (Castillo et al., 1998).

The space/time separation requirement raises a number of
interesting remote configuration possibilities that were evalu-
ated in (Andreasen et al., 2007; Bruun et al., 2009). These
configurations are referred to as moderated/unmoderated or
synchronous/asynchronous moderation. The terms used to
describe these configurations are interchangeable because
they indicate whether the user or the evaluator is ultimately
reporting on the usability issues.Moderated and synchronous
moderation configurations use real-time evaluators, while
unmoderated and asynchronous moderation configurations
either use an evaluator at some point after the session or have
the user act as the evaluator themselves. Asynchronous mod-
eration under RUT has seen mixed results (Vasalou et al.,
2004; Andreasen et al., 2007; Bruun et al., 2009; Hertzum
et al., 2015). Consequently, synchronous methods for RUT
are commonly employed because they provide the same level
of data quality as conventional usability testing.
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The lessons learnt from RUT can be used as a guide for
performing remote human-robot interaction experiments es-
pecially since it has been shown that RUT is just as effective
as conventional in-lab testing. More recently, it has been dem-
onstrated that the physical lab environment can be a simulated
environment and usability tests in these conditions trigger no
major workload discrepancies when compared to a typical lab
or even a remote testing approach (Chalil Madathil &
Greenstein, 2017). Given this work, we suggest that Remote
Usability Testing (RUT) can address the issue of ethical and
realistic HRI studies that has been raised by Feil-Seifer et al.
(2020).

2.3 Adjusting to a Pandemic - Using Remote Human-
Robot Interaction

In our proposed R-HRI methodology that is based on RUT,
the moderator acts on behalf of the participant. In convention-
al and remote usability test scenarios, the moderator observes
the user and encourages the user to express his or her thoughts.
In the R-HRI methodology however, the moderator is more
like that of a proxy for the participant, performing tactile or
other physical interactions for the user that would ordinarily
violate COVID-19 transmission prevention measures.
Additionally, the R-HRI moderator makes no attempt to en-
courage the participant to vocalize any of his or her thoughts.

To determine the feasibility of our proposal, we created an
experiment to evaluate the effect the R-HRI methodology
would have on participants’ attitudes, cognitive workload,
and interaction experience. Specifically, we concentrated on
three questions:

1. Does a person involved in an R-HRI experiment express
the same attitudes about robots whether they interact with
the robot in person or remotely?

2. Will the participant’s cognitive workload be the same
whether the interaction is in person or remotely?

3. Does the participant have the same user experience inde-
pendent of an in-person or remote interaction with the
robot? Otherwise, is the nature of the R-HRI study so
different that it is impossible to use?

Answers to these questions were obtained through a pilot
study, which we undertook as a precursor to a larger study.
We chose this approach two reasons. First, we did not know
what impact the underpinning technologies like the network,
device cameras, speakers, etc. would have on the R-HRI ex-
periment. Although our study did not seek to quantify and
formalize the technology design, its technological configura-
tion and potential effects were informally observed to evaluate
whether an “as-is” configuration was sufficient. We provide
more information on this in the Discussion section of the pa-
per. Secondly, we needed to determine whether R-HRI was

irrefutably a negative experience that should be considered as
an option. Given these two issues, we concluded that it would
be unwise to conduct a full study without first establishing the
merit of the idea.

3 Related Work

Huber andWeiss (2017) used the termRemote-HRI to explain
how participants in their study used a remote-controlled, off-
the-shelf robotic arm. The term was used to describe how
participants manipulated the robot with a remote control,
and contrasted it with the term Physical-HRI, which referred
to the user manually manipulating the robot. Our definition
focuses on the nature of the physical interaction the user has
with the robot during the experiment – specifically the nature
of the separation imposed by the experiment – rather than how
the robot is controlled robot. This makes the Huber and Weiss
definition significantly different from the one given in the
work discussed here.

The majority of remote robot interaction research focuses
on either how to communicate with a robot in a remote envi-
ronment (Mackey et al., 2020; Sierra et al., 2019) or
teleoperation – how to control the robot from a remote loca-
tion or by using augmented reality (AR) or other simulated
environments (Yanco et al., 2005; Qian et al., 2013; Nagy
et al., 2015; Chiou et al., 2016; Chivarov et al., 2019; Xue
et al., 2020). Some studies have looked at how to improve
HRI outcomes by using the common ground principle to im-
prove communication between humans and robots. Stubbs
et al. (2008) investigates using a robot proxy – a device that
simulates the robot’s responses – to enhance interaction out-
comes by creating common ground between the person and
the robot. Although HRI was included in the work, the focus
of the research was on the efficacy of the human-robot
grounding process. Consequently, investigating factors like
physical separation, behaviors, and experience is not done,
with other work on robot proxies and common grounding
following a similar path (Burke & Murphy, 2007; Prasov,
2012).

Honig and Oron-Gilad (2020) recently published work that
used online video surveys to determine the consistency of
hand movements used to interact with robots. The research
was motivated by some of the same factors that drive RUT,
namely the expense and effort involved in performing in-
person studies, particularly when the robot has not been
completely tested for human interaction. The researchers did
not use a moderator or use real-time interaction in the study,
but they did have participants watch videos and react to them
asynchronously through video. The findings reveal that the
method of interaction has no impact on seven of the eight
movements tested. This suggests that their method could be
a viable alternative to in-person testing, especially during the
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prototyping stage. Their conclusion is in line with the research
discussed in this paper. There is also research under the
Remote-HRI category where the interaction is observed by a
third party and data is gathered asynchronously (Zhao &
McEwen, 2021). This is a variation on what we are proposing
in this work. However, this paper is not evaluating the efficacy
of the method, they are simply using the remote-asynchronous
HRI approach because it is a longitudinal study involving
children in their homes.

Human-robot proxemics study the physical and psycholog-
ical distancing between humans and robots (Mumm&Mutlu,
2011; Walters et al., 2009). The aim of this research is to find
out how humans respond to robot actions when they are with-
in a certain range of the user. It also explores how a robot can
influence human behavior, human emotions, and other types
of affect. The questions we aim to answer in this paper are not
explicitly answered by human-robot proxemics. In proxemics,
physical distancing is explored, but this is done with the aim
of making the robot model social and cultural norms. In our
work, physical distancing is a restriction that must be met for
experiments to be carried out. It is not a social modelling
effort. As a result, rather than exploring physical distance
alone, as we would in a human-robot proxemic study
(Mumm & Mutlu, 2011), we constrain the physical distance
from the robot and conduct the HRI study under that
condition.

Finally, there is a form of remote robot interaction; howev-
er, the focus is on human-human remote interaction using a
robot as an intermediary (Papadopoulos et al., 2013). The
robot is a remotely accessible toy that is accessed by a paired
robot. These paired toys are used by participants to facilitate
remote human-human interaction. In this case, the focus is not
on the effect of accessing the robot remotely, but on how that
remote interaction can be used to effect human relationships.

In summary, current research looks at how different types
of interactions affect the human-robot relationship and in
some cases human-human relationships. However, none of
these studies have evaluated how a physically constrained
environment affects user behavior, cognitive workload, or us-
er experience. In this paper, we discuss these limitations and
their effect on interaction by conducting a pilot study to see
whether Remote-HRI can be used to perform HRI studies in a
global pandemic with minimal physical interaction.

4 The Method

4.1 Participants

Ten males between the ages of 22 and 46 (μ=32.3, σ =7.36),
two females (μ = 24, σ = 1.414) and one moderator (male, 22)
participated in the pilot study. The participants were selected
from a computer science research group whose primary

research interests are unrelated to social robots. Four of the
twelve participants (33%) had already communicated with a
robot other than the one used in this research prior to partici-
pating in this pilot study. The small sample is based on the
advice in (Macefield, 2009), which asserts that a baseline of
5–10 participants is a reasonable starting point for early us-
ability studies.

4.2 The Experiment Conditions

The mode of robot interaction was the independent variable.
There were two levels of evaluation: in-person interaction
with a moderator and remote interaction with a moderator.

The in-person environment was made to meet all public
health criteria known to minimize the risk of transmission
from person-to-person. Face masks were mandatory, and par-
ticipants were asked to stand at least twometers away from the
robot and moderator. Any interaction with the robot that re-
quired touching the robot had to go through the moderator -
who was the only person allowed to touch it. Even though
airborne transmission of the virus is limited, the in-person
experiments were performed in an open outdoor courtyard to
minimize the risk of aerosolized particles circulating in the test
area (World Health Organization and others, 2020). This set
up was also used to perform remote interaction with the robot.
A laptop with a built-in webcam was used to run the video
conferencing software with its speaker system supplemented
with an external Bluetooth speaker. The robot was positioned
in front of the laptop so that the remote user could see the
robot move about while allowing the robot to hear the user’s
commands.

We used a nearby research lab as the on-site remote loca-
tion. Six people can work in the lab at a time, but nomore than
three people, wearing face masks, were permitted in the lab at
the same time to ensure adequate spacing. Participants were
given gloves and hand sanitizer if they wanted to use the
provided laptop to communicate with the robot remotely.

4.3 The Robot

In this analysis, the ASUS Zenbo companion robot was used
(see Fig. 1). The robot is a multifunctional intelligent assistant
that is sometimes described as “cute”(Byrne, n.d.). It is
intended to serve as a storyteller for teachers, a companion
robot for the elderly, and a retail service assistant in educa-
tional, industry, and health and safety settings (Zenbo |
Intelligent Robot, n.d.). Given the robot’s intended uses, we
felt it was a good candidate for first-time users.

We decided to use some of the Zenbo robot’s built-in func-
tions since these were employed by other researchers, which
somewhat validated these functions as acceptable usability
study inputs (Chien et al., 2019). We also chose these appli-
cations instead of custom-made applications to prevent
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confounding caused by applications that may not be as rigor-
ously tested and could possibly produce unexpected
outcomes. We, however, do not compare our results with the
work done by Chien et al. (2019) since they used these func-
tions in a completely different study.

Each participant went through a pre-selected list of nine
Zenbo functions for each experiment, see Table 1. We chose
this list of functions because they were simple to explain to
participants and we expected that the users would be able to
issue them to the robot easily.

For the users to fully appreciate what Zenbo could do, we
ensured the functions included commands that triggered oral
and motion responses from the robot. Voice commands and
touch were also used to communicate with Zenbo. Five of the
nine commands (1, 2, 3, 4, and 9) were voice commands that
elicited an oral response from Zenbo. Three voice commands
(6, 7, 8) caused Zenbo to respond with an oral and movement
response. One command (5) involved physical contact with

the robot that would make Zenbomove. Except for Command
5, the participants communicated with Zenbo directly.
However, to execute Command 5, participants had to ask
the moderator to perform the operation instead of touching
the robot themselves.

4.4 Devices Used for Remote Access

Participants had three options for accessing the robot remote-
ly: (i) use the laptop provided; (ii) use their personal laptop or
(iii) use their smartphone. The laptop provided to participants
ran the Chrome web browser and the remote desktop applica-
tion AnyDesk®. We used the Jitsi (‘Jitsi.Org’, 2021) video
conferencing website to allow participants to communicate
with the Zenbo companion robot, see it move around and to
communicate with the moderator. The AnyDesk application
was used to give the participants a clear picture of the robot’s
face and its expressions because these were hard to discern
through the video conferencing software. AnyDesk was
installed on Zenbo to make this type of connection possible.
Participants who chose to use their own laptop had to install
AnyDesk and then use the application to request a connection
to the robot. The moderator ensured this was done at the start
of the session. The final device option was for participants to
use their smartphones. With this option participants had to
install the Jitsi application to get the best quality connection.
Additionally, using the smartphone prevented participants
from using the AnyDesk application since it was not possible
to use both the Jitsi and AnyDesk applications simultaneous-
ly. Using this arrangement, participants saw the robot’s ex-
pressions only through the Jitsi video conferencing
application.

Fig. 1 The Zenbo intelligent robot (ASUS)

Table 1 List of Zenbo commands
numbered 1–9 Command Function Expected reaction

1) “Hey, Zenbo” Prepare to receive a
command

Blue “ears” appear and waits for a
command

2) What can you do? Opens list of functions Display functions

3) “What date is it tomorrow” OR

“What date is it tomorrow on the lunar
calendar”

Date report Tomorrow’s date in the calendar / lu-
nar calendar

4) “What is the weather in Barbados
today?” OR

“What is the weather today?”

Weather report Reports the weather

5) Stroke its head (ask moderator) Basic interaction Shows a shy expression

6) “Follow me” Following Follows the user

7) “Tell me a story” Entertainment Tells the user a story

8) “I want to take a picture” / “I want to
take a selfie”

Photo Takes a picture of the user

9) “I want to listen to music Entertainment Plays music
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4.5 The Survey Instruments

For this study we selected five survey instruments that could
help us determine whether: (a) participants’ mode of interac-
tionwith the robot (in-person/remotely) affected their attitudes
towards the robot; (b) the effort expended in interacting with
the robot depended on interaction modality and (c) the quality
of the participants’ experience with the robot was affected by
the interaction mode.

We used the Negative Attitude towards Robots Scale
(NARS) (Nomura et al., 2006) to determine the level of neg-
ative perceptions held by the participants towards robots.
NARS is a 14-item scale that has three subscales. The first,
six-item subscale, measures negative attitudes towards
human-robot social interactions (HRSI). The second, five-
item subscale, measures the negative attitudes towards the
social influence of robots (SIR) and the third, three-item sub-
scale, measures negative attitudes towards emotional interac-
tions with robots (EIR). Measuring negative perceptions was
important since there are very few companion, assistive or
service robots available in our region. This meant that any
impression participants may have had about robots would
likely not have been from prior exposure, but from second-
hand sources like popular media. The higher the NARS score,
the more negative the participant’s attitude towards robots.
This means that by using this scale we could determine wheth-
er participants’ attitudes change after each interaction with the
robot (Pretest: α = .76; Posttest I:α = .73; Posttest II:α = .68).

The Robotic Social Attributes Scale (RoSAS) (Carpinella
et al., 2017) was used to get a better sense of the perceptions
held by participants, especially if NARS showed that partici-
pants did not have any negative attitudes towards robots.
RoSAS is an 18-item scale with three subscales: Warmth,
Competence and Discomfort, each consisting of six items.
The higher the score in each subscale, the greater the percep-
tion by the user of the robot possessing the characteristics
described by the items of the subscale. For example, a robot
that is perceived as warm, implies that the participant scored it
highly in the six items: happy, feeling, social, organic, com-
passionate, and emotional that comprises the warmth sub-
scale. We used this scale to determine if any of these percep-
tions changed based on the interaction modality used with the
robot (Pretest: α = .89; Posttest I:α = .78; Posttest II:α = .75).

In addition to human perception, we also assessed use of the
robot to capture whether the interaction affected levels of tech-
nology adoption.We used the Extended TechnologyAcceptance
Model (TAM2) (Venkatesh & Davis, 2000) scale to determine
participants’ attitudes towards accepting a companion robot for
use if one were available. TAM2 measures technology accep-
tance, andwe regarded it as a viable indicator of the quality of the
interaction with the robot. We assessed the factors: Intention to
Use (IU); Perceived Usefulness (PU) and Perceived Ease of Use
(PEU). The higher the TAM2 score, the more likely the

participant is to accept and/or adopt the technology under assess-
ment (In-Person: α = .82; Remotely: α = .82).

The NASA Task Load Index (TLX) consists of six sub-
scales: Mental Demand (MD), Physical Demand (PD),
Temporal Demand (TD), Performance (P), Effort (E) and
Frustration (F) (Hart, 2006). Its total score measures the work-
load associated with a specific task. In the between subject
study, we wanted to determine if there was any effect on all
aspects of the user’s workload, so we evaluated all subscales.
For the within subject study, the key measures we wanted to
capture was the level of work the participants’ experience with
the Zenbo robot within the constraints of the experiment en-
vironment. However, since we examined all aspects of the
scale in the between-subjects study, we decided to do the same
for the within subject study when examining the two modes of
interaction (In-Person: α = .81; Remotely: α = .74).

The short version of the User Experience Questionnaire
(Laugwitz et al., 2008) is a seven-point, eight-item inventory
that allows subjects to provide a full assessment of their expe-
rience using a technology. It has two subscales: Pragmatic
Quality, which measures how efficiently you can perform
the task using the product; and Hedonic Quality, which mea-
sures how interesting and stimulating it is to use the product to
perform the task. Values greater than 0.8 represent a positive
evaluation, values less than −0.8 represent a negative evalua-
tion. Values between −0.8 and 0.8 represent a neutral evalua-
tion. Given this, we can determine the quality of the partici-
pant’s experience after each interaction mode (In-Person
Pragmatic: α = .95; Remotely Pragmatic: α = .87); (In-
Person Hedonic: α = .97; Remotely Hedonic: α = .85).

4.6 The Experiment Design

We performed the study with two independent groups. Group
1 consisted of five participants, two females three males, and
the experiment investigated the independent variable, interac-
tion mode, at one level – remote interaction. Group 2
consisted of seven males and the experiment employed a
counterbalanced measures design with the independent vari-
able (interaction mode) at two levels: in-person and remote.
The seven participants were randomly assigned to either
Group 2A (which first interacted with the robot in-person
and then remotely) or Group 2B (which interacted with the
robot remotely first, and then, in-person). Data for the twelve
participants was collected over a period of nine hours.

Given the small sample size of the pilot study, we used the
Friedman’s non-parametric test on the NARS and RoSAS
data for within subject analysis of the effects of the interaction
modalities against attitudes towards robots. To analyze the
other scales that measured technology adoption (TAM2),
workload effort (NASA TLX), and user experience (UEQ),
we tested for normality using a visual test (Q-Q Plot) verified
by a Shapiro-Wilk test, which has more power than the
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Kolmogorov-Smirnov normality test (Ghasemi & Zahediasl,
2012). If the data met the normality requirement, we investi-
gated the presence of effects using a repeated measures t-test,
since it functions with small sample sizes (De Winter, 2013).
Data samples that failed the normality tests were analyzed
using the Wilcoxon Signed-Rank test.

For the between subject study of Group 1 (participants that
had one interaction with the robot) and Group 2 (participants
that had two interactions with the robot) our analysis had to also
account for the small sample size.We tested for normality using
the Q-Q plot test and verified normality with the Shapiro-Wilk
even though the R2 values for the trendlines in the Q-Q plots
were greater than 0.85, indicating a high correlation with the
normal distribution. Once the data passed the normality test, we
inspected the data for the presence of effects between the two
samples using Welch’s t-test for independent samples.

4.7 Procedure

Before starting the experiment, participants were given an online
copy of the informed consent form, which they had to read and
then click to accept. After giving consent, basic demographic
information such as age and whether that had ever interacted
with a robot was collected. Participants then filled out the
NARS and RoSAS inventories and instructed on how to issue
the nine commands, shown previously in Table 1, to interact with
the robot. This was the pretest phase of the experiment.

Group 1 participants issued the commands to the robot
remotely using the environment described in Experiment
Conditions, after which they were instructed to fill out the five
inventories. Upon completion of the surveys, they were
thanked for their participation and their session ended. For
Group 2 participants, after their first interaction, they were
also instructed to fill out the five inventories. When they com-
pleted these surveys, they used the same commands to interact
with the robot a second time but using a different interaction
modality. To simplify, a Group 2 participant, who for example
may have been assigned to Group 2A, would complete the
NARS and RoSAS inventories during the pretest phase, inter-
act with the Zenbo robot in-person, and then complete five
inventories in the first posttest phase. After their second inter-
action, which would happen remotely, they would complete
the five inventories in the second posttest phase. The session
ended after they completed the surveys.

5 Results

5.1 The between Subject Study - One Interaction vs
Two Interactions

In the between subject study, we evaluated the data collected
from the NASA TLX and the UEQ inventories. The data

collected from the surveys completed by the Group 1 partici-
pants after their only interaction with the robot (posttest phase
1) is evaluated against the survey data from Group 2 partici-
pants after their second interaction with the robot (posttest
phase 2).

5.1.1 NASA Task Load Index

For the NASA TLX scale, we used Q-Q plots to perform
normality visual tests on the survey that indicated the data
for all subscales were normally distributed for both groups,
Fig. 2. We ran Shapiro-Wilk as a verification test for normal-
ity, Table 2, which allowed us to use the Welch’s t-test to
analyze the overall workload and all subscales except for
Effort and Frustration. Analyzing the data with the Welch’s t
and Wilcoxon Signed Rank tests found that the number of
interactions had no significant effect for the Overall workload
and the subscales, Table 3.

5.1.2 The User Experience Questionnaire

We tested the Pragmatic Quality and Hedonic Quality sub-
scale data for normality using the Shapiro-Wilk test. Both data
sets met the normality criteria for both the one interaction and
two interactions data set: Pragmatic1 (W = 0.885, p = .33),
Pragmatic2 (W = 0.925, p = .51), Hedonic1 (W = 0.974,
p = .89) and Hedonic2 (W = 0.916, p = .43). Based on these
results, we used the Welch’s t-test for independent samples
and found that whether the user had one or two interactions
with the robot, it had no effect on either the Pragmatic Quality
(t(10) = − 0.978, p = .35) or the Hedonic Quality (t(10) = −
0.100, p = .92) of the experience.

5.2 The Within Subject Study

In this study we analyzed the data collected from all fives
surveys taken by the seven participants who interacted with
the robot in-person and remotely.

5.2.1 NARS

We performed the Friedman’s Test on the three subscales of
the NARS separately. The three treatments were the pre-
interaction versus in-person interaction versus remote interac-
tion against the independent variable interaction modality at
two levels: in-person and remote. For the HRSI subscale there
was no significant effect of the interaction modality on user
attitudes, Χ2(2,N = 7) = 3.43, p = 0.18. For the SIR subscale,
there was no significant effect of the interaction modality on
social interaction attitudes, Χ2(2, N = 7) = 0.5, p = 0.78.
Finally, for the EIR subscale, there was no significant effect
of the interaction modality on attitudes towards emotional
interactions with robots, Χ2(2,N = 7) = 0.28, p = 0.87.
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5.3 RoSAS

We performed a Friedman’s test on the three subscales of the
RoSAS inventory. The three treatments were the pre-
interaction versus the in-person interaction versus the remote
interaction against the interaction modality at two levels: in-
person and remotely. For the Warmth subscale there was no
significant effect of the interaction modes on this attitude,
Χ2 = (2, N = 7) = 0.5, p = 0.78. For the Competent subscale
there was no significant effect of the interaction modalities
on the attitude, Χ2 = (2, N = 7) = 2, p = 0.37. For the
Discomfort subscale, there was no significant effect of the
interaction modalities on this attitude, Χ2(2, N = 7) = 1.36,
p = 0.51.

5.4 TAM2

For the TAM2 scale, we used Q-Q plots to perform normality
visual tests. They appeared to indicate that the data for all three

subscales were normally distributed, Fig. 3. We ran the
Shapiro-Wilk normality for additional verification, which
allowed us to use the t-test for all subscale analysis. We per-
formed a repeatedmeasures t-tests on the Intention to Use (IU)
subscale from the TAM2 inventory. The results indicated that
the interaction modality had no effect on Intention to Use
t(6) = .733, p = .49.

We performed a repeated measures t-test on the Perceived
Usefulness (PU) subscale and the results indicated that the
interaction modality had no effect on Perceived Usefulness
t(6) = .668, p = .53. Finally, we performed a repeated mea-
sures t-test on the Perceived Ease of Use (PEU) subscale
and the results indicated that the interaction modality had no
effect on Perceived Ease of Use t(6) = −1.056, p =. 33.

5.5 NASA Task Load Index

For the NASA TLX scale, we used Q-Q plots to perform
normality visual tests that appeared to indicate that all data,

Fig. 2 Q-Q Plot visual test for normality for the NASA TLX inventory
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except the Physical Demand In-Person and Effort In-
Person subscales, were normally distributed, Fig. 4. We
ran the Shapiro-Wilk as a verification test for normality,
Table 4, which allowed us to use the t-test to analyze the

subscales that passed both tests. For the Physical Demand
and Effort subscales we used the Wilcoxon Signed-Rank
test.

The result of the repeated measures t-test for the inter-
action modality showed that it influenced the Overall
workload (t(6) = 3.69, p < .05), Mental Demand t(6) =
3.73, p < .05 and Frustration (t(6) = 2.53, p < .05). It also
showed that it did not influence Temporal Demand (t(6) =
0, p = 1), ) or Performance (t(6) = 1.456, p = .19). These
findings imply that interacting with the robot remotely
required more effort than interacting with the robot in-
person although physically separated from the robot.
Temporal demands and performance were the same for
both interaction modes, which indicated that the partici-
pants never felt hurried and achieved their goals in both
interaction modes.

The results of the Wilcoxon Signed-Rank test showed
that the interaction modality had no effect on Physical
Demand V = 1, p = .20) but affected Effort (V = 1, p < .05).
These preliminary results reflect the fact that there was no
physical interaction with the robot because the commands
were verbal, and any physical interaction that required was
done by the moderator. Additionally, the effort required for
in-person interaction was lower than that required for re-
mote interaction. Caution is noted here however, because
the sample was small, and a normal approximation was
used to calculate the p value.

5.6 UEQ

The Q-Q Plots appear to indicate that the data for the UEQ
subscales were normally distributed, Fig. 5. Both subscales
passed the Shapiro-Wilk normality test, see Table 5, which
meant we could use the t-test. For the Pragmatic subscale,
the repeated measures t-test t(6) = −0.254, p = .81 showed
there was no effect of the interaction modality on the pragmat-
ic quality of the experience. For the Hedonic subscale the
repeated measure t-test t(6) = .950, p = .38, showed that there

Table 2 Shapiro-Wilk normality tests for one- and two interaction
NASA TLX data

One interaction
(N=5)

Two interactions
(N=7)

Overall Workload

Mean 74.60 30.57

Standard Deviation 40.71 17.83

Shapiro-Wilk Normality Test Results

W 0.879 0.923

p value 0.376 . 492

Mental Demand

Mean 57.14 58.50

Standard Deviation 45.67 43.44

Shapiro-Wilk Normality Test Results

W 0.811 0.886

p value 0.128 .257

Physical Demand

Mean 15.24 24.49

Standard Deviation 8.52 16.36

Shapiro-Wilk Normality Test Results

W 0.771 .842

p value 0.068 .104

Temporal Demand

Mean 66.67 28.57

Standard Deviation 40.41 15.55

Shapiro-Wilk Normality Test Results

W 0.909 0.848

p value 0.586 0.118

Performance

Mean 705.71 161.22

Standard Deviation 484.03 100.24

Shapiro-Wilk Normality Test Results

W 0.924 0.843

p value 0.7 0.106

Effort

Mean 141.43 104.08

Standard Deviation 71.86 78.12

Shapiro-Wilk Normality Test Results

W 0.923 0.788

p value 0.693 < .05

Frustration

Mean 122.86 81.63

Standard Deviation 95.08 68.37

Shapiro-Wilk Normality Test Results

W 0.899 0.718

p value 0.506 < .05

Table 3 Results of the Welch’s t-tests and Wilcoxon Signed Rank test
for the NASA TLX inventory - one interaction and two interaction groups

Welch’s t-test

p value t Statistic

Overall Workload .07 2.268

Mental Demand .96 −0.052
Physical Demand .23 −1.274
Temporal Demand .10 2.004

Performance .06 2.478

Wilcoxon Signed Rank Test

p value W Statistic

Effort .19 26

Frustration .68 20.5
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was no effect by the interaction mode on the hedonic quality
of the experience.

6 Discussion

In this paper we presented a pilot study of a Remote-HRI
methodology in which we examined whether:

1. The number of interactions affected the user’s workload.
2. The participants’ mode of interaction (in-person versus

remotely) with the robot affected their attitudes towards,
and perceptions of, the robot.

3. The quality of the participants’ experience with the robot
was affected by the interaction mode.

To address these questions, we first examined data taken
from the two groups as independent samples. The

Fig. 3 Q-Q plots of a TAM2 IU subscale; b TAM2 PU subscale and; cTAM2PEU subscale showing that the subscale data may fit a normal distribution,
with minimum R2value of 0.871, 2 (c), and maximum R2value of 0.9861, 2 (b)
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difference in the overall workload experienced by the two
groups was statistically insignificant. This is an interesting
result because, as we will discuss below, participants re-
ported lower overall effort for in-person interaction versus
remoter interaction. This may indicate that remotely
interacting with requires significantly larger effort that is
not mitigated by in-person interaction. This requires fur-
ther study since four of the seven participants remotely
interacted with the robot for the second interaction and
with the small sample size effects would be unclear.
However, the quality of experience was similar across the
number of interactions, which is encouraging because,
even though more effort is reported for remote interactions,
it does not have a negative effect on the overall experience.

In the within subject study, we examined participants’ atti-
tudes towards robots using the NARS and RoSAS inventories
and found that the mode of interaction had no effect. We then

used the TAM2 inventory to examine the acceptance of social
robot technology and the intention to adopt such technology.
We also found that the interaction mode had no effect on these
attitudes.

In this study we also examined the interaction using the
NASA TLX scale and we found that the interaction mode
affected all aspects of the workload except Physical and
Temporal demands as well as Effort as mentioned above.
This is an important finding, and we believe that this merits
further investigation on two fronts: (i) the voice recognition
capabilities of the robot and (ii) the technological infrastruc-
ture of the experiment environment. Regarding the first issue,
the Zenbo robot showed difficulty in recognizing the wake-up
command “Hey Zenbo” in the in-person interaction mode
with participants sometimes shouting or changing their pro-
nunciation to get the robot to respond. This effect was noticed
for most of the other nine commands. We suspect that this

Fig. 4 Q-Q Plot visual normality test for al NASA TLX subscales
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may be a result of the dataset used to train the robot’s voice
recognition system combined with the fact that the experiment
was performed at a Caribbean university where the

participants spoke with accents from three different
Caribbean countries. The second issue is simpler to rectify,
and that is to ensure a reliable wireless or wired network con-
nection, and a speaker that produces a clear sound so that the
robot can hear and process the remote voice commands. We
observed that when there was slight distortion in the speaker
because a participant was speaking too loudly into the remote
device, the Zenbo robot could not process the command. As
we discussed earlier, since no physical interaction was permit-
ted with the robot, we expected that the Physical Demand
subscale would show no effect. The Effort subscale reflected
the findings that overall, remote interactions exacted a higher
workload on participants than in-person interactions.

We investigated the quality of the participants’ experience
using the Short UEQ inventory and found that the experiences
were neutral and that there was no significant difference in the
quality of experience based on the interaction mode.

6.1 Limitations

These results have limitations beyond the small sample size
and the inconsistent response of the robot due to its voice
recognition system. First, we intend to undertake a larger
study to obtain clarity on the results we have obtained here.
Additionally, the extent to which command repetition affected
effort and frustration cannot be quantified since we did not
gather that data and only observed this phenomenon as part of
the experiment. Second, the effect of the supporting technol-
ogy was not examined since we focused on other aspects of
the Remote-HRI methodology. We also did not conduct a
clear comparison between a full interactive high-touch exper-
iment and a completely remote experiment. This prevented us
from making a clear compar ison between these
methodologies.

The quality of the network connection may have influenced
aspects of the interaction since there were some points when
performance degraded and affected sound and/or video quality.
These factors need to be captured so that the remote environment
can be adequately designed, and its effects mitigated. Lastly, we
did not capture the effect of the smartphone remote device versus
the laptop remote device and whether that affected any of our
measures. We also must examine this in our full study.

7 Conclusions and Future Work

The ability to conduct HRI studies has been constrained by the
current COVID-19 pandemic. Finding a way to conduct these
studies in an ethical and safe way is important, especially since
most HRI research focuses on using social robots to improve
quality of life for two of the most at-risk populations – the
elderly and those with underlying health conditions.

Table 4 NASA TLX Statistics and normality tests for in-person and
remote interaction

In-
Person
(N=7)

Remotely
(N=7)

Overall Workload

Mean 18.78 36.37

Standard Deviation 10.72 16.40

Shapiro-Wilk Normality Test Results

W 0.824 0.979

p value .081 .971

Mental Demand

Mean 50.34 73.47

Standard Deviation 47.62 40.30

Shapiro-Wilk Normality Test Results

W 0.951 0.969

p value .844 .968

Physical Demand

Mean 21.77 38.09

Standard Deviation 17.14 31.10

Shapiro-Wilk Normality Test Results

W 0.768 8.889

p value < .05 0.302

Temporal Demand

Mean 29.93 29.93

Standard Deviation 13.94 14.99

Shapiro-Wilk Normality Test Results

W 0.888 0.913

p value 0.295 0.471

Performance

Mean 69.38 140.82

Standard Deviation 62.38 100.14

Shapiro-Wilk Normality Test Results

W 0.814 0.896

p value 0.07 0.345

Effort

Mean 57.14 146.94

Standard Deviation 41.51 89.10

Shapiro-Wilk Normality Test Results

W 0.751 0.875

p value < .05 0.227

Frustration

Mean 53.06 116.33

Standard Deviation 35.99 74.43

Shapiro-Wilk Normality Test Results

W 0.845 0.823

p value .125 0.080
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In this paper we presented the results of a pilot study de-
signed to assess the possibility of a Remote-HRI methodolo-
gy. The results indicated that for our first and third
questions—the participants’ perceptions of the robot and their
user experiences—were unaffected by interactionmodes. This
may imply that experiments focused on evaluating user atti-
tudes towards robots can be performed remotely once voice
commands are used with limited physical contact. The results
for our second question require further analysis due to two
other factors that were not examined as part of this study:
the supporting technology and the robot’s voice recognition
system. We do not believe that these two factors would pre-
vent adoption of Remote-HRI, indeed, we are confident that
upon fuller study, we will be able to provide mitigation strat-
egies to reduce the effects of these factors.

In summary, these results indicate that performing HRI
studies remotely can be a feasible alternative to face-to-face
HRI studies – especially for studies that have a large voice-
command component. Perception and attitude studies are
good candidates for this methodology, and low-touch studies
can be performed using the R-HRI in-person option by mak-
ing use of the moderator since this process does not negatively
affect the perception of or attitudes towards robots.

Given the promising initial results, we will undertake a full
study to validate these results and explore whether the partic-
ipants’ age and dialect has some effect on attitudes and

experiences within the interaction modes. We will also eval-
uate whether different types of robotic applications are more
suited for different types of Remote-HRI interaction beyond
those that are primarily voice driven, since successfully facil-
itating physical interactions will have a significant impact on
the feasibility of R-HRI studies.

Fig. 5 Q-Q Plot of UEQ a Pragmatic subscale and b Hedonic subscale showing that the data seems to follow a normal distribution

Table 5 Statistics and
Normality Test Results
UEQ

In-
Person

(N=7)

Remotely

(N=7)

Subscale: Pragmatic

Mean 0.464 0.25

S.D. 1.805 1.458

Shapiro-Wilk Normality Test

W 0.897 0.857

p value 0.351 0.157

Subscale: Hedonic

Mean 0.464 0.96

S.D. 1.82 1.27

Shapiro-Wilk Normality Test

W 0.912 0.954

p value 0.468 0.869
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