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Identifying the tissue-specific molecular signatures of
active regulatory elements is critical to understand
gene regulatory mechanisms. Here, we identify tran-
scription start sites (TSS) using cap analysis of gene ex-
pression (CAGE) across 57 human pancreatic islet
samples. We identify 9,954 reproducible CAGE tag clus-
ters (TCs), �20% of which are islet specific and occur
mostly distal to known gene TSS. We integrated islet
CAGE data with histone modification and chromatin ac-
cessibility profiles to identify epigenomic signatures of
transcription initiation. Using a massively parallel re-
porter assay, we validated the transcriptional enhancer
activity for 2,279 of 3,378 (�68%) tested islet CAGE ele-
ments (5% false discovery rate). TCs within accessible
enhancers show higher enrichment to overlap type 2 di-
abetes genome-wide association study (GWAS) signals
than existing islet annotations, which emphasizes the
utility of mapping CAGE profiles in disease-relevant tis-
sue. This work provides a high-resolution map of tran-
scriptional initiation in human pancreatic islets with
utility for dissecting active enhancers at GWAS loci.

Genome-wide association studies (GWAS) for complex
diseases such as type 2 diabetes (T2D) have identified
hundreds of signals associated with disease risk; however,
most of these lie in non-protein-coding regions and the
underlying mechanisms are still unclear (1). T2D GWAS
variants are highly enriched to overlap islet-specific en-
hancer regions, which suggests that these variants affect

gene expression (2–4). Many GWAS signals are marked by
numerous single nucleotide polymorphisms (SNPs) in
high linkage disequilibrium (LD), which makes identifying
causal SNPs extremely difficult using genetic information
alone.

For delineating regulatory elements, profiling histone
modifications such as the enhancer-associated H3 lysine
27 acetylation (H3K27ac) (5,6) and the promoter-associ-
ated H3 lysine 4 trimethylation (H3K4me3) (6,7), among
others, can be useful. However, the identified regions
typically span hundreds of base pairs (bp). Profiling trans-
cription factor (TF)-accessible chromatin regions can iden-
tify the functional DNA bases with these broad regulatory
elements in pancreatic islets (1,4,8–12). Integrating other
epigenomic data such as DNA methylation and chromatin
looping has been valuable in identifying biological mecha-
nisms (4,13,14). Transcription is a robust predictor of en-
hancer activity, and a subset of enhancers are transcribed
into enhancer RNA (eRNA) (15,16). eRNAs are nuclear,
short, mostly unspliced, 50 capped, usually nonpolyadeny-
lated, and usually bidirectionally transcribed (15,17,18).
Therefore, identifying the location of transcription initia-
tion can pinpoint active enhancer regulatory elements in
addition to active promoters.

Genome-wide sequencing of 50-capped RNAs with cap
analysis of gene expression (CAGE) can detect transcrip-
tion start sites (TSS) (15,17). CAGE can be applied on
RNA samples from hard-to-acquire biological tissue such
as islets and does not require live cells that are imperative
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for other TSS profiling techniques such as a variation of
global run-on sequencing (GRO-seq) called GRO-cap
(19–21). The functional annotation of the mammalian ge-
nome (FANTOM) project (22) has generated a CAGE ex-
pression atlas across 573 primary cell types and tissues,
including the pancreas. However, pancreatic islets that se-
crete insulin and are relevant for T2D and related traits
constitute only �1% of the pancreas tissue. Therefore, a
pancreas TSS map may not accurately represent the islet
TSS landscape. To date, there are no publicly available
CAGE data sets for islet tissue. Here, we present a CAGE-
based TSS map of pancreatic islets with enhancer valida-
tion using a massively parallel reporter assay (MPRA). Fi-
nally, we integrate our data with existing epigenomic data
sets to reveal molecular signatures of noncoding islet ele-
ments and their role in T2D and related traits.

RESEARCH DESIGN AND METHODS

Sample Collection and CAGE Library Preparation
We processed 71 human pancreatic islet samples obtained
from unrelated organ donors (Supplementary Table 1) re-
ceived from the Integrated Islet Distribution Program, the
National Disease Research Interchange, and Prodo Labo-
ratories. We prewarmed islets to 37�C in shipping media
for 1–2 h before harvest. Total RNA from 2,000–3,000 is-
let equivalents was extracted and purified with Trizol
(Life Technologies). RNA quality was confirmed with Bioa-
nalyzer 2100 (Agilent); samples with RNA integrity num-
ber >6.5 were prepared for CAGE sequencing. We sent 1
mg total RNA per sample to DNAFORM (Kanagawa,
Japan), where CAGE libraries were generated. The library
preparation included polyA-negative selection and size se-
lection (<1,000 bp) in an attempt to enrich for the short
and nonpolyadenylated eRNA transcripts. Stranded CAGE
libraries were generated for each islet sample with use of
the no-amplification nontagging CAGE libraries for Illumi-
na next-generation sequencers (nAnT-iCAGE) protocol
(23). Each islet CAGE library was barcoded and was
pooled into 24-sample batches and sequenced over multi-
ple lanes of HiSeq 2000. All procedures followed ethics
guidelines of the National Institutes of Health (NIH).

CAGE Data Processing
We trimmed adapter sequences and mapped the reads to
hg19, performed unique molecular identifier–based dedu-
plication, and identified TSS. We selected 57 islet samples
with strandedness measures >0.85 calculated from Quali-
ty of RNA-seq Tool-Set (QoRTS) (24) for all downstream
analyses. We identified tag clusters (TCs) in each sample
in a strand-specific manner using paraclu (25), allowing
single bp TCs (“singletons”) if supported by more than
two tags. We identified a “consensus” set of reproducible
islet TCs by merging TCs on each strand across samples
and retaining segments supported by a conservative
threshold of 10 samples (Supplementary Fig. 1). We then
filtered out regions blacklisted by the Encyclopedia of

DNA Elements (ENCODE) consortium. The TC coordi-
nates for the selected threshold and a more lenient
threshold of 5 are shared in Supplementary Table 2.

We downloaded the FANTOM CAGE-TSS data for 118
tissues (https://fantom.gsc.riken.jp/5/datafiles/latest/basic/
human.tissue.hCAGE/) (22) and called TCs using paraclu
(25) with the same parameters as described above.

Overlap Enrichment Between Annotations
Enrichment for overlap between islet TCs and various an-
notations was calculated with the Genomic Association
Tester (GAT) tool (26). GAT randomly samples segments
from the genomic workspace and computes the expected
overlaps. We used 10,000 GAT samplings for each enrich-
ment run and obtained empirical P values.

Experimental Validation Using MPRA
We generated a barcoded plasmid library of N 5 7,188 is-
let CAGE elements (198 bp flanked by 16 bp anchors) to
test in the MPRA. We electroporated 50 mg of library into
25 million 832/13 rat insulinoma cells in three biological
replicates, harvested the cells 24 h later, and isolated total
RNA. We mapped the bar codes corresponding to each
CAGE element in the MPRA plasmid using PCR and se-
quencing. We sequenced the input DNA bar code library
along with three cDNA barcode libraries. We quantified
bar code counts while accounting for sequencing errors
using the sequence clustering algorithm Starcode (https://
github.com/gui11aume/starcode) (27) and removed PCR
duplicates using the unique molecular identifier (https://
github.com/parkerlab/starr-seq-analysis-pipeline). We se-
lected N 5 3,446 quantifiable CAGE elements, which had
at least two bar codes each with at least 10 DNA counts.
We used MPRAnalyze (version 1.3.1) (https://github.com/
yoseflab/mpranalyze) (28) to model DNA and RNA counts
in negative binomial generalized linear models to quantify
enhancer activities. To estimate the null in our experi-
ment, within MPRAnalyze, we conservatively assume that
the mode of the distribution of transcription activity esti-
mates is the center of the null distribution. Therefore, val-
ues lower than the mode are used to estimate the null
variance.

Least Absolute Shrinkage and Selection Operator
Regression
We modeled the CAGE element MPRA z scores as a func-
tion of TF motif occurrences within the element using
least absolute shrinkage and selection operator (LASSO)
regression. We identified 540 nonredundant motifs
(Supplementary Information) and scanned for these in
the hg19 reference using Find Individual Motif Occur-
rences (FIMO) (29). For each CAGE element, we consid-
ered the inverse-normalized (RNOmni package, version
0.7.1) FIMO �log10 (P value) of each motif occur-
rence as motif “scores.” We again inverse normalized
the scores for each TF motif across the CAGE
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elements so that the regression coefficients would be
comparable across motifs. The LASSO regression was
run with use of the glmnet package (v2.0-16) with pa-
rameter a 5 1.

Functional GWAS Analyses and Fine Mapping
We used fgwas (version 0.3.6) (30) to compute enrich-
ment of GWAS and expression quantitative trait loci
(eQTL) data in TC-related and other annotations. We ob-
tained summary data for T2D GWAS (1) and islet eQTL
(31) and lymphoblastoid cell line eQTL (32) and organized
summary statistics as required by fgwas. For eQTL data,
we selected SNP-gene associations for eGenes identified
at 1% false discovery rate (FDR) and included a unique
“SEGNUMBER” for each eGene. We used fgwas with de-
fault parameters for enrichment analyses and included
the “-fine” flag for eQTL analyses.

We performed conditional analyses using the “-cond”
option where the enrichment parameters for the first an-
notation were modeled and fixed the maximum likelihood
values. An additional parameter for the second annota-
tion was included and estimated.

To reweight GWAS summary data based on functional
annotation overlap, we used the -print option while in-
cluding multiple annotations in the model that were indi-
vidually enriched or depleted. We included islet active
TSS, active enhancer, quiescent and polycomb repressed
chromatin states, and Assay for Transposable-Accessible
Chromatin with high-throughput sequencing (ATAC-seq)
peaks with or without TCs.

Data and Resource Availability
We submitted islet CAGE data to the database of Geno-
types and Phenotypes (dbGaP) (phs001188.v2.p1) and
MPRA data to Gene Expression Omnibus (GEO)
(GSE137693). A UCSC Genome Browser session is avail-
able from https://genome.ucsc.edu/s/arushiv/cage_2021.
Scripts are shared on GitHub (https://github.com/
ParkerLab/islet_cage), and the processed data files are at
Zenodo (https://zenodo.org/record/3524578).

RESULTS

The CAGE Landscape in Human Pancreatic Islets
We performed CAGE in 71 human pancreatic islet total
RNA samples obtained from unrelated organ donors
(Supplementary Table 1). Selecting 57 high-quality sam-
ple`s, we identified a consensus set of 9,954 reproduc-
ible TCs (median length of 176 bp) (Supplementary Fig.
2 and Supplementary Table 2), spanning a total geno-
mic territory of �2.4 Mb. As a resource, Supplementary
Table 3 includes the islet TC identified to be the closest
to a known gene TSS (GENCODE Human Release 19
[GENCODE V19]) (33). To explore the chromatin land-
scape underlying islet TCs, we overlaid publicly
available chromatin immunoprecipitation sequencing
data for five histone modifications (Supplementary

Table 4) integrated into 11 distinct chromatin states
using ChromHMM (34) (Supplementary Fig. 3 and
Supplementary Information), along with bulk and sin-
gle nucleus ATAC-seq data in islets (10,12). Figure 1A
shows an example islet TC in the intronic region of the
ST18 gene that overlaps the islet active TSS chromatin
state and an ATAC-seq peak. Importantly, this region
does not overlap any annotated TSS on the basis of
conservative definitions from coding/noncoding/pseu-
dogene genes in both GENCODE V19, the official hg19
release, and GENCODE V33 lifted over to hg19
(V33lift37). The regulatory activity of this element was
validated by the VISTA Enhancer Browser in an in vivo
reporter assay in mouse embryos (35).

We next compared our islet CAGE data with FANTOM
CAGE data available for 118 human tissues (22). Islet TCs
showed the highest overlap with pancreas (Supplementary
Fig. 4). Approximately 20% of islet TCs were unique to
islets (N 5 1,974 with no overlap in any FANTOM tissue),
whereas �60% of islet TCs were shared across $60 FAN-
TOM tissues (Fig. 1B). With categorizing of islet TC seg-
ments by the number of FANTOM tissues in which they
overlap TCs (colored bars in Fig. 1B), islet-specific TCs (0
overlap with FANTOM) occurred farthest from known TSS
(Fig. 1C). We highlight an example locus where an islet TC
in the AP1G2 gene occurs in active TSS chromatin states
across multiple tissues and overlaps shared ATAC-seq
peaks in islet and the lymphoblastoid cell line GM12878
(36) (Fig. 1D, blue box). TCs across FANTOM tissues are
identified in this region (Fig. 1D, FANTOM TCs track). The
islet TC segment (Fig. 1D, blue box) overlaps TCs in 88
FANTOM tissues. Another islet TC �34 kb away, however,
occurs in a region lacking gene annotations and overlaps a
more islet-specific active enhancer chromatin state and
ATAC-seq peak (Fig. 1D, orange box). This region was not
identified as a TC in any of the 118 analyzed FANTOM tis-
sues. At other islet-relevant loci such as the potassium chan-
nel subfamily K gene KCNK16 TSS, we observe TCs in islets
but not in any other FANTOM tissues (Supplementary Fig. 5).
Collectively, these results highlight that CAGE profiling in
islets identifies islet-specific sites of transcription initiation,
including at TSS-distal enhancers.

We computed the enrichment of islet TCs in islet an-
notations such as chromatin states and ATAC-seq peaks
(identified in bulk islets and in islet a- and b-cells
[10,12]) and other “common” annotations including an-
notations aggregated across multiple cell types using
GAT (26). Islet TCs were highly enriched to overlap islet
active TSS chromatin states (fold enrichment 5 69.72,
P value 5 1e�04) (Fig. 1E and Supplementary Table 5),
as expected, since the transcription initiation sites
would likely resemble the “active TSS” chromatin state.
TCs identified in FANTOM tissues that also had
publicly available chromatin data (37) were also over-
whelmingly enriched to overlap active TSS chromatin
states in the corresponding tissue, which demonstrates
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how our protocol yielded CAGE profiles comparable
with existing data (Supplementary Fig. 6). Islet-specific
TCs were more enriched for islet active enhancer chro-
matin states (Supplementary Fig. 7). Islet TCs were en-
riched in bulk islet and islet a- and b-cell ATAC-seq
peaks (for all three annotations, fold enrichment
>37.58, P value 5 1e�04) (Fig. 1E), signifying that the
identified transcription initiation sites constitute
TF-accessible chromatin.

Aggregated CAGE signal over ATAC-seq narrow peak
summits highlighted a bidirectional pattern of transcrip-
tion initiation flanking the ATAC-seq peak summit (Fig.
2A). Conversely, anchoring in the islet TC centers showed
that the ATAC-seq signal summit lies upstream (relative
to CAGE strand) of the TC center (Fig. 2B). Islet TF foot-
print motifs (binding sites supported by islet ATAC-seq
data and TF DNA-binding motifs) (10) were more en-
riched to overlap the 500 bp TC upstream region

A B

D E

C

Figure 1—Islet CAGE TC identification. A: Genome browser view of the intronic region of the ST18 gene as an example locus where an is-
let TC overlaps an islet ATAC-seq peak and active TSS chromatin state. This TC also overlaps an enhancer element, which was validated
by the VISTA Enhancer Browser (35). Also shown is the human-mouse-rat conserved TF binding site (TFBS) track from the TRANSFAC
matrix database (51). B: Cumulative fraction of islet TC segments overlapping with TCs identified in X number of FANTOM tissues. C: Dis-
tribution of the log10(distance to the nearest known protein-coding gene TSS1 1 bp) with classification of islet TC segments by the num-
ber of FANTOM tissues where TCs overlap. Number of TC segments in each category is shown in parentheses. D: Genome browser view
of an example locus near the AP1G2 gene that highlights an islet TC (blue box) that is also identified in FANTOM tissues (FANTOM TCs
track is a dense depiction of TCs called across 118 human tissues), occurs in a ATAC-seq peak region in both islets and GM12878 (ATAC-
seq track), and overlaps active TSS chromatin states across numerous tissues. Another islet TC (orange box) �34 kb distal to the AP1G2
gene is not identified as a TC in other FANTOM tissues and occurs in an islet ATAC-seq peak and a more islet-specific active enhancer
chromatin state region. E: Enrichment of islet TCs to overlap islet chromatin state and other common annotations. Error bars represent the
95% CIs. Bonferroni correction accounted for 40 total annotations. HSMM, human skeletal muscle myoblasts; Huvec, Human umbilical
vein endothelial cells; mRNA-seq, mRNA sequencing; NHEK, normal human epidermal keratinocytes; UTR, untranslated region.
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compared with the 500 bp downstream region relative
to TCs (Fig. 2C and Supplementary Table 6). These ob-
servations show that, as expected, the region just up-
stream of the TC is highly accessible where more TF

binding events occur and indicate the high quality of
our islet TC map.

We next compared the characteristics of TCs that occur
in accessible regions of two main regulatory classes:

Figure 2—Integrating Islet CAGE TCs with other epigenomic information reveals characteristics of transcription initiation. A: Aggregate
CAGE profiles over ATAC-seq peak summits. B: Aggregate ATAC-seq profile over TC midpoints. C: Enrichment of TF footprint motifs to
overlap 500 bp upstream region (y-axis) vs. 500 bp downstream region (x-axis) of islet TCs. Colors denote whether a TF footprint motif
was significantly enriched (5% FDR correction, Benjamini-Yekutieli method) to overlap only upstream regions, only downstream regions,
both, or none. D: Chromatin state annotations across 98 Roadmap Epigenomics cell types (18-state “extended model”) (37) for TC seg-
ments that occur in islet promoter chromatin states (11-state model) and overlap ATAC-seq peaks. These segments were segregated into
those occurring 5 kb proximal (left) (N 5 7,064 TC segments) and distal (right) (N 5 443 TC segments) to known protein-coding gene TSS
(GENCODE V19). E: Chromatin state annotations across 98 Roadmap Epigenomics cell types (18-state extended model) for TC segments
that occur in islet enhancer chromatin states (11-state model) and overlap ATAC-seq peaks, segregated into those occurring 5 kb proxi-
mal (left) (N 5 254 TC segments) and distal (right) (N 5 289 TC segments) to known protein-coding gene TSS. Note that the heat map
widths in D and E are scaled to aid in interpretability. F: Enrichment of TF footprint motifs to overlap TCs occurring in accessible enhancer
chromatin states (y-axis) vs. TCs occurring in accessible promoter chromatin states (x-axis). Colors denote whether a TF footprint-motif
was significantly enriched (5% FDR correction, Benjamini-Yekutieli method) to overlap only TCs in accessible enhancer regions, only TCs
in accessible promoter regions, both, or none. G: Aggregate CAGE profiles centered and oriented relative to RFX5_known8 footprint mo-
tifs occurring in 5 kb TSS distal regions. H: Aggregate CAGE profiles centered and oriented relative to ELK4_1 footprint motifs.
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promoters and enhancers. We considered TCs in ATAC-
seq peaks in promoter (active, weak, or flanking TSS) ver-
sus enhancer (active, weak, or genic enhancer) chromatin
states either 5 kb proximal or distal from the nearest pro-
tein-coding genes (GENCODE V19). We then explored the
chromatin landscape at these regions across 98 Roadmap
Epigenomics cell types using the 18-state “extended
model” (37). TSS proximal islet TCs in accessible promot-
er states (N 5 7,064 segments) were nearly ubiquitously
identified as promoter states across Roadmap Epigenom-
ics cell types (Fig. 2D, left). A subset of TSS distal islet
TCs in accessible islet promoter states (N 5 443 seg-
ments) were more specific for pancreatic islets (Fig. 2D,
right). In contrast, islet TCs in accessible islet enhancer
states, both proximal (N 5 254 segments) and distal
(N 5 289 segments) to known gene TSS, more specifically
overlapped enhancer states in islets (Fig. 2E). Such specif-
icity was not observed for whole pancreas (Fig. 2D and E),
which highlights differences in the chromatin architecture
underlying islet TCs in islets versus pancreas.

Footprint motifs for the regulatory factor X (RFX) TF fami-
ly were enriched to overlap both enhancer and promoter
states; however, the fold enrichment in enhancers was
considerably higher in comparison with promoters (for five
different motifs: enhancer, >4.0-fold; promoter, 1.3- to 1.5-fold;
P value 5 1e�4) (Fig. 2F and Supplementary Table 7). TCs in
accessible promoter regions were highly enriched to overlap
footprint motifs of the E26 transformation-specific (ETS)
TF family (Fig. 2F). We observed divergent aggregate CAGE
profiles over TF footprint motifs enriched in enhancers, e.g.,
RFX5_known8 footprint motifs in 5 kb TSS distal regions
and ELK4_1 motifs (Fig. 2G and H). These results highlight
the characteristics of transcription initiation sites based on
the underlying chromatin context.

Experimental Validation of Transcribed Regions
We experimentally validated the enhancer activity of islet
CAGE-profiled regions. Self-transcribing active regulatory
region sequencing (STARR-seq) is an MPRA technique
where candidate elements are cloned downstream of the
core promoter into a reporter gene’s (e.g., GFP) 30-untranslated
region, and enhancer activity of the elements leads to reporter
mRNA transcription harboring the candidates’ sequences
(38–40). We generated a library of 7,188 candidate CAGE ele-
ments (198 bp each) and used a modified MPRA approach,
cloning the elements 30 to the GFP polyA signal and cloning a
random 16-bp bar code into the GFP 30 region so that each
candidate enhancer element is represented by multiple tran-
scribed barcodes. We transfected the MPRA libraries into the
rat b-cell insulinoma (INS1 832/13) cell line in triplicate, ex-
tracted DNA and RNA, and sequenced the bar codes as the re-
porter readout. After quality control procedures (Research
Design and Methods) we identified 3,378 quantifiable CAGE ele-
ments. We observed high correlations between the normalized
sum of RNA counts of the CAGE element bar codes across the
three biological replicates (Pearson r 5 0.97) (Supplementary

Fig. 8). We modeled the RNA and DNA bar code counts in
generalized linear models (Supplementary Table 8) and ob-
served that �68% (N 5 2,279) of the quantifiable CAGE ele-
ments showed significant enhancer activity (5% FDR) (Fig. 3A,
top), a large fraction of which occurred in promoter states (Fig.
3A, bottom). CAGE elements in promoter states showed higher
MPRA activity compared with the elements in enhancer states
(Wilcoxon rank sum test P5 1.02� 10�6) (Fig. 3B). CAGE el-
ements overlapping ATAC-seq peaks showed higher enhancer
activities than elements not in ATAC-seq peaks (Wilcoxon rank
sum test P 5 5.50 � 10�16) (Fig. 3C), and elements 5 kb
proximal to protein-coding gene TSS showed higher enhancer
activities then TSS distal elements (Wilcoxon rank sum test P
5 5.38� 10�9) (Fig. 3D). These results are consistent with re-
sults of a recent MPRA study in GM12878 (41).

We next aimed to identify the biological-relevant se-
quence-based features of active CAGE elements by model-
ing MPRA enhancer activity as a function of TF motif
instances using linear regression. Since many TF motifs
are correlated, we used the LASSO procedure, which
shrinks some regression coefficients to zero, resulting in a
simpler model. We modeled CAGE element MPRA z scores
on TF motif scores in the element (Fig. 3E and
Supplementary Table 9). TF motifs from the ETS family
showed positive LASSO coefficients, indicating that these
sequence elements are associated with high enhancer activ-
ity. These motifs were also enriched to occur in TCs in ac-
cessible promoter regions (Fig. 2F). NRF-1 motif showed a
positive coefficient; b-cell–specific Nrf1-knockout mice
have shown decreased glucose-stimulated insulin secretion
(42). TF motifs with negative LASSO coefficients such as
ZBTB16 and GZF1 have been shown to act as repressors
(43,44). In Fig. 3F, we highlight an islet TC overlapping an
islet ATAC-seq peak, active TSS, and enhancer states for
which we tested three tiled elements. All three elements
showed significant transcriptional activity in our assay (z
score >2.94, P values <0.001). Overall, there was a signifi-
cant positive correlation (Pearson r 5 0.64, P 5 1 � 10�9)
between TF motif LASSO coefficient and TF footprint mo-
tif enrichment in TCs, indicating a strong correspondence
between CAGE TC profiling and active enhancer activity
measured from the MPRA (Supplementary Fig. 9).

TCs Augment Functional Annotations in GWAS Fine
Mapping
We asked whether islet TCs supplement our understand-
ing of T2D GWAS (1) or islet eQTL (31). We classified ge-
nomic annotations as 1) chromatin states, 2) accessible
regions within the chromatin states, and 3) TCs in acces-
sible regions within the chromatin states. TCs in accessi-
ble enhancers were highly enriched for T2D GWAS loci,
with use of the Bayesian hierarchical model in fgwas (30)
(Fig. 4A, left, and Supplementary Table 10) and logistic
regression in GWAS analysis of regulatory or functional
information enrichment with LD correction (GARFIELD)
(45) (Supplementary Fig. 10). TCs in accessible enhancers
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were highly enriched to overlap islet eQTL (Fig. 4A, right)
but not eQTL in unrelated lymphoblastoid cell lines (32)
(Supplementary Fig. 11).

TCs showed higher conditional enrichment over en-
hancer states to broad and length-matched ATAC-seq
peaks (Fig. 4B and Supplementary Fig. 12) for T2D GWAS
and higher conditional enrichment over enhancer and
promoter states versus broad and length-matched

ATAC-seq peaks for islet eQTL (Fig. 4B and Supp-
lementary Fig. 12). Functional reweighting of T2D GWAS
(1) with islet chromatin states, ATAC-seq peaks, and TCs
in fgwas resulted in higher maximal SNP posterior
probability of association (PPA) at many loci compared with
maximal SNP PPAs from genetic fine mapping alone
(Supplementary Fig. 13), consistent with other studies (1,30).
Including TCs along with chromatin states and ATAC-seq

A B D

E F

C

Figure 3—Experimental validation of CAGE elements with MPRA. A: Top, number and fraction of CAGE elements that show significant
(5% FDR), nominal (P < 0.05), or nonsignificant transcriptional activity in the MPRA performed in rat b-cell insulinoma (INS1 832/13) cell
line model; bottom, proportion of CAGE elements overlapping promoter (active, weak, or flanking TSS), enhancer (active, weak, or genic
enhancer), or other chromatin states that showed significant transcriptional activity in the MPRA. B: MPRA activity z scores for CAGE ele-
ments overlapping in promoter, enhancer, or other chromatin states. C: MPRA activity z scores for CAGE elements that overlap ATAC-
seq peak vs. CAGE elements that do not overlap peaks. D: MPRA activity z scores for CAGE elements based on position relative to known
protein-coding gene TSS (5 kb TSS proximal or distal) E: Top, an overview of the LASSO regression model to predict the MPRA activity z
scores of CAGE elements as a function of the TF motif scan scores within the element; bottom, top 30 TF motifs with nonzero coefficients
from the model. F: An example locus on chr17, where the nearest gene, RPH3AL, lies �6 kb away, and an islet TC overlaps active TSS
and enhancer chromatin states and an ATAC-seq peak. Elements overlapping this TC showed significant transcriptional activity in the
MPRA. The CAGE profile coincides with an islet mRNA profile that is detected despite no known gene annotation in the region and despite
the fact that the nearest protein-coding gene is �6 kb away. Also shown are occurrences of TF motifs with positive or negative LASSO re-
gression cofficients from the analysis in E. mRNA-seq, mRNA sequencing.
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Figure 4—Islet TCs supplement functional understanding of GWAS and eQTL associations and help nominate causal variants. A: Enrich-
ment of T2D GWAS (left) or islet eQTL (right) loci in annotations that comprise different levels of epigenomic information, including chro-
matin state, ATAC-seq, and TCs. Annotations that we defined using combinations of these data sets are depicted with different colors on
the y-axis. Enrichment was calculated with fgwas (30) using summary statistics from GWAS (left) (1) or islet eQTL (right) (10). Error bars de-
note the 95% CI. Enhancers 5 active/weak/genic enhancer chromatin states, and promoters 5 active/weak/flanking TSS chromatin
states. Other islet annotations were obtained from 14. B: fgwas conditional enrichment analysis testing the contribution of islet TC or
ATAC-seq peak annotations after conditioning on histone-only based annotations such as active TSS and active enhancer chromatin
states in islets. C: Maximum (Max) SNP PPA per T2D (BMI-unadjusted) GWAS locus after functional reweighting using a model with islet
chromatin states and ATAC-seq peak annotations (x-axis) or chromatin states, ATAC-seq peaks, and TC annotations (y-axis). D: The
LCORL T2D GWAS locus showing SNPs in the 99% credible set from genetic fine mapping. This locus comprises genes DCAF16,
NCAPG, and LCORL. The lead GWAS SNP is labeled in red, along with LD r2 > 0.8 proxy SNPs in the top track. Also shown are CAGE,
TC, ATAC-seq, and chromatin state tracks. E: Browser shot of the DCAF16 and NCAPG promoter regions where rs7667864 and eQTL
lead SNP rs2074974 overlap an ATAC-seq peak. An overlapping CAGE element showed significant activity in the MPRA. Also shown are
TF motifs with positive or negative coefficients from the MPRA LASSO regression analysis.
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achieved higher maximal reweighted SNP PPAs than chroma-
tin state and ATAC-seq data, suggesting that TCs add valu-
able information in fine mapping (Fig. 4C and
Supplementary Table 11). We highlight one such GWAS lo-
cus named LCORL (lead SNP rs12640250, P value 5 3.7 �
10�8). The 99% genetic credible set at this locus includes
74 variants (1), with lead SNP rs12640250 PPA 5 0.15
(Supplementary Fig. 14A). Functional reweighting using is-
let TCs, chromatin states, and ATAC-seq peaks resulted in
44 SNPs in the 99% credible set, where rs7667864 (genetic
PPA 5 0.12, LD r2 0.97 with the lead GWAS SNP) ob-
tained the maximum reweighted PPA 5 0.62
(Supplementary Fig. 14B). This SNP overlaps an ATAC-seq
peak and a TC in islets (Fig. 4D and E). The eQTL lead SNP
rs2074974 (genetic PPA 5 0.026, LD r2 5 0.96 with lead
GWAS SNP) occurs upstream of the TC and overlaps the
ATAC-seq peak and obtained a reweighted PPA 5 0.096
(Fig. 4E). An element overlapping this TC showed signifi-
cant activity in our MPRA (z score 5 18.48, P value 5
1.56 � 10�76), and several TF motifs that showed positive
MPRA LASSO regression coefficients also occur in this re-
gion (Fig. 4E). These analyses demonstrate that transcrip-
tion initiation sites demarcate active regulatory elements
in islets, and this information can be useful in fine map-
ping and prioritizing GWAS variants.

DISCUSSION

Our work shows that islet CAGE TCs mark active, specific,
and relevant islet regulatory elements. A large proportion
of TCs overlapped the active TSS chromatin state. Using
an MPRA, we validated the enhancer activity of 2,279
CAGE elements. Our results show that sequences associat-
ed with native promoter chromatin landscapes can show
strong enhancer activity when cloned downstream of a re-
porter gene in an episomal MPRA paradigm.

Several ETS family footprint motifs were highly en-
riched in transcribed and accessible promoter regions,
and these motifs were also strong predictors of the ele-
ments’ activity in the MPRA. ETS family TFs are found
in all metazoans and contain the conserved ETS DNA-
binding domain and can recruit acetyl transferases or
deacetylases to modulate transcription (46). The regu-
latory potential of ETS motifs has been described
before in MPRAs (47). A previous islet eQTL study
demonstrated that for eQTL SNPs (eSNPs) occurring in
ETS footprint motifs, the preferred bases in the motifs
were significantly more often associated with increased
expression of the target gene (31). RFX footprint mo-
tifs were highly enriched to overlap transcribed and ac-
cessible enhancer regions. RFX TFs contain the X-box
DNA-binding motif and are involved in cellular special-
ization and terminal differentiation (48). T2D GWAS
risk alleles were previously shown to confluently dis-
rupt RFX footprint motifs (10). The concordance of
our findings with these orthogonal studies highlights
the robustness of our islet TC map.

A small fraction of TCs (0.4%) overlapped with the en-
hancer chromatin states. Since gene-distal transcripts are
more unstable, some enhancers may be actively tran-
scribed but fall below the limits of detection of CAGE. It
is plausible that CAGE profiling using total RNA from
whole islet preps, as we have performed, would comprise
more stable promoter-associated RNA transcripts and
have a lesser representation of weaker transcripts origi-
nating from enhancer regions. Recent technologies such
as native elongating transcript-cap analysis of gene ex-
pression (NET-CAGE) show promise in more efficiently
identifying more unstable transcripts from fixed tissues
(49). We note that CAGE-based enhancer calls represent
only the most transcriptionally active subset of enhancers
in the genome. The Roadmap Epigenomics Consortium
used DNase I hypersensitivity sequencing and histone
modification chromatin immunoprecipitation sequencing
to identify 2,328,936 enhancers across 127 cell types
(37), whereas the FANTOM5 Consortium in their exten-
sive catalog of CAGE enhancers identified 43,011 en-
hancers across 808 CAGE libraries (432 primary cell, 135
tissue, and 241 cell lines) (15). CAGE profiling therefore
has several advantages and limitations when compared
with other epigenomic modalities. While CAGE identifies
transcription initiation at bp resolution, the technique
can be limited to a subset of most active elements. Alter-
natively, integrating three-dimensional chromatin interac-
tion data with other epigenomic profiles can identify
active regulatory elements; however, the resolution is gen-
erally limited.

Previously, we showed that genetic variants in more cell
type–specific enhancer regions have lower effects on gene
expression than the variants occurring in more ubiquitous
promoter regions (31,50). This finding is consistent with our
observation that enhancer chromatin states comprised a
smaller proportion of active transcription initiation sites and
lower enhancer activities relative to promoter chromatin state
regions. The basal transcription initiation landscape could
change under stimulatory conditions where relevant en-
hancers help orchestrate a response.

Our work demonstrates that islet CAGE elements can
help GWAS fine mapping in addition to other relevant ep-
igenomic information such as chromatin states and chro-
matin accessibility. Identifying target genes remains a
challenging task where overlaying dense eQTL maps and
correlating transcription initiation in enhancers with gene
TSS while also leveraging chromatin conformation data
would be useful in future studies.
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