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Abstract

Three important wine parameters: vineyard, region, and vintage year, were evaluated using fifteen 

Vitis vinifera L. ‘Pinot noir’ wines derived from the same scion clone (Pinot noir 667). These 

wines were produced from two vintage years (2015 and 2016) and eight different regions along the 

Pacific Coast of the United States. We successfully improved the classification of the selected 

Pinot noir wines by combining an untargeted 1D 1H NMR analysis with a targeted peptide based 

differential sensing array. NMR spectroscopy was used to evaluate the chemical fingerprint of the 

wines, whereas the peptide-based sensing array is known to mimic the senses of taste, smell, and 

palate texture by characterizing the phenolic profile. Multivariate and univariate statistical analyses 

of the combined NMR and differential sensing array dataset classified the genetically identical 
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Pinot noir wines on the basis of distinctive signatures associated with the region of growth, 

vineyard, and vintage year.
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1. Introduction

The growth and cultivation of grapevines for wine production has been a time-honored 

tradition that dates back thousands of years (McGovern et al., 2017). Over the centuries, 

winegrowers have developed and refined the tools and techniques of their trade. Many 

agricultural products are grown in relatively narrow ranges of climatic and soil conditions 

for optimal yield. Grapevines are frequently cultivated under a broader range of growing 

conditions to affect flavor profiles and enhance the potential value of the final wine product. 

The process of wine production consists broadly of three major steps: grape berry growth, 

fermentation, and wine aging. Subtle differences in each of these steps contribute to the 

complexity of the products and impart a unique fingerprint to every wine.

The complexity of wine begins with the chemical composition of the fruit. Red wines are 

known for their complex palate texture, which is commonly attributed to polyphenolic 

compounds. Phenolics are oligomers of flavonoids and non-flavonoids found in the skin and 

seeds of grapes (Umali et al., 2011). Some of these compounds such as catechins and 

epicatechins are found abundantly in red grapes, and have been associated with the bitter 

taste and antioxidant properties of wines (Gougeon, da Costa, Guyon, & Richard, 2019). 

Phenolic compounds undergo chemical reactions during the berry development process and 

have been associated with markers of vintage age in red wine (Gougeon et al., 2019). The 

chemical profile of the final wine product and the resultant metabolite composition can be 

differentiated by viticultural practices and environment (Pereira et al., 2005). As with many 

agricultural products, the maturation of the fruit is a function of the climate during the 

growing season (Van Leeuwen & Seguin, 2006). Some red wine varieties such as Pinot noir 

are known to grow in cool regions, and early harvest dates are characteristic of these grape 

varieties. For this reason, delicate grape berries such as Pinot noir can be difficult to 

cultivate, especially in the warm California climate (Smith, 2003). Many vineyards have 

developed viticultural practices to protect the fruit and encourage healthy growth. However, 

year to year variation in the microclimate ultimately affects the composition of the product 

beyond the control of any cultivator (Smith, 2003).

Following berry development, the next step in wine production is the vinification process. 

Fermentation relies heavily on the overall health of the fruit and the presence of sugars and 

essential amino acids in the grapes (Baiano, Terracone, Longobardi, Ventrella, Agostiano, & 

Del Nobile, 2012). In addition to sugars, the accumulation of aroma and flavor metabolites 

or their precursors during fruit maturation enriches the final wine product. During wine 

fermentation these flavor compounds are released from the berry and undergo various 

chemical reactions that depend on the temperature and duration of the fermentation process 
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(Gougeon et al., 2019; Lee, Hwang, Berg, Lee, & Hong, 2009). Aging is the final step of 

wine production. The use of oak wood barrels has also been shown to affect the 

metabolomic composition of wines (Cassino, Tsolakis, Bonello, Gianotti, & Osella, 2019). 

A Previous study has shown that wine aging is characterized by a decrease in organic 

compounds such as lactic acid and succinic acid with an associated increase in esters 

(Cassino et al., 2019). Barrel aging further amplifies the aromatic flavors that are highly 

specific to the age and quality of the barrel product (Dumitriu, Peinado, Cotea, & López de 

Lerma, 2020; Herrera et al., 2020). Overall, the process of winegrowing, from berry growth 

to wine aging, produces a unique fingerprint that is characteristic of each vineyard’s wine 

production process, geographic environment, and yearly microclimate.

Due to the economic and cultural value associated with wine, fingerprints of wine have been 

extensively studied. Both biological and chemical analytical techniques have been used. 

These techniques have varied from sequencing technologies (Bokulich, Thorngate, 

Richardson, & Mills, 2014; Gilbert, van der Lelie, & Zarraonaindia, 2014) to nuclear 

magnetic resonance (NMR) spectroscopy (Amargianitaki & Spyros, 2017; Cassino et al., 

2019; Herrera et al., 2020). By suppressing the most abundant solvents (water and ethanol), 

one-dimensional (1D) 1H NMR affords the ability to characterize and quantify numerous 

wine components with minimal pretreatment or alteration of the wine sample. Metabolomics 

studies have used a combination of quantitative untargeted NMR data with chemometrics to 

distinguish wines based on grape varieties (Gougeon et al., 2019), region of growth 

(Godelmann et al., 2013; Gougeon et al., 2019), effects of vintage year (Cassino et al., 2019; 

Lee et al., 2009), and vinification approach (Baiano et al., 2012).

Multivariate statistical techniques such as principal component analysis (PCA) and partial 

least squares-discriminant analysis (PLS-DA) are routinely utilized to classify wine by 

differentiating the samples based on their chemical profile (Godelmann et al., 2013; 

Gougeon et al., 2019; Grainger, Yeh, Byer, Hjelmeland, Lima, & Runnebaum, 2021). 

Conversely, univariate techniques utilize a subset of spectral features or metabolites to 

discriminate samples and classify group membership. Techniques such as random forest 

(RF) and receiver operating characteristic (ROC) curves have also been utilized to classify 

wine according to grape varieties by using NMR and mass spectrometry (MS) analytical 

techniques (Gómez-Meire, Campos, Falqué, Díaz, & Fdez-Riverola, 2014; Mascellani, 

Hoca, Babisz, Krska, Kloucek, & Havlik, 2021). Univariate techniques such as RF allow 

high-classification performance while minimizing the risk of over-fitting the data 

(Mascellani et al., 2021). Please see (Fan, Upadhye, & Worster, 2006; Lo, Rensi, Torng, & 

Altman, 2018; Worley & Powers, 2013) for a review of multivariate and univariate statistical 

techniques.

In addition to traditional analytical techniques, the differential sensing (DS) approach 

(Joydev Hatai, 2020; Patwardhan, Cai, Newson, & Hargrove, 2019) has become a powerful 

alternative method to detect and distinguish a variety of small molecules (Diehl, Ivy, 

Rabidoux, Petry, Müller, & Anslyn, 2015; Li, Zamora-Olivares, Diehl, Tian, & Anslyn, 

2017) and biomolecules (Zamora-Olivares, Kaoud, Jose, Ellington, Dalby, & Anslyn, 2014; 

Zamora-Olivares et al., 2020) in complex biological samples. Polymeric materials have been 

particularly successful in the DS of a variety of beverages (Bender, Bojanowski, Seehafer, & 
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Bunz, 2018; Huang, Seehafer, & Bunz, 2019; Wang et al., 2018). For wine, the DS 

technique mimics the senses of taste, smell, and palate texture. This technique utilizes a 

variety of cross-reactive receptors that display different binding affinities for multiple target 

molecules (Umali & Anslyn, 2010). The DS method has been successfully employed to 

classify wine varietals (Umali et al., 2011), wine blends (Ghanem et al., 2015), and to 

differentiate harvest decisions (Umali et al., 2015) on the basis of phenolic composition and 

distribution. The peptide-based sensors are ensembles of histidine-rich peptides bound to 

divalent metals and colorimetric indicators (Table S1) containing a catechol moiety. The 

peptide ensemble variably binds to phenolics, including polyphenolics (i.e., tannins), to 

create a targeted fingerprint for each wine sample (Nguyen & Anslyn, 2006). The 

colorimetric indicators are displaced from the peptide ensembles upon phenol binding and 

the color changes are quantified by UV-Vis spectroscopy. The resulting dataset of color 

changes are then analyzed as a composite pattern using chemometric routines such as PCA 

or linear discriminant analysis (LDA) (Stewart, Ivy, & Anslyn, 2014).

The efficient and relatively simple readout of a targeted DS array is distinct and 

complementary to an untargeted approach offered by 1D 1H NMR spectroscopy. Thus, the 

combination of untargeted and targeted techniques was expected to improve the analysis and 

classification of wine and provide results that neither method can efficiently achieve 

independently (Figure 1). Such analyses are crucial when attempting to capture subtle 

variations uniquely imparted by growing site and year to year growing conditions. Few 

studies have evaluated the advantages of combining NMR or mass spectrometry techniques 

with a targeted DS array. Thus, we hypothesize that the combination of these two analytical 

techniques will improve the classification of Pinot noir wines grown from fifteen vineyards, 

from eight distinct American Vitcultural Areas (AVAs) along the United States Pacific 

Coast, and for two vintage years (2015 and 2016). The Pinot noir wines were classified with 

a very high accuracy according to vineyard, regions, and vintage by combining 1D 1H-NMR 

spectroscopy with DS arrays. This was achieved by using multivariate PCA models and 

univariate statistical modeling based on RF and ROC analyses. Variability attributed to 

fermentation and aging steps was minimized by using identical fermentation and aging 

protocols in stainless steel vessels. Quantifying differences that could be attributed to the 

growing site or conditions is of upmost importance considering the anticipated changes in 

microclimates and water availability over the upcoming decades due to climate change 

(Hannah et al., 2013).

2. Materials and Methods

2.1 Vineyard Sites.

Wine grapes (Vitis vinifera L. ‘Pinot noir’ clone 667) from fifteen different vineyard sites 

along the Pacific Coast of the United States were harvested at a sugar concentration as close 

as possible to 24 Brix (determined by measuring with a density meter, Anton Paar 35 DMA) 

between 13 August to 15 September 2015 and between 25 August to 21 September 2016. 

Eight AVAs, which span a latitudinal distance of approximately 1450 km, are represented in 

this study: Santa Rita Hills (SRH), Santa Maria Valley (SMV), Arroyo Seco (AS), Carneros 
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(CRN), Sonoma Coast (SNC), Russian River Valley (RRV), Anderson Valley (AV), and 

Willamette Valley (OR).

2.2 Winemaking.

Grapes were fermented in 200 L stainless steel fermentors at the UC Davis Teaching & 

Research Winery (Davis, CA). Primary fermentation was initiated by inoculating with 

Lalvin RC212 (Lallemand) after warming the must to 21°C. The fermentation temperature 

was held a 21°C for two days after inoculation, and subsequently allowed to rise to 27 °C, 

where it was held for the remainder of the primary fermentation. Wine was pressed off the 

red grape skins by using a basket press on the ninth day after grapes were placed into the 

fermentor. Wines were inoculated with Lalvin VP41 (Lallemand) for malolactic 

fermentation. Upon completion as measured by conversion of malic acid, the product was 

stored in stainless steel kegs. Wines were bottled under screw-cap closures approximately 

six months after harvest. Additional fermentation and winemaking details are available as 

previously reported (Grainger et al., 2021).

2.3 Differential Sensing Method.

The indicators Chrome Azurol S (CAS) (purity 65%), Bromopyrogagllol Red (BPR), and 

Pyrocatechol Violet (PCV) (purity 100%) were purchased from Sigma-Aldrich (Saint Louis, 

MO). Nickel chloride hexahydrate (purity 99.7%), copper (II) sulfate (purity 99.2%), and 

HEPES buffer were purchased from Fisher Scientific (Hampton, NH). Solid phase peptide 

synthesis reagents were purchased from P3 BioSystems (Louisville, KY). Peptides were 

synthesized using standard solid-phase peptide synthesis and a CEM Liberty Blue 

Automated Microwave Synthesizer (Matthews, NC, USA). Absorbance values were 

recorded using a Spectra Max Plus 384 plate reader (Molecular Device Inc.).

2.4 Peptide Array and Processing.

A library of nine peptide-based sensors (MM1–MM9) were used for the construction of the 

DS array. Each sensor was assembled using a histidine peptide, a divalent metal, and a 

colorimetric indicator. Three different Histidine-containing peptides, WAHEDEFF (TT2), 

FHFPHHF (SEL1), and WEEHEE (RN8), were used to construct the peptide-metal-

indicator ensembles with the corresponding binding ratios shown in Table S1, as previously 

reported (Umali et al., 2011). Peptides were combined with a metal ion and one of the 

following indicators: PCV, CAS, and BPR. The imidazole side chain on the peptides chelate 

the divalent metal ions, and these metals also bind to the colorimetric indicators (Figure 1). 

Upon addition of the wine to the peptide sensors, the indicators become displaced from the 

ensembles producing color changes as differential optical responses due to the polyphenols 

present in the wine, in the manner previously reported in detail (Umali et al., 2011). Arrays 

were prepared in Fisher Scientific non-treated 96-well plates with flat bottom and clear 

polystyrene. Final well-plate solutions of peptide ensembles and wine concentration of 1% 

(v/v) were prepared using 50 mM HEPES in ethanol (1:1 (v/v), pH = 7.4). Absorbance 

endpoint-values due to the displacement of each indicator by the phenolics were measured at 

430 nm, 444 nm, and 560 nm corresponding to the λmax of free CAS, PCV, and BPR, 

respectively. Eight analytical replicates were used for each of the fifteen wines to ensure 
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reproducibility. Controls consisted of a column of wine alone and a column of the ensemble 

alone in each plate.

2.5 Sensing Array Batch Correction.

Systematic data variation can arise from known and unknown sources, such as instrument 

differences, personnel changes, and environmental variation between batches. Such 

variations are observed in many biological assays (Chakraborty, 2019; Worley & Powers, 

2014). Due to the prevalence of batch effects in analytical data, statistical techniques such as 

PLS have been used as a primary tool to monitor and correct for batch effects when real-

time quality measurements are unavailable (Fonville et al., 2010; Nomikos & MacGregor, 

1995). In this model, a PLS analysis was used to correct for the variable separation between 

the two vintage years.

2.6 NMR Sample Preparation.

For each of the fifteen wine samples, eight analytical replicate NMR samples were created. 

Each sample was prepared by adding 150 μL of wine to 15 μL of 50 mM phosphate buffer 

prepared in D2O at pH 7.2 (uncorrected). Deuterated sodium-3-trimethylsilypropoinate 

(TMSP, 50 μM) was used as an internal chemical shift standard.

2.7 NMR Data Collection and Processing.

The NMR experiments were collected on a Bruker AVANCE III 700 MHz spectrometer 

equipped with a 5 mm quadrupole resonance QCI-P cryoprobe™ (1H, 13C, 15N and 31P) 

with a 2H lock and decoupling. A SampleJet automated sample changer with Bruker ICON-

NMR™ software was used to automate data collection. 1D 1H NOESY experiments with a 

presaturation pulse were collected for each sample by using a Bruker automation program, 

Multisupp, to suppress the multiple solvent peaks from water and ethanol. 1D 1H NMR 

spectra were collected with 65K points, a spectral width of 14705 Hz, 128 scans, 4 dummy 

scans, and 4s relaxation delay. 1D 1H NMR spectra were batch processed and analyzed 

using the NMR metabolomics toolbox, MVAPACK (Worley et al., 2014). The 1D 1H NMR 

spectra were Fourier transformed, auto phased with manual phase adjustment as needed, and 

TMSP was referenced to 0 ppm. Regions of the spectra containing water and ethanol peaks 

were removed.

2.8 Multivariate Data Analyses.

The 1D 1H NMR spectra were normalized using probabilistic quotient (PQ) normalization 

and Pareto scaled. The full resolution NMR spectroscopy dataset was then used to create 

PCA models and dendrograms based on the Mahalanobis distance between each group 

(Worley, Halouska, & Powers, 2013). Each dendrogram node is labeled with a p-value 

indicating the statistical significance of the group separation. DS array data was first batch 

corrected using a PLSfit correction. The resulting data matrix was Pareto scaled and then 

used to generate PCA models and dendrograms. The NMR spectroscopy and DS array 

datasets were also combined with equal contributions of each block (i.e., dataset) to generate 

multiblock principle component analysis (MB-PCA) models and dendrogram 

representations (Marshall et al., 2015). PCA models with four components were used to 
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create linear discriminant analysis (PCA-LDA) models (Worley, Halouska, et al., 2013). 

Models were separately generated for the vineyard data, AVA region data, and vintage years.

2.9 Univariate Analyses.

To carry out univariate analyses, adaptively binned data of the 1D 1H NMR datasets were 

exported from MVAPACK (Worley & Powers, 2015). DS array data and NMR bins were 

then combined to create a complete data matrix. The subsequent data analysis was 

performed in MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) (Xia, Sinelnikov, Han, & 

Wishart, 2015). Multivariate ROC curves were obtained for two-group comparisons between 

each wine and all other groups of wine. The two-group comparison was repeated for the 

AVA regions. ROC curves were generated using Monte-Carlo cross validation (MCCV) with 

balanced subsampling. Each MCCV utilized two-thirds of the samples as the training subset, 

while the remaining one-third was reserved for the testing subset. The dataset was Pareto 

scaled and the ROC curves were generated using a support vector machine algorithm. The 

RF algorithm in MetaboAnalyst 4.0, randomForest package (Liaw & Wiener, 2002), was 

utilized to classify the Pinot noir wines according to vineyard, region, and year. The RF 

algorithm used an ensemble of 500 decision trees. Each decision tree was grown through 

random feature selection (maximum of 7 predictors) using a bootstrap sample at each 

branch. Classification was assigned by majority vote within the ensemble. Two-thirds of the 

samples was used to construct the training subset, while one-third was reserved for the 

testing subset.

2.10. Univariate Analysis of ROC Feature Frequency Selection.

The top features from all vineyard and AVA region ROC curves were cataloged into a 

frequency map according to the number of times each feature (DS array or NMR) was 

selected by the ROC curve analysis. A total of 101 unique NMR features (from 210 

available features) were selected a total of 571 times. In the same ROC analysis, 27 unique 

DS array features (from 27 available features) were selected a total of 229 times. NMR 

chemical shift features were binned using a 0.1 ppm bin width. The most frequently selected 

NMR features for vineyard (≥ 10) and AVA region (≥ 8) were utilized to putatively assign 

group-differentiating metabolites. Putative metabolite assignments were based on a set of 

previously published 1D 1H NMR spectra for 55 known wine metabolites (Gougeon et al., 

2019; Hu, Cao, Zhu, Xu, & Wu, 2019; Hu, Gao, Xu, Zhu, Fan, & Zhou, 2020; Mascellani et 

al., 2021). Assignments were based on consistency with known chemical shifts and coupling 

patterns. A chemical shift error of 0.1 ppm was used to account for chemical shift variability 

due to differences in pH, ethanol concentrations, and chemical compositions between the 

wines and reference 1D 1H NMR spectra. A similar protocol was used to annotate the single 

ROC curve comparison of the 2015 and 2016 vintage years. A catalog of feature usage was 

omitted from the ROC curve analysis of vintage since only one comparison was possible.
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3. Results and Discussion

3.1 Combining multiple analytical techniques to classify the vintage, vineyard, and the 
region of Pinot noir wines.

As shown in Figure 1, two complementary techniques were utilized to classify Pinot noir 

wines derived from the same scion clone (Pinot noir 667). In this regard, an expanded view 

of the chemical composition of each wine sample could be obtained by combining an 

untargeted NMR approach with a targeted DS array. The same level of coverage would not 

be possible with only one of these analytical techniques because they each detect a different 

set of metabolites. A 1D 1H NMR spectrum was acquired for each wine sample to provide a 

global chemical profile or metabolic fingerprint. Each peak in the NMR spectrum identifies 

a particular metabolite, where its relative abundance is indicated by the peak intensity. Thus, 

each 1D 1H NMR spectrum will vary as the chemical composition of the wine changes. 

Nonetheless, NMR will only detect the most abundant (> 1 μM) metabolites, so it does not 

provide a complete picture of the overall chemistry. A DS array was also obtained for each 

wine sample. In contrast to the NMR data, the DS array was applied to classify only the 

phenolic composition of each wine sample. An array of nine sensing ensembles (Table S1) 

was used to identify the unique phenolic profile through the displacement of colorimetric 

indicators. The NMR spectroscopy and DS array datasets were then subjected to multivariate 

and univariate statistical analysis. Chemometric analysis was used to identify dataset 

features that characterized significant differences between the wines (Figure 2) grown in 

fifteen different vineyard sites, eight distinct AVAs, and two vintage years (2015 and 2016).

3.2 Multivariate analysis highlights unique vineyard and vintage classification.

While all Pinot noir grapes share the same genetic ancestors, the age of the vine and 

environmental influences lead to vine evolution that plays an important role in the structure 

of the resulting wine (Smith, 2003). PCA was used to capture maximal group differences in 

Pinot noir wines from both the NMR and DS array multivariate datasets. For the purpose of 

analysis, individual PCA models and dendrograms were created for the NMR spectroscopy 

and DS array data, as well as both the 2015 and 2016 vintage data. The NMR and DS array 

datasets were then combined with equal contribution to create MB-PCA models, which 

generated a unified model that captured the maximum variation between the groups and 

identified the key group-differentiating variables.

Throughout the creation of these PCA and MB-PCA models, specifically with the NMR 

spectroscopy datasets, it was difficult to display the maximal separation between groups in a 

two-dimensional (2D) PCA scores plot. The data encompassed more information and 

complexity than could be explained by two components. Some NMR PCA models required 

upwards of twelve components. Thus, PCA-LDA models were generated using four 

components of the respective PCA or MB-PCA models to capture the maximal separation 

within the model (Figures 3 and S1A, B). This was not a concern for the DS array dataset 

where a 2D PCA scores plot (Figures S1C, D) was sufficient to display group variation. The 

resulting PCA-LDA scores plots (Figure 3A and 3B) successfully demonstrated that the 

classification of Pinot Noir wines produced from an identical Pinot noir clone grown in 

different geographic regions along the Pacific Coast can be uniquely classified. The 
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corresponding dendrograms display the relative similarity and/or differences between the 

individual wines with a p-value assigned to each node indicating the statistical significance 

of these differences.

Several conclusions may be drawn from the analysis of the PCA and PCA-LDA scores plots 

and dendrograms based on the analysis of vineyard classification. First, the PCA-LDA 

scores plots and dendrograms showed significant differences between the 2015 and 2016 

vintage years (Figure 3). The relative clustering in the 2015 and 2016 dendrograms are 

essentially unique. For example, OR2 is the most unique wine in 2015 (furthest distance 

from any other wine as shown in Figure 3A), while OR2 clusters close to SRH1 in 2016 

(Figure 3B). AS2 showed maximal separation in 2016 while this vineyard clustered close to 

SMV2 and SRH1 in 2015. Conversely, the wine pairs OR1-CRN1 (p-value 0.08) and AV1-

AS1 (p-value 0.45) are not statistically distinct in 2015, but they are distinct in 2016 with p-

values of 1.01 × 10−4 and 1.37 × 10−11, respectively (Table S3). Conversely, RRV1-AS1 (p-

value 0.02) are not statistically distinct in 2016 but are distinct in 2015 (p-value 4.93 × 10−5 

Table S2). A similar level of unique clustering occurs when comparing the NMR LDA-PCA 

(Figure S1A, B), DS array PCA (Figure S1C, D) and the LDA-MB-PCA (Figure 3) scores 

plots. These results are consistent with the fact that NMR and DS array capture different 

chemical features, and these chemical features have different group discriminations. NMR 

spectroscopy captures a large breadth of information through an untargeted approach and 

exhibits small within group variation and larger between group variation. Conversely, the DS 

array specifically targets the phenolic profile, which has limited discrimination and leads to 

a larger within group variation. As expected, the LDA-MB-PCA is a hybrid of the NMR and 

DS array models. Now, while the within group variance increases from the NMR LDA-PCA 

to the LDA-MB-PCA models, both techniques show distinct areas of separation and 

contribute different features that aid in the overall separation of the wines by vineyard. This 

is further evident from the univariate analysis shown below.

3.3 Multivariate analysis of regions highlights the complex nature of geographic location 
and vineyard practices.

In an effort to further demonstrate the applicability of the combined analytical techniques, 

the classification of eight AVA regions was evaluated by multivariate analysis. While 

classification of wines according to individual vineyard sites showed distinct clustering in 

the PCA and PCA-LDA scores plots (Figure 3), wine classification according to AVA region 

proved to be more nuanced (Figure 4). Vineyard sites such as those within the RRV AVA 

showed clustering of two wines, RRV1 and RRV3, while the third wine, RRV2, exhibited a 

distinct signature across both the 2015 and 2016 vintage years. The sub-clustering within 

this region prevented a multivariate analysis for both the NMR spectroscopy and DS array 

datasets. Alternatively, valid models with sufficient group separation by region were 

generated upon the removal of RRV2 from the PCA and PCA-LDA models. The four most 

significant components of the PCA models were used to generate PCA-LDA models for 

both the 2015 (Figure 4A) and 2016 (Figure 4B) NMR spectroscopy datasets. PCA models 

were also generated for the DS array 2015 (Figure S2A) and 2016 datasets (Figure S2B). A 

valid MB-PCA model could not be generated from the combined 2015 or 2016 region 

datasets. While the DS array data was a good predictor of vineyard signature, small 
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variations observed in the region DS array datasets hindered our ability to generate valid 

multiblock models with the combined NMR spectroscopy and DS array datasets. This result 

suggests that the phenolic profile alone may not be sufficient to differentiate most of the 

AVA regions.

The PCA-LDA scores plot and the associated dendrograms for the NMR spectroscopy 

dataset exhibited good group separation between the eight AVA regions (Figure 4). In fact, 

several p-values within the dendrogram nodes are zero, which indicates that the region 

classification is better than the vineyard classification seen in Figure 3. Of course, it is 

inherently easier to separate eight groups compared to fifteen groups. It is important to note 

that a closer examination of the individual group clustering indicates some within group sub-

clustering. This is particularly noticeable for the SNC and AS regions in 2015 and the SMV 

region in 2016. This sub-clustering may suggest that group membership within a given AVA 

region is not uniformly defined by a unique chemical signature.

Similar to the vineyards, the AVA region analysis showed a unique clustering pattern 

between the 2015 and 2016 vintages. Likewise, the dendrograms presented a distinct set of 

nearest neighbors. For example, RRV was the most unique AVA region in 2015, but RRV 

clustered near SNC and CRN in 2016. Conversely, AS was the most unique AVA region in 

2016, but it clustered closer to SMV in 2015. Overall, the Pinot noir wine clustering using 

the combined NMR spectroscopy and DS array dataset contained a stronger metabolic 

signature for the individual vineyard than for the geographic location of growth. 

Nevertheless, a classification-based AVA region was still achieved.

3.4 Univariate analyses demonstrate an improved wine classification through a 
combination of analytical techniques.

In addition to multivariate analysis, univariate analyses were used to determine specific 

features from the NMR spectroscopy and DS array datasets that could be used to distinguish 

Pinot noir wines by vineyard or region. Univariate analysis was carried out with 1D 1H-

NMR binned data and raw DS array data. Specifically, NMR features corresponded to a 

given ppm bin, whereas DS array features attributed the absorbance (λmax 430 nm, 444 nm, 

or 560 nm) of a particular peptide sensor (MM1–MM9, Table S1). RF analysis was used to 

establish the classification accuracy of the Pinot noir wines across vineyard and region. As 

shown in Table 1, the vineyard classification accuracy for the NMR spectroscopy or DS 

array datasets was high with an average value of 0.94 ± 0.10 and 0.88 ± 0.13, respectively. 

The classification accuracy ranges from 0 to 1, where a value of 1 indicates a perfect 

classification. The vineyard classification accuracy for the combined NMR spectroscopy and 

DS array dataset exceeded the individual results and reached an average of 0.98 ± 0.05 with 

p-values < 0.05 when compared to the results from the individual techniques. There were no 

notable differences in vineyard classification accuracy between the 2015 and 2016 vintages. 

Interestingly, the performance of the individual analytical techniques varied between the two 

vintages. The NMR spectroscopy dataset had a higher vineyard classification accuracy for 

2016 (0.98 ± 0.05) compared to 2015 (0.90 ± 0.12). The opposite was observed for the DS 

array dataset where the 2015 dataset (0.92 ± 0.08) was better than the 2016 dataset (0.80 ± 

0.15).
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A similar level of classification success was achieved using the AVA regions (Table 1). The 

AVA region classification accuracy for the NMR spectroscopy and DS array datasets was 

similarly high with an average value of 0.94 ± 0.10 and 0.82 ± 0.13, respectively. The AVA 

region classification accuracy for the combined NMR spectroscopy and DS array datasets 

equaled or exceeded the individual results. The AVA region classification accuracy reached 

an average of 0.98 ± 0.04. While the improvement was statistically significant relative to the 

DS array dataset (p-value 0.0002), it was not significant when compared to the NMR 

spectroscopy dataset (p-value 0.15). This is in part due to the limited AVA region variance 

(attributed to the DS array data described earlier). Overall, the NMR spectroscopy dataset 

showed a greater ability to distinguish the nuances of AVA regions. Nevertheless, there were 

specific situations where the classification accuracy was low when only the NMR 

spectroscopy or the DS array dataset was used independently, but the accuracy improved 

significantly for the combined dataset. For example, in the case of the 2015 SRH region, 

both the NMR spectroscopy and DS array datasets alone were only capable of accurately 

classifying 63% of the wine samples. Specifically, only five of the eight wine samples were 

correctly classified as SRH. Conversely, the combined NMR spectroscopy and DS array data 

improved the classification accuracy to 88%, in which seven out of the eight wine samples 

were correctly classified as SRH. Overall, the combination of analytical techniques 

improved the classification accuracy for both vineyards and AVA regions.

ROC curves were also generated to advance our understanding of the metabolic fingerprint 

that defined Pinot noir wines derived from grapes grown along the Pacific Coast. ROC 

curves were utilized to further evaluate the performance of the NMR spectroscopy and DS 

array datasets, and to identify unique features that distinguished vineyards and AVA regions. 

ROC curves compare the true positive rate (1-specificity) with the false positive rate 

(sensitivity) where the AUC provides a measure of model performance and accuracy (Fan et 

al., 2006). AUC typically ranges from 0.5 to 1, where 1 indicates perfection and 0.5 

identifies a random outcome. For each model, the ROC curve with the fewest number of 

features and the highest AUC was chosen. Representative ROC curves for vineyard SNC2 

and the associated feature list are shown in Figure S3. ROC curves were only generated from 

the combined NMR spectroscopy and DS array dataset. Table 1 summarizes the AUC for 

each ROC curve for the vineyards, AVA regions and vintages. An average AUC of 0.96 ± 

0.04 was observed for both the vineyard and AVA regions. Likewise, the ROC curves 

indicate that a high classification accuracy was obtained by combining the NMR 

spectroscopy and DS array datasets.

The ratio of NMR and DS array features used to generate the ROC curves was also 

evaluated. Table 1 lists the NMR spectroscopy and DS array percent contribution to both the 

model and to the total number of available features. Notably, a variable amount of NMR and 

DS array features was used to define each individual ROC curve. For example, vineyards 

SNC2 2015 showed an AUC of 0.99 with a 20:80 ratio of NMR to DS array features. 

Interestingly, the ROC curve for the 2016 vintage exhibited a similar AUC of 0.96, but the 

relative feature contributions changed to an 80:20 ratio of NMR spectroscopy to DS array 

features (Figure S3). The consistently high AUC values for both vineyard and region 

indicated that the combined NMR spectroscopy and DS array data contained distinct 

features for all fifteen wines and eight regions. These features may be used to separate each 
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vineyard and region from the entire collection of Pinot noir wines. There were a few 

circumstances where all features were selected from a single dataset (i.e., NMR). These 

instances corresponded to vineyards AS2 2015, RRV1 2016, and OR2 2016; and AVA 

regions RRV 2016 and AV 2016. Notably, the lower contribution of DS array features to the 

2015 and 2016 AVA regions was consistent with the multivariate analysis as described 

above.

ROC curves were also used to identify DS array and NMR spectroscopy features that were 

frequently utilized to distinguish Pinot noir wines by vineyard or AVA region (Figure 5). The 

top features selected from the ROC curve analysis of the combined NMR spectroscopy and 

DS array dataset for the 2015 SNC2 vineyard are shown in Figure 5A. The ROC feature 

selection plot in Figure 5A identifies the specific NMR bins (i.e., ppm) and peptide sensors 

(i.e., MM1–MM9) that differentiated the 2015 SNC2 vineyard from the remaining 

vineyards. The plot also identified the relative directional change in the features and how 

often each feature was selected to differentiated between the vineyards. A similar analysis 

was completed for each AVA region, where a representative plot of the top features is shown 

in Figure 5B for the 2015 SNC AVA region.

The top selected features from all ROC curve analyses were cataloged and the usage-

frequency between vineyards and AVA regions are plotted in Figures 5C and 5D, 

respectively. Notably, the DS feature selection rate was relatively consistent across the nine 

sensors, which suggests an equal contribution of phenols to the group classification. 

Conversely, the selection rate of the NMR features was highly variable, which suggests 

certain metabolites were preferred discriminators of the Pinot noir wines. Thus, the high-

usage NMR features were assigned to potential metabolites or chemical classes using a set 

of reference 1D 1H NMR spectra of known wine metabolites. Specifically, 55 metabolites 

were previously identified from four prior NMR metabolomics studies of similar wines 

(Gougeon et al., 2019; Hu et al., 2019; Hu et al., 2020; Mascellani et al., 2021). Figures 5C 

and 5D depicts several metabolite classes and putative metabolite assignments that may 

preferentially classify Pinot noir wines according to vineyard or AVA region, respectively. 

Our analysis suggests that metabolites such as branched-chain amino acids, sugar alcohols 

including ethyl alcohols and phenyl alcohols, derivatives of the tricarboxylic acid cycle 

(TCA) such as malic acid and citric acid, sugars including fructose, and aromatic amino 

acids may play an important role in classifying Pinot noir wines across the Pacific Coast of 

the United States. It is important to note that the primary purpose of our study was to 

demonstrate the value of combining NMR and DS array features to classify and differentiate 

Pinot noir wines based on vineyard, region, and vintage. Assigning a metabolite to each of 

the group-defining features was not our original intent. As a result, the accuracy of the 

subsequent metabolite identification was greatly hindered by solely relying on 1D 1H NMR 

spectra and, importantly, by the limited availability of data resources consisting of reference 

NMR spectra specific to the wines and geographic locations used in this study. Accordingly, 

only the 55 known wine metabolites were used to assign the NMR frequency plots in 

Figures 5C and 5D. The remaining unassigned NMR bins correspond to currently unknown 

or unverified wine metabolites.
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The ROC curves further supported the observation that the 2015 and 2016 vintage years 

exhibited distinct features that were independent of vineyard and AVA region. This was 

evident by the variable number of NMR spectroscopy and DS array features contributing to 

each pair of 2015/2016 vineyard or AVA region model (Figure S3 and Table 1). The 

univariate analyses (RF and ROC) clearly highlighted the value and importance of 

combining multiple analytical techniques to identify distinct regions of the metabolic 

fingerprint. In addition to the improved accuracy of predicting vineyard or AVA region 

membership, the univariate analyses corroborate that different combinations of features were 

required to accurately classify each vineyard or AVA region.

3.5 Vintage year analysis highlights the effects of microclimate on both vineyard and 
region classification.

Along with vineyard and AVA region classification, vintage year was also evaluated for a 

metabolic fingerprint that contributed to distinguishing the various Pinot noir wines. As our 

results indicate, we have found that the AVA region, and more importantly, the specific 

vineyard site, can significantly impact the metabolic fingerprint of the Pinot noir wines. It is 

evident from the PCA (and PCA-LDA) models (Figure 3 and Figure 4) that significant 

differences are present between the 2015 and 2016 vintages. The dendrograms show no 

consistent clustering patterns between the two vintage datasets. All attempts to create a 

unified multivariate model with the combined datasets proved ineffective. A detailed RF 

analysis of the entire 2015 and 2016 wine dataset further illustrated the uniqueness of the 

two vintages. Specifically, the 116 replicates (4 outliers were excluded) from 2015 and 120 

replicates from 2016 were combined for a single RF analysis. The resulting RF model 

resulted in 97.4% and 100% classification accuracy for the 2015 and 2016 vintages, 

respectively. Again, this outcome suggests that the wine datasets can be readily classified 

according to vintage year alone. In a similar manner, a ROC curve was created from the 

entire 2015 and 2016 wine dataset. A resulting ROC curve consisting of 25 NMR 

spectroscopy and DS array features yielded an AUC of 0.88 for differentiating between the 

2015 and 2016 vintage years (Figure S4). A putative annotation of the top ROC curve 

features revealed that almost all of the identified metabolites such as sugars, sugar alcohols, 

and TCA derivatives were decreased in 2015 compared to 2016 (Figure S4). Only one NMR 

feature was increased in 2015. Together, the entirety of the univariate and multivariate 

statistical analyses described above demonstrates that Pinot noir wines along the Pacific 

Coast of the United States can be distinguished by vintage year with a high level of 

accuracy.

4. Conclusions

Pinot noir wines from fifteen vineyards in eight wine-producing regions along the Pacific 

Coast of the United States were evaluated for metabolic features that classified the wines 

according to vineyard, region, and vintage year. A variety of biological or analytical 

techniques have previously been employed to distinguish between various types of wines. 

NMR, gas chromatography-MS, and various sensors have been used to identify unique 

fingerprints of European and American wines. The combination of such techniques has also 

been utilized to discriminate wine varietals from unique geographic regions (Duley et al., 
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2021; Kioroglou, Mas, & Portillo, 2020; Wu et al., 2019). Nevertheless, little attention has 

been paid to combining multiple analytical techniques to improve the classification accuracy 

of identical Pinot noir clones grown across distinct geographic locations. Toward this end, 

we report that the combination of untargeted metabolomics fingerprinting using 1D 1H 

NMR spectroscopy with a targeted analysis of phenolic profiles using a colorimetric DS 

peptide-based array has proven to be a highly effective approach to distinguish wines 

produced from genetically identical grapevines across vineyard location, geographic region, 

and vintage year. Our analysis highlights that targeted and untargeted techniques can be 

combined to successfully classify wine varietals solely based on geographic location and 

vintage year. In this study, Pinot noir wines were classified according to vineyard and AVA 

region with an accuracy of 0.96 ± 0.04. We have demonstrated through multivariate and 

univariate statistical techniques that the combination of NMR spectroscopy and DS array 

showed a marked improvement in distinguishing vineyards and regions that were at times 

difficult to verify by these techniques individually (Table 1). Together this data demonstrated 

that the combined analysis of both untargeted and targeted analytical techniques provides an 

improved and efficient method of wine variety verification by vineyard, region, and vintage 

year.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic Representation of Pinot noir Combined Wine Classification. The combined 

experimental approach utilized NMR spectroscopy and DS array of phenolics (e.g., 
flavonoids, tannins). The analytical techniques were combined to discriminate fifteen Pinot 

noir wines from nine AVAs along the coast of California and Oregon. A combination of 

multivariate and univariate statistical methods was used to produce a classification model 

that differentiate wines based on vineyard, AVA region or vintage.
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Figure 2. 
Demographics of the Pinot noir Wine across the Pacific Coast of the United States. Samples 

displayed by vineyard code, AVA code, and vintage year. The AVA region locations are 

shown along the coast of California and Oregon. n(a) denotes the number of analytical 

replicates and n(r) denotes the number of samples from the same AVA region for each 

vintage year.
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Figure 3. 
Vineyard Multivariate Scores Plots. LDA-MB-PCA scores plots and associated dendrograms 

generated from the combined NMR spectroscopy and DS array datasets from the (A) 2015 

(R2 0.78, Q2 0.53) and (B) 2016 (R2 0.67, Q2 0.54) wine samples. LDA-MB-PCA scores 

plots and dendrograms are displayed with color-coded groups labels, symbols and ellipses as 

defined in Figure 2. Ellipses represent the 95% confidence interval from a normal 

distribution. Each node of the dendrogram is labeled with a p-value based on Mahalanobis 

distances between the groups. LDA models were generated from the first four components 

of the MB-PCA model.
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Figure 4. 
AVA Region Multivariate Scores Plots. LDA-PCA scores plots and associated dendrogram 

models generated from the NMR spectroscopy region datasets from the (A) 2015 (R2 0.79, 

Q2 0.74) and (B) 2016 (R2 0.75, Q2 0.70) wine samples. LDA-PCA scores plots and 

dendrograms are displayed with color-coded groups labels, symbols and ellipses as defined 

in Figure 2. Ellipses represent the 95% confidence interval from a normal distribution. Each 

node of the dendrogram is labeled with a p-value based on Mahalanobis distances between 

the groups. LDA models were generated from the first four components of the PCA model.
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Figure 5. 
ROC Curve Analysis and Feature Selection Frequency. Representative ROC curve feature 

selection charts from the combined NMR spectroscopy and DS array dataset for the (A) 
2105 SNC2 vineyard analysis and (B)2015 SNC region analysis. The ROC curves were 

generated with MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) (Xia et al., 2015). NMR 

feature usage from all of the ROC curves is plotted using an NMR bin (ppm) size of 0.1 ppm 

for (C) vineyard and (D) region analysis. 2015 data are colored blue, and the 2016 data is 

colored red. A plot of the DS array feature (MM1 to MM9) usage from the same ROC curve 

analyses are displayed as an insert. Putative metabolite assignments correspond to 1, 

isobutanol; 2, malic acid; 3, phenethyl alcohol; 4, mannitol; 5, fructose; 6, ethyl acetate; 7, 

ethyl lactate; 8, tyrosine; and 9, citric acid.
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Table 1.

Summary of Pinot noir Wines Univariate Analysis

Sample Name
a

Random Forest Classification
b

NMR+DS Array ROC Curve
c

NMR DS Array NMR+DS 
Array AUC NMR Ratio

d 

(% NMR)

DS Array 

Ratio
e
 (% 

DS)

2015 Vineyard

SMV1 Santa Maria 
Valley 0.88 1.00 1.00 0.95 0.93 (0.07) 0.07 (0.04)

SMV2 Satna Maria 
Valley 1.00 0.88 1.00 0.98 0.73 (0.05) 0.27 (0.15)

SRH1 Santa Rita Hills 0.75 0.88 0.88 0.91 0.4 (0.05) 0.6 (0.56)

AS1 Arroyo Seco 0.63 1.00 0.88 0.81 0.88 (0.1) 0.12 (0.11)

AS2 Arroyo Seco 0.75 0.88 1.00 0.98 1.00 (0.07) 0.00 (0.00)

SNC1 Sonoma Coast 1.00 0.88 1.00 0.98 0.68 (0.08) 0.32 (0.3)

SNC2 Sonoma Coast 0.75 1.00 1.00 0.99 0.2 (0.01) 0.8 (0.44)

CRN1 Carneros 1.00 1.00 1.00 0.92 0.64 (0.08) 0.36 (0.33)

RRV1 Russian River 
Valley 1.00 0.75 1.00 0.99 0.93 (0.07) 0.07 (0.04)

RRV2 Russian River 
Valley 1.00 0.86 1.00 0.98 0.52 (0.06) 0.48 (0.44)

RRV3 Russian River 
Valley 1.00 1.00 1.00 0.99 0.67 (0.05) 0.33 (0.19)

AV1 Anderson Valley 0.86 0.86 0.86 0.94 0.92 (0.11) 0.08 (0.07)

AV2 Anderson Valley 0.88 1.00 1.00 0.94 0.64 (0.08) 0.36 (0.33)

OR1 Willamette Valley 1.00 1.00 1.00 0.99 0.80 (0.06) 0.20 (0.11)

OR2 Willamette Valley 1.00 0.88 1.00 0.95 0.32 (0.04) 0.68 (0.63)

Average
f 0.90±0.12 0.92±0.08 0.97±0.05 0.95±0.05

p-value
g
 (individual vs combination) 0.045 0.05

2016 Vineyard

SMV1 Santa Maria 
Valley 1.00 0.75 1.00 0.97 0.87 (0.06) 0.13 (0.07)

SMV2 Satna Maria 
Valley 0.88 0.88 1.00 0.96 0.72 (0.09) 0.28 (0.26)

SRH1 Santa Rita Hills 1.00 1.00 1.00 0.95 0.64 (0.08) 0.36 (0.33)

AS1 Arroyo Seco 1.00 0.88 1.00 0.95 0.47 (0.03) 0.53 (0.3)

AS2 Arroyo Seco 0.88 0.88 0.88 0.95 0.40 (0.03) 0.60 (0.33)

SNC1 Sonoma Coast 1.00 1.00 1.00 0.97 0.67 (0.05) 0.33 (0.19)

SNC2 Sonoma Coast 1.00 0.75 1.00 0.96 0.80 (0.10) 0.20 (0.19)

CRN1 Carneros 0.88 0.50 0.88 0.99 0.73 (0.05) 0.27 (0.15)

RRV1 Russian River 
Valley 1.00 0.75 1.00 1.00 1.00 (0.07) 0.00 (0.00)

RRV2 Russian River 
Valley 1.00 0.75 1.00 0.96 0.88 (0.10) 0.12 (0.11)

RRV3 Russian River 
Valley 1.00 1.00 1.00 0.99 0.40 (0.02) 0.60 (0.22)
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Sample Name
a

Random Forest Classification
b

NMR+DS Array ROC Curve
c

NMR DS Array NMR+DS 
Array AUC NMR Ratio

d 

(% NMR)

DS Array 

Ratio
e
 (% 

DS)

AV1 Anderson Valley 1.00 0.75 1.00 1.00 0.87 (0.06) 0.13 (0.07)

AV2 Anderson Valley 1.00 1.00 1.00 0.97 0.72 (0.09) 0.28 (0.26)

OR1 Willamette Valley 1.00 1.00 1.00 0.99 0.80 (0.04) 0.20 (0.07)

OR2 Willamette Valley 1.00 0.63 1.00 0.99 1.00 (0.07) 0.00 (0.00)

Average 0.975±0.05 0.83±0.15 0.98±0.04 0.97±0.02

p-value (individual vs combination) 0.64 0.001

Vineyard Totals

Average 0.94±0.10 0.88±0.13 0.98±0.05 0.96±0.04

p-value (vineyard vs combination) 0.050 0.0002

2015 Region

Santa Maria 
Valley SMV1, SMV2 1.00 0.94 1.00 0.97 0.93 (0.07) 0.07 (0.04)

Santa Rita Hills SRH1 0.63 0.63 0.88 0.91 0.36 (0.04) 0.64 (0.59)

Arroyo Seco AS1, AS2 0.94 1.00 0.94 0.93 0.72 (0.09) 0.28 (0.26)

Sonoma Coast SNC1, SNC2 0.81 0.81 1.00 0.96 0.60 (0.03) 0.40 (0.15)

Carneros CRN1 0.83 0.83 1.00 0.87 0.53 (0.04) 0.40 (0.22)

Russian River 
Valley

RRV1, RRV2, 
RRV3 1.00 0.78 1.00 0.99 0.87 (0.06) 0.13 (0.07)

Anderson Valley AV1, AV2 0.93 0.87 0.93 0.96 0.73 (0.05) 0.27 (0.15)

Willamette 
Valley OR1, OR2 1.00 0.94 1.00 0.99 0.80 (0.04) 0.20 (0.07)

Average 0.089±0.12 0.85±0.11 0.97±0.05 0.948±0.039

p-value (individual vs combination) 0.147 0.018

2016 Region

Santa Maria 
Valley SMV1, SMV2 0.94 1.00 1.00 0.99 0.80 (0.04) 0.20 (0.07)

Santa Rita Hills SRH1 1.00 0.75 1.00 0.93 0.80 (0.06) 0.20 (0.11)

Arroyo Seco AS1, AS2 1.00 0.94 1.00 0.98 0.90 (0.04) 0.10 (0.04)

Sonoma Coast SNC1, SNC2 1.00 0.88 1.00 0.99 0.67 (0.05) 0.33 (0.19)

Carneros CRN1 0.88 0.50 0.88 0.99 0.80 (0.06) 0.20 (0.11)

Russian River 
Valley

RRV1, RRV2, 
RRV3 1.00 0.83 1.00 0.98 1.00 (0.05) 0.00 (0.00)

Anderson Valley AV1, AV2 1.00 0.75 1.00 0.99 1.00 (0.05) 0.00 (0.00)

Willamette 
Valley OR1, OR2 1.00 0.69 1.00 0.98 0.73 (0.05) 0.27 (0.15)

Average 0.977±0.043 0.792±0.147 0.984±0.041 0.980±0.020

p-value (individual vs combination) 0.736 0.005

Region Totals

Average 0.935±0.101 0.821±0.132 0.976±0.044 0.964±0.035

p-value (region vs combination) 0.1529 0.0002

a
list of the fifteen vineyard IDs and the associated regions.
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b
RF classification accuracy ranges from 0 to 1, where 1 is perfect classification. RF classification accuracy using just the NMR or DS array data 

alone or using the combined dataset.

c
ROC - receiver operating characteristic curve, AUC-area under the ROC curve. AUC ranges from 0 to 1, where 1 indicates perfect classification. 

ROC and AUC were calculated using the combined NMR spectroscopy and DS array datasets.

d
NMR ratio identifies the percentage of the total features used in the ROC curve that are from the 1D 1H NMR spectrum. %NMR identifies the 

percentage of the total number of NMR features used in the ROC curve.

e
DS array ratio identifies the percentage of the total features used in the ROC curve that are from the DS array data. %DS identifies the percentage 

of the total number of DS array features used in the ROC curve

f
column averages are presented as average ± standard deviation

g
p-values are calculated from a Student’s t-test
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